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MAXIMAL INEQUALITIES VIA BRACKETING WITH
ADAPTIVE TRUNCATION

DAVID POLLARD

Abstract. The paper provides a recursive interpretation for the technique
known as bracketing with adaptive truncation. By way of illustration, a sim-
ple bound is derived for the expected value of the supremum of an empirical
process, thereby leading to a simpler derivation of a functional central limit
limit due to Ossiander. The recursive method is also abstracted into a frame-
work that consists of only a small number of assumptions about processes
and functionals indexed by sets of functions. In particular, the details of the
underlying probability model are condensed into a single inequality involving
finite sets of functions. A functional central limit theorem of Doukhan, Mas-
sart and Rio, for empirical processes defined by absolutely regular sequences,
motivates the generalization.

1. Introduction

In the empirical process literature, many important theorems and inequalities
have been derived by a technique known as bracketing. Some of the arguments are
long and involved, primarily because they require a delicate balancing act between
several sequences of constants. The modern refinements due to the Seattle group
(Pyke, Alexander, Bass, and Ossiander—for a discussion of their contributions
see Section 6) are the most delicate of all because they combine bracketing with
ingenious truncation arguments.

This paper presents a general method for handling bracketing arguments with
truncation. By way of illustration, I begin with the important special case of a
process constructed from independent random elements ξ1, . . . , ξn taking values in
a space X. For f a real-valued function on X with each f(ξi) is integrable, define
the centered-sum Snf :=

∑
i≤n

(
f(ξi) − Pg(ξi)

)
.

Remark. Throughout the paper I use the de Finetti notation [14,
Chapter 1], writing P for expectations as well as probabilities, and iden-
tifying sets with their indicator functions. For example, Pg{g > c} might
be written as E (g1{g > c}) or as

∫
g(x)>c

g(x) P(dx) in traditional nota-
tion.

Some readers might be more familiar with the standardized form νnf := Snf/
√

n,
the so-called empirical process. Division by

√
n is natural for the derivation of

some limit theorems, particularly so for identically distributed {ξi}, but it would
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merely complicate the notation for the derivation of uniform approximations to a
centered-sum process {Snf : f ∈ F} indexed by a set of functions F on X.

The approximations in the present paper are derived (via bracketing and
truncation arguments) using maps Aδ from F into finite sets of approximating
functions. The main results take the form of bounds for quantities such as
P supF |Sn(f − Aδf)|. (In fact, the theorems involve truncated functions, but the
modification has only a minor effect on applications.) The behaviour of the process
indexed by F is thereby related to the behaviour of a process {Sna : a ∈ A} with A

a finite set of functions. Such an approximation underlies functional central limit
theorems (fCLTs), functional laws of the iterated logarithm, and the stochastic
equicontinuity results that are so useful for asymptotic inference. The rederivation
in Section 3 of the fCLT for iid {ξi}, due to Ossiander [12], is typical.

A very simple form of bracketing is often used in textbooks to prove the
Glivenko-Cantelli theorem, the most basic example of a uniform law of large
numbers. The empirical distribution function Fn for a sample ξ1, . . . , ξn from a
distribution function F on the real line is defined by Fn(t) :=

∑
i≤n{ξi ≤ t}/n

for each t in R. That is, Fn(t) denotes the proportion of the observations less
than or equal to t. The Glivenko-Cantelli theorem asserts that supt |Fn(t) − F (t)|
converges to zero almost surely.

The strong law of large numbers ensures that Fn(t) − F (t) → 0 almost surely,
for each fixed t. The bracketing argument then leads to uniform bounds over
suitably small intervals, t1 ≤ t ≤ t2, by means of bounds that hold throughout
the interval: for such t we have Fn(t1) − F (t2) ≤ Fn(t) − F (t) ≤ Fn(t2) − F (t1).
The two bounds converge almost surely to F (t1) − F (t2) and F (t2) − F (t1). If t2
and t1 are close enough together then all the Fn(t) − F (t) values, for t1 ≤ t ≤ t2,
eventually get squeezed close to the origin. If we cover the whole real line by a
union of finitely many such intervals, we are able to deduce that supt |Fn(t)−F (t)|
is eventually small.

It is more fruitful to think of the increment F (t2) − F (t1) as the L1(P )
distance between the two indicator functions (−∞, t1] and (−∞, t2], where P is
the probability measure corresponding to the distribution function F . The concept
of bracketing then has an obvious extension to more general sets of functions F

on a set X. The extension also makes sense for norms on spaces of functions more
general than the L1(P ) norm. In particular, it has proved most useful for various
L2 norms.

