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Abstract. The paper contains some musings about the abstractions introduced by Lucien
Le Cam into the asymptotic theory of statistical inference and decision theory. A short, self-
contained proof of a key result (existence of randomizations via convergence in distribution
of likelihood ratios), and an outline of a proof of a local asymptotic minimax theorem, are
presented as an illustration of how Le Cam’s approach leads to conceptual simplifications of
asymptotic theory.
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1. Convergence of experiments

Over a period of almost half a century, Lucien Le Cam developed a general theory for handling
asymptotic problems in statistical decision theory. At the core of his thinking was the concept
of a distance between statistical models (or experiments, in Le Cam’s terminology). When
two models are close in Le Cam’s sense, there is an automatic transfer of solutions to certain
types of decision theoretic problems from one model to the other.

Most of the theory was described, in very general form, by Le Cam (1986). A gentler
account of a subset of the theory appeared in the smaller book by Le Cam & Yang (1990),
which will soon be reappearing in a second edition.

For too long, Le Cam’s approach had an unfair reputation as dealing only with “abstract
and abstruse problems” (Albers, Alexanderson & Reid 1990, page 178). But more recent
work—such as the groundbreaking papers of Brown & Low (1996) and Nussbaum (1996)—has
confirmed that Le Cam had long ago identified the essential mechanism at work behind the
suggestive similarities between certain types of asymptotic nonparametric problems.

We can think of an experiment as a family of probability measuresP = {Pθ : θ ∈ 2}
defined on a sigma-fieldF of a sample spaceÄ. As Le Cam pointed out, the precise choice
of (Ä,F) is somewhat irrelevant. In many respects, they are just an artifice to let us interpret
the random variables of interest as measurable functions. What matters most is the ordering
and vector space properties satisfied by the random variables, the properties that identify the
space of all bounded, real-valued random variables onÄ as anM-space.

Le Cam’s identification of probability measures with linear functionals on an abstract
M-space might appear shocking, but it does make clear that there is nothing sacred about the
choice of the sample space. Probability arguments that use only theM-space properties are
valid for all choices of an underlyingÄ andF.

Strangely enough, I often find myself making analogous arguments about the irrelevance
of Ä when teaching introductory probability courses. Sample spaces are very good for
bookkeeping and forcing precise identification of random variables, but it is really more
important to understand how those random variables relate to each other and to the probabilities.
I seldom feel a need to identify explicitly an appropriateÄ when solving a problem; and even
when there is an implicitÄ, I would have no compunction about changing it if there were a
more convenient way to represent the random variables.

Similar thoughts have occurred to me when dealing with empirical process theory. If
a result is true for one sequence of random variables (or random elements of a space more
complicated than the real line), and not for another sequence with the same joint distributions,
but defined on a differentÄ, are we relying too heavily on what should be irrelevant features
of the sample space? Maybe we need a stricter definition of a probability space? Such ideas
are not total heresy: compare, for example, with Doob’s comments on the assumption that
probability measures beperfect in Appendix I of Gnedenko & Kolmogorov (1968), or the
need forperfectmeasurable maps in the Dudley (1985) representation theorem. To paraphrase
Le Cam, Why cling to anÄ that causes trouble, if there are other choices that ensure nice
properties for the objects we care about?

I find myself a little too timid to take the logical next step, abandoning altogether the
sample space and treating probabilities as objects that don’t need the support of a sigma-field,
as with Le Cam’s identification of probability models with subsets ofL-spaces in duality
with M-spaces. It is a comfort, though, to know that there is always someÄ for which the
L-spaces andM-spaces of any particular problem correspond to sets of measures and functions
with an abundance of traditional regularity properties (the Kakutani representations—see pages
209–211 of Torgersen 1991).

I also see value in regarding Le Cam’s more general objects as idealized measures or
idealized decision procedures, particularly so if they appear only in the intermediate steps
of an argument concerning their traditional counterparts. For example, a theorem asserting
existence of a generalized estimator with desirable properties is a good place to start searching
for a traditional estimator with the same properties, just as a mathematician who is interested
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only in real roots of polynomials might find it easier to prove that all the complex roots lie on
the real axis, rather than establishing existence of real roots from scratch.

Let Q = {Qθ : θ ∈ 2} be a family of probability measures on(Y,A), with the same
index set2 asP. Le Cam defined the distance betweenP andQ by means of randomizations.
For example, if we have a probability kernelK from Ä to Y, then eachPθ defines a
probability measurẽQθ = Pωθ