In what follows, #G denotes the cardinality of a set G.

Definition 1. Let U be a vector space of functions equipped with a norm ‖ · ‖.
Define the bracketing number N(δ, F) for a subset F of U as the smallest N for
which there exists a partition of F into subsets F1, . . . ,FN and functions a1, . . . , aN

and b1, . . . , bN in U for which ‖bi‖ ≤ δ and |f − ai| ≤ bi pointwise when f ∈ Fi.

The bracketing defines two maps, Aδ and Bδ, from F into finite sets of
functions: Aδ(f) := ai and Bδ(f) := bi when f ∈ Fi. I will refer to Aδ(f) as the
approximating function, Rδ(f) := f − Aδ(f) as the remainder, and Bδ(f) as the
bracketing function. The bracketing function N(·,F) is decreasing. It is of use only
when finite-valued. Indeed, the most useful bounds require assumptions about the
rate of increase of N(δ, F) as δ tends to zero, as in Ossiander’s fCLT.

Theorem 2. (Ossiander [12]) Suppose {ξi} are independent and identically dis-
tributed random elements, each with marginal distribution P . Suppose F ⊆ L2(P )
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has an envelope F (a measurable function such that |f(x)| ≤ F (x) for all x and all f
in F) for which PF 2 < ∞. Let N2(·) denote the bracketing numbers for F (under
the L2(P ) norm). If

∫ 1

0

√
log N2(x) dx < ∞ then {νnf : f ∈ F} satisfies a fCLT.

Ossiander derived her theorem from a bound on the tail probabilities for
supG |νng|, for various sets of functions G. Close inspection of her proofs, and of
proofs for related theorems in the literature, reveals that independence is used only
through a bound such as the Bennett inequality for sums of independent random
variables [14, Section 11.2]. This inequality implies, for a function g(·) bounded in
absolute value by a constant β with Pg2 ≤ δ2, that

P{|νng| ≥ λδ} ≤ 2 exp
(
− 1

2λ2ψ(n−1/2βλ/δ)
)
, for λ ≥ 0,(1)

where ψ(x) is a specified decreasing, nonnegative function with ψ(0) = 1.
The presence of the nuisance factor, ψ(n−1/2βλ/δ), complicates the usual

chaining argument for tail probabilities. If β and n stay fixed while λ/δ increases,
the nuisance factor begins to dominate the bound. It was for this reason that
Bass [3] and Ossiander [12] needed to add an extra truncation step to the chaining
argument. The truncation keeps n−1/2βλ/δ close enough to zero that one can
ignore the nuisance factor and act as if νng has sub-gaussian tails.

As you will see in the Section 2, under Ossiander’s assumptions, a similar
truncation scheme leads to a maximal inequality in the form of a bound for
P supg∈G |Sng| for various G. A proof of the fCLT follows easily (see Section 3).

2. Independent summands

Suppose ξ1, . . . , ξn are independent random variables. Define

‖g‖1 :=
∑

i≤n
P|g(ξi)| and ‖g‖2 :=

(∑
i≤n

Pg(ξi)2
)1/2

.(2)

If each ξi has distribution P then ‖g‖1 = nP |g| and ‖g‖2
2 = nPg2.

The argument leading to the maximal inequality makes use of independence
only through a maximal inequality for finite sets of functions. The method of proof
combines an idea of Pisier [13] with the first step in the derivation of the Bennett
inequality. It depends on the elementary fact [14, Section 11.2] that the function
defined by E(x) := 2(ex − 1 − x)/x2 for x 	= 0, and E(0) = 1, is positive and
increasing over the whole real line.

Lemma 3. Suppose ξ1, . . . , ξn are independent and G is a finite set of functions,
for each of which supx |g(x)| ≤ β and ‖g‖2 ≤ δ. Then

P max
g∈G

|Sng| ≤ C0δ
√

log(2 #G) if β ≤ δ/
√

log(2 #G) where C0 ≈ 1.718.

Proof. Write N for #G, the cardinality of G. For a fixed function g with |g| ≤ β
and ‖g‖2 ≤ δ, temporarily write Wi for g(ξi) and µi for Pg(ξi). For each t > 0,

Pet
∑

i≤n Wi =
∏

i

(
1 + tPWi + P

1
2 t2W 2

i E(tWi)
)
≤

∏
i
exp

(
tµi + 1

2 t2PW 2
i E(tβ)

)
,
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which rearranges to the give P exp(tSng) ≤ exp
(

1
2 t2δ2E(tβ)

)
. Applying this bound

for ±g, for each g in G, we get

exp(tP maxG |Sng|) ≤ P exp (t maxG |Sng|) by Jensen’s inequality

≤
∑

g∈G
(P exp (tSng) + P exp (tSn(−g)))

≤ 2N exp
(

1
2 t2δ2E(tβ)

)
.

Take logarithms then put t =
√

log(2N)/δ to get

P maxG |Sng| ≤ δ
√

log(2N)
(
1 + 1

2E(β
√

log(2N)/δ)
)

.

The asserted maximal inequality with C0 := 1 + 1
2E(1) follows.

The main parts of the proof will involve the calculation of bounds for
P supr∈R |Snr| for (possibly infinite) sets R, typically consisting of truncated
remainder functions derived from various bracketing approximations to F. To
reduce the calculations to finite sets of functions, we will bound each r in absolute
value by a truncated bracketing function b.

Lemma 4. Suppose a set of nonnegative functions B dominates a set of func-
tions R, in the sense that for each r ∈ R there is a b ∈ B for which |r| ≤ b.
Then supr∈R |Snr| ≤ supb∈B |Snb| + 2 supb∈B ‖b‖1.

Proof. If |r| ≤ b then |Snr| ≤
∑

i≤n (|r(ξi)| + P|r(ξi)|) ≤
∑

i≤n (b(ξi) + Pb(ξi)).

The successive approximations will be combined in such a way that the
bounding functions b are not only truncated above but also below, a subtlety that
will allow us to bound L1 norms by L2 norms.

Lemma 5. For each function b with finite L2 norm, ‖b{|b| ≥ ‖b‖2/t}‖1 ≤ t‖b‖2.

Proof. P
∑

i≤n |b(ξi){|b(ξi)| ≥ ‖b‖2/t}| ≤ P
∑

i≤n b(ξi)2/(‖b‖2/t).

The inequalities from the three Lemmas capture everything we have to know
about the {ξi} and the norms in order to derive the main approximation result.

Theorem 6. Let N(x) denote the bracketing number of a set of functions F under
the L2 norm from (2). For a fixed δ > 0, define δi := δ/2i and βi := δi/H(n(δi)),
with n(y) := N(y)N(y/2) and H(N) :=

√
log(2N). Define

∆i := P supf∈F |Sn (Rδi(f){Bδi(f)) ≤ βi}) |.

Then

∆0 ≤ ∆k + 71
∫ δ1

δk+2

H(N(y)) dy for each k.

Remark. Of course a quantity such as supg∈G |Sng| need not be mea-
surable if G is uncountable. The expectation in the definition of ∆i should
actually be interpreted as an outer expectation. In fact, most of the in-
equalities needed for the proofs involve upper bounds depending on only
finite subsets of L2(P ), for which the measurability problem disappears.



MAXIMAL INEQUALITIES VIA BRACKETING WITH ADAPTIVE TRUNCATION 5

Proof. Construct the bracketing approximations for each δi, for i = 0, 1, . . . , k. To
simplify notation, abbreviate n(δi) to ni and define γi := H(ni). Similarly, abbre-
viate Aδi(f) to Ai, and Bδi(f) to Bi, and Rδi(f) to Ri, with the argument f un-
derstood. Notice that |Ri| ≤ Bi, which implies that ‖Ri‖2 ≤ ‖Bi‖2 ≤ δi. Write Ti

for the truncation region {Bδi
(f) ≤ βi} and mF(· · · ) for P supf∈F |Sn(· · · )|. With

this notation we have ∆i = mF (RiTi). Section 4 will show that the subadditivity
property of the functional mF is really what drives the argument.

The key idea behind the Seattle method is captured by a recursive equality,

RiTi = Ri+1Ti+1 − Ri+1T
c
i Ti+1 + (Ri − Ri+1)TiTi+1 + RiTiT

c
i+1,

which relates the truncated remainder terms for successive bracketing approxima-
tions. Applying mF to the sets of functions on both sides of this equality, we get

∆i ≤ ∆i+1 + mF(Ri+1T
c
i Ti+1) + mF((Ri − Ri+1)TiTi+1) + mF(RiTiT

c
i+1).(3)

Together the three Lemmas will provide bounds for the second, third, and fourth
terms on the right-hand side.

Contribution of the third term from (3)
As f ranges over the set F, the truncated difference function (Ri −Ri+1)TiTi+1 =
−(Ai − Ai+1)TiTi+1 ranges over at most ni distinct functions. Moreover,

‖(Ri − Ri+1)TiTi+1‖2 ≤ ‖Ri‖2 + ‖Ri+1‖2 ≤ δi + δi+1

and

|Ri − Ri+1|TiTi+1 ≤ BiTi + Bi+1Ti+1 ≤ βi + βi+1

≤ δi/γi + δi+1/γi+1 ≤ (δi + δi+1)/H(ni).

Thus the set of functions {(Ri − Ri+1)TiTi+1 : f ∈ F} satisfies the conditions of
Lemma 3, which gives

mF

(
(Ri − Ri+1)TiTi+1

)
≤ C0 (δi + δi+1) γi.(4)

Contribution of the second term from (3)
The set of functions {Ri+1T

c
i Ti+1 : f ∈ F} is potentially infinite, but it is dom-

inated by the set {Bi+1T
c
i Ti+1 : f ∈ F}, which contains at most ni nonnegative

functions, each bounded above by βi+1 and with L2 norm at most δi+1. Moreover,
by splitting according to which of Bi or Bi+1 is larger, we get the inequality

‖Bi+1T
c
i Ti+1‖1 ≤ ‖Bi{Bi > βi}‖1 + ‖Bi+1{Bi+1 > βi}‖1

≤ ‖Bi{Bi > ‖Bi‖2/γi}‖1 + ‖Bi+1{Bi+1 > 2‖Bi+1‖2/γi}‖1

≤ δiγi + 1
2δi+1γi by Lemma 5.

From Lemmas 4 and 3 deduce that

mF (Ri+1T
c
i Ti+1) ≤ C0δi+1γi + 2

(
δiγi + 1

2δi+1γi

)
.(5)

Contribution of the fourth term from (3)
The argument is almost the same as for the second term. Each of the dominating
functions BiTiT

c
i+1 is bounded above by βi, has L2 norm at most δi, and

‖BiTiT
c
i+1‖1 ≤ ‖Bi{Bi > βi+1}‖1 + ‖Bi+1{Bi+1 > βi+1}‖1 ≤ 5δi+1γi+1.

Again from Lemmas 4 and 3 deduce that

mF

(
RiTiT

c
i+1

)
≤ C0δiγi + 10δi+1γi+1.(6)
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Recursive inequality
From inequalities (3), (4), (5), and (6),

∆i ≤ ∆i+1 + (5 + 6C0)δi+1γi+1 + 20δi+2γi+1.

Subadditivity of the square-root function gives

γi =
√

log(n(δi)) ≤
√

log(2N(δi)) +
√

log(2N(δi+1)) ≤ 2H(N(δi+1)).

By repeated substitution we are then left with the inequality

∆0 ≤ ∆k +
k−1∑
i=0

(10 + 12C0)(δi+1 − δi+2)H(N(δi+1)) + 40(δi+2 − δi+3)H(N(δi+2))

Monotonicity of the function y �→ H(N(y)) lets us bound the summands by multi-
ples of integrals of the form

∫
{δj+1 < y ≤ δj}H(N(y)) dy, from which the assertion

of the Theorem follows because 50 + 12C0 ≈ 70.62.

Corollary 7. Under the conditions of the Theorem, ∆0 ≤ 71
∫ δ/2

0
H(N(y)) dy.

Proof. Note that |RkTk| ≤ βk → 0 as k → ∞, implying that ∆k → 0 for fixed n.

3. Proof of Ossiander’s functional CLT

The theorem asserts convergence in distribution of νn to a Gaussian process
{νf : f ∈ F}. To prove her theorem, Ossiander [12] needed to show

(a) finite dimensional convergence: {νng : g ∈ G} � {νg : g ∈ G} for each finite
subset F

(b) stochastic equicontinuity: for each η > 0 and ε > 0, there exists a δ > 0
for which P

{
sup‖f−g‖<δ |νnf − νng| > η

}
≤ ε for all n large enough. (The

supremum runs over all pairs of functions in F whose L2(P ) distance is smaller
than δ.)

The assumption of identical distributions for the {ξi} is not crucial for the validity
of a fCLT. It ensures that (a) follows directly from the multivariate central limit
theorem, and it slightly simplifies the notation. Ossiander’s methods also work for
more general triangular arrays.

Square integrability of F ensures that, for each fixed ε > 0,

P{max
i≤n

F (ξi) > ε
√

n} ≤ nP{F > ε
√

n} ≤ P
(
F 2{F > ε

√
n}

)
→ 0 as n → ∞.

The same assertion holds with ε replaced by an εn that tends to zero slowly
enough. Thus there exists a sequence of constants Mn of order o(

√
n) for which

maxi≤n F (ξi) ≤ Mn with probability tending to one. Define

H = Hn(δ) :=
{
(f − g){F ≤ Mn}/

√
n : f, g ∈ F and P (f − g)2 < δ2

}
.

If we show that lim supn P suph∈H |Snh| → 0 as δ → 0 then (b) will follow.
To avoid confusion between norms, write A∗

y(f) and B∗
y(f) for the ap-

proximating functions and bracketing functions for F under the L2(P ) norm.
The corresponding bracketing numbers are given by the function N2(·). If
h = (f − g){F ≤ Mn}/

√
n we may take

Ay(h) :=
(
A∗

y/2(f) − A∗
y/2(g)

)
{F ≤ Mn}/

√
n

By(h) :=
(
B∗

y/2(f) + B∗
y/2(g)

)
{F ≤ Mn}/

√
n.
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The bracketing number N(y, H) for H under the ‖ · ‖2 norm from (2) is then
smaller than N2(y/2)2. For y equal to δ we can do much better by redefining
Aδ(h) ≡ 0 and Bδ(h) ≡ 2F{F ≤ Mn}/

√
n, which gives N(δ, H) = 1. Notice that

Bδ(h) ≤ 2Mn/
√

n → 0, which implies that {Bδ(h) ≤ β0} is equal to the whole
space when n is large enough. That is, we can eventually ignore the trunction
factor in the definition of ∆0, and deduce via Corollary 7 that

P sup
h≤H

|Snh| = ∆0 ≤ 71
∫ δ/2

0

√
log (2N2(y)2) dy for large enough n.

The integral on the right-hand side converges to zero with δ.
Remark. We were able to argue directly via Corollary 7 because
log

(
2N2(y)2

)
increases like log (2N2(y)). For the analogous results in

the next Section we might not have the benefit of a logarithm to counter
the squaring of the bracketing number. We could however argue directly
from Theorem 6 using the method of Ledoux and Talagrand [10, Theo-
rem 11.6] to avoid the problem caused by working with sets of differences.

4. Generalization

The three Lemmas in Section 2 and the method of proof suggest that the
Theorem really depends only on the relationship between a functional mF and
the norms ‖g‖1 and ‖g‖2. Indeed, the argument extends readily to more general
functionals defined for subsets G of a vector space of functions U. There are also
extensions to functionals with properties analogous to tail probabilities and to more
complicated truncation schemes, as in Birgé and Massart [5]; but, for simplicity of
exposition, I describe only one generalization.

The role of the L2 norm from Section 2 will be taken over by a general
norm ‖ · ‖ on U. In fact, we do not need all the properties of a norm: it will
suffice that ‖ · ‖ is subadditive, that is, ‖g1 + g2‖ ≤ ‖g1‖ + ‖g2‖ for all g1, g2 ∈ U.
Similarly, the role of the L1 norm will be taken over by a second subadditive map ρ
from U into R

+. In place of mF, consider a functional m that assigns a nonnegative
number m(G) to each subset G of U. Assume that the following properties hold.

(i) if g1, g2 ∈ U and c ∈ R then g1{g2 ≤ c} ∈ U and g1{g2 > c} ∈ U

(ii) if |g1| ≤ |g2| pointwise then ‖g1‖ ≤ ‖g2‖ and ρ(g1) ≤ ρ(g2)
(iii) if subsets G,G′,G′′ of U are such that each g in G can be written as a sum

g′ + g′′, with g′ ∈ G′ and g′′ ∈ G′′, then m(G) ≤ m(G′) + m(G′′)
(iv) there exist nonnegative, increasing functions G(N) and H(N) for which: if

G is a finite subset of functions from U for each of which ‖g‖ ≤ δ and
supx |g(x)| ≤ β ≤ δ/G(#G) then m(G) ≤ δH(#G)

(v) if H dominates G, in the sense that for each g in G there is an h in H for
which |g| ≤ h, then m(G) ≤ m(H) + suph∈H ρ(h)

(vi) there is an increasing, nonnegative function D for which ρ
(
g{|g| > ‖g‖/t}

)
≤

‖g‖D(t) for each t > 0 and g ∈ U

Assumption (iii) is the subadditivity property that will allow us to develop a
recursive inequality analogous to (3). For example, any functional defined by taking
an Lp norm of supg∈G |Sng| is subadditive in the sense of (iii). Assumption (iv)
corresponds to Lemma 3, but with the dual role of the function

√
log(2N) split

between two separate functions, G and H. The extra generality is not needed
for the examples discussed in the present paper, but it does serve to clarify the
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two roles played by
√

log(2N) in Theorem 6. Assumption (v) corresponds to
Lemma 4, with a slight tidying of constants. Assumption (vi) extends Lemma 5 by
allowing a more subtle dependence on t, a generalization motivated by the results
of Doukhan, Massart and Rio [7], as described in the next Section. It implies that,
for all nonnegative g1 and g2 in U,

ρ(g1{g2 > c}) ≤ ‖g1‖D (‖g1‖/c) + ‖g2‖D (‖g2‖/c) ,(7)

an inequality derived via the subadditivity of ρ by splitting according to which of
g1 or g2 is larger, as in the argument for the second term from (3) in Section 2.

Theorem 8. Let N(x) denote the bracketing number of a set of functions F ⊆ U

under the norm ‖ · ‖. Assume that (i) through (vi) hold. For a fixed δ > 0, define
δi := δ/2i and βi := δi/G(n(δi)), with n(y) := N(y)N(y/2). Define

∆i := m {Rδi
(f){Bδi

(f)) ≤ βi} : f ∈ F} .

Then for some universal constant C,

∆0 ≤ ∆k + C

∫ δ1

δk+2

H(n(y)) + D(2G(n(y))) dy for each k.

Outline of proof. Define Ai, Bi, ni, Ri, and Ti as in the proof of Theorem 3. From
the recursive equality for the truncated remainder RiTi, argue via (iii) that

∆i ≤∆i+1 + m{−Ri+1T
c
i Ti+1 : f ∈ F} +

m{(Ri − Ri+1)TiTi+1 : f ∈ F} + m(RiTiT
c
i+1 : f ∈ F}.

For the second term on the right-hand side, invoke (v) for the dominating set of
functions {Bi+1T

c
i Ti+1 : f ∈ F} then appeal to (7) to derive the bound

δi+1H(n(δi)) + δi+1D(G(n(δi+1)/2)) + δiD(G(n(δi))).

And so on, along the same lines as the proof of Theorem 6.

5. Absolute regularity

Doukhan, Massart and Rio [7]—henceforth DMR—established a functional
central limit theorem for stationary, absolutely regular sequences {ξi} of random
elements of a Polish space X, each with distribution P . Their method fits into the
framework of Theorem 8 with m(F) = P supf∈F |νnf | and ρ(g) := 2

√
nP |g|. With

small modifications, their Lemma 3 gives a maximal inequality as in (iv) and their
Lemma 4 gives (vi) for an unusual D. This Section outlines the argument.

The definition of absolute regularity involves a decreasing sequence of mixing
coefficients {rq : q = 0, 1, 2, · · · }. We may assume that rq = r(q), where r(·) is a
continuous, decreasing function on R

+ with r(0) = 1 and r(x) → 0 as x → ∞.
The function r has a right-continuous, decreasing “inverse” function, defined by
r−1(u) := inf{x : r(x) ≤ u} for 0 < u < 1. Similarly, the tail quantile function Qf

for a measurable real function f on X is defined by

Qf (u) := inf{x : P{|f | > x} ≤ u} for 0 < u < 1.

If U is distributed Uniform(0, 1) then Qf (U) has the same distribution as |f |
under P , a representation that will be needed in Lemma 9. Following [16], DMR
defined ‖f‖2 :=

∫ 1

0
r−1(u)Qf (u)2 du for real measurable functions on X. The set U

of all f for which ‖f‖ < ∞ is a vector space for which assumptions (i) and (ii)
hold.
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As noted by DMR, the precise definition of absolute regularity of the sequence is
unimportant. It matters only that there exists a coupling with a process constructed
from independent random vectors, as follows. For any positive integer q, break
{ξi} into a sequence of q-vectors Y1, Y2, . . . . That is, Yi has components ξj for
j ∈ Ni := {1 + (i − 1)q, · · · , iq}. Then there exists a sequence of q-vectors Y ∗

i for
which: (a) Y ∗

i has the same distribution as Yi, for each i; (b) P{Yi 	= Y ∗
i } ≤ rq;

and (c) {Y ∗
2i : i = 1, 2, · · · } are independent and so are {Y ∗

2i−1 : i = 1, 2, · · · }.
If the integer q lies in the range 1 ≤ q ≤ n, properties (a), (b) and (c) let

us couple the empirical process νn with a sum of two processes ν∗
n + ν∗∗

n , with ν∗
n

constructed from the ξ∗j variables from the N2i blocks and ν∗∗
n constructed from

the remaining variables, leading to the inequality

P maxg∈G |νng| ≤ P maxg∈G |ν∗
ng|+P maxg∈G |ν∗∗

n g|+2βrq

√
n if maxg∈G |g| ≤ β.

If G is a set of at most N functions from U, each bounded in absolute value by a
constant β and with norm less than δ, we may apply the method of Lemma 3 with
Wi equal to a sum

∑
j∈Ni

(
g(ξ∗j ) − Pg(ξ∗j )

)
/
√

n, first for even then for odd values
of i, in order to bound both P exp(tν∗

ng) and P exp(tν∗∗
n g) by expressions of the

form exp
(
ct2‖g‖2E(c′qβt/

√
n)

)
, for constants c and c′. We then deduce that

P max
g∈G

|νng| ≤ c0δ�N

(
1 + E

(
c1qβ�N

δ
√

n

)
+

qβ

δ

r(q)
√

n

q�N

)
,(8)

where c0 and c1 are constants and �N = �(N) :=
√

1 + log N . (We could take �N

as
√

log(2N), but the slightly larger value ensures �N ≥ 1 for all N ≥ 1.) With a
slight increase in the constants, inequality (8) also holds for all q in the continuous
range [1, n]. With an appropriate choice for q, the inequality will become the
desired maximal inequality (iv).

DMR established a functional central limit theorem for subsets F of U for which∫ 1

0

√
log N(x,F) dx < ∞, for the covering numbers under their new norm, and with

envelope F for which ‖F‖ < ∞. They assumed that
∑

q rq < ∞, which implies∫ 1

0
r−1(u) du < ∞, thereby ensuring that the function R(x) :=

∫ r(x)

0
r−1(u) du is

continuous and decreases to zero as x tends to infinity. With these functions, we
can define a suitable D for assumption (vi).

Lemma 9. For each f in U and each x > 0 define ‖f‖2
x :=

∫ r(x)

0
r−1(u)Qf (u)2 du.

Then P |f |
{
|f | > ‖f‖x/

√
R(x)

}
≤ ‖f‖x

√
r(x)/x.

Proof. First note that ‖f‖2
x ≥ R(x)Qf (r(x))2, because Qf is a decreasing function.

Thus the quantity on the left-hand side of the asserted inequality is less than
∫ 1

0

Qf (u){Qf (u) > Qf (r(x))} du ≤
∫ 1

0

Qf (u){u < r(x)} du

≤
∫ 1

0

√
r−1(u)/x Qf (u){u < r(x)} du,

the second inequality following from the fact that r−1(u) > x when u < r(x). The
Cauchy-Schwarz inequality completes the proof.



10 DAVID POLLARD

If we replace ‖f‖x in the Lemma by the larger ‖f‖, we get a weaker inequality
that suggests we should define D indirectly by putting

D(t) := 2
√

nr(x)/x when t =
√

R(x).(9)

The definition makes sense for all t in the range 0 ≤ t ≤
√

R(0). It will turn out
that we only need to consider such values of t. Indeed, the largest t needed for
the proofs is 2G(nk). We keep this value within the required range by defining
G(N) := 1

2

√
R(qN ) for a value qN that will be determined by the requirements of

the maximal inequality (iv). These choices give D(2G(N)) = 2
√

nr(qN )/qN and
1/G(N) ≤ 2/

√
qNr(qN ), because R(x) ≥ xr(x) for all x ≥ 0.

How should we choose q = qN to balance the requirements of assumptions (iv)
and (vi)? At best we can make the right-hand side of (8) smaller than a multiple
of δ�N by keeping β/δ smaller than a multiple of min (

√
n/(q�N ), �N/(

√
nrq)).

One term in the minimum decreases as q gets larger, the other increases. We
get the largest range for β/δ by balancing the terms: choose q equal to the
value qN for which r(qN )/qN = �2N/n, an equality that defines a unique value
in the range [1, n] when �2N ≤ nr(1). (The upper bound on qN comes from the
fact that �2N/n ≥ 1/n ≥ r(n)/n.) Provided β/δ is smaller than 1/G(N) :=
2/

√
R(qN ) ≤ 2/

√
qNr(qN ), we then bound the right-hand side of (8) for q = qN

by c0δ�N (1 + E (2c1) + 2). That is, assumption (iv) holds with H(N) a constant
multiple of �N and G(N) = 1

2

√
R(qN ), provided we consider only values of N for

which �2N ≤ nr(1). We also have D(2G(N)) = 2�N . An appeal to Theorem 8 then
gives the bound

∆0 := m (R0(f){B0(f) ≤ β0}) ≤ ∆k + C ′J(δ) where J(δ) :=
∫ δ

0

�(n(x)) dx.

The assumed finiteness of
∫ 1

0

√
log N(x,F) dx ensures that J(δ) converges to

zero as δ tends to zero. We have only to choose k so that ∆k is suitably small
and �(nk)2 ≤ nr(1). The largest k for which

√
nδk ≤ J(δ) will suffice if δ is small

enough. With that choice we have δk�(nk) ≤ J(δk) = o(1) = o (
√

nδk) , and, by (iv)
and (vi) applied to {(f − Ak(f)){Bk(f) ≤ βk} : f ∈ F},

∆k ≤ mF (Bk{Bk ≤ βk}) + 2
√

n max
F

P (Bk{Bk ≤ βk}) ≤ δkH(Nk) + 2
√

nδk,

which is smaller than some constant multiple of J(δ).
As in Section 3, we can eliminate the effect of the indicator {B0 ≤ β0}

from ∆0 by means of an initial truncation based on the finiteness of ‖F‖. For each
fixed C, the sequence Mn = ‖F‖xn

/
√

R(xn), where xn is defined by the equalities
r(xn)/xn = C/n, has the property

PF{F > Mn} ≤ ‖F‖xn

√
r(xn)/xn = o(n−1/2) by Lemma 9.

If we let C tend to infinity slowly enough with n, we get sequences {xn} and {Mn}
for which nr(xn)/xn → ∞ and

P supf∈F |νn (f{F > Mn}) | ≤ 2
√

nPF{F > Mn} → 0.

Eventually Mn will be smaller than the truncation level β0 := 2δ/
√

R(qn(δ)),
no matter how small we choose δ. Indeed, qn(δ) is defined by the equality
r(qn(δ))/qn(δ) = �(n(δ))/n = o (r(xn)/xn). Eventually we must have qn(δ) > xn
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and hence R(qn(δ)) ≤ R(xn). When we also have ‖F‖xn < 2δ then it follows that
Mn < β0.

The rest of the argument leading to the functional central limit theorem
follows the method outlined in Section 3.

6. Some history

Bracketing arguments have long been used to prove fCLTs: for example, the
original paper of Donsker [6, near his equation 2.11] applied a version of the
method.

Dudley [8] used the concept of metric entropy with bracketing for general
classes of sets in order to prove a functional CLT for empirical processes indexed
by classes of sets. He later [9] extended the result to classes of functions with an
envelope having a finite pth moment, for some p > 2. His method involved an
initial truncation at a level much smaller than

√
n and it required an assumption

on the bracketing numbers stronger than Ossiander’s condition.
Pyke [15] used a similar truncation to prove a CLT for processes indexed by

sets. This result was refined first by Bass and Pyke [4], and then by Alexander and
Pyke [1]. The second paper added the refinement of multiple levels of truncation
(the stratification argument on page 589), to partition a partial-sum process into
a sum of bounded processes, thereby obtaining the fCLT under the natural second
moment and bracketing conditions. They cited the preprint form of Bass [3], who
also applied stratification to prove a functional LIL for set-indexed processes.
Ossiander [12, pages 899, 903] stated that her chaining argument was adapted from
the Bass paper. In a private communication, Ron Pyke explained to me that the
history is more complicated than suggested by the publication dates:

Ken Alexander saw the paper of Pyke [15], and realized how to
improve the truncation technique used there. He applied the
improvement in a 1984 paper. With Pyke he wrote another
paper [1]—see the remarks at the end of the paper. Bass [3] applied
the truncation to set-indexed partial-sum processes (the paper was not
written up before December 1984). Bass and Pyke [4] (in a paper
written around 1983, Pyke believes) recognized the truncation
problem; but they didn’t use the best form of truncation. Mina
Ossiander worked on her dissertation during the spring and summer of
1984, producing her thesis—later published as [12]—and a technical
report in November–December of that year. Starting from the preprint
form of [1], she developed a more general form of the truncation
argument. There were many discussions between Ossiander and Bass.
The final publication dates are not indicative of the true order in
which work was carried out, because of delays in refereeing.

In view of this information, I think it is fair to spread the credit for the
truncation method between all the members of the Seattle group.

My involvement with the method began in early 1985, with a study of [3] and
Ossiander’s thesis. By mid 1987, I realized that the argument could be thought
of as a recursive procedure, an idea that I circulated in unpublished preprints.
The generalization to dependent variables by DMR [7] later suggested to me the
possibility of the abstract version of the method, as presented in Section 4. The
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method has also been extended by Andersen et al [2], replacing the concept of a
bracketing number by the concept of a majorizing measure.

References

[1] K. S. Alexander and R. Pyke. A uniform central limit theorem for set-indexed partial-sum
processes with finite variance. Annals of Probability, 14:582–597, 1986.
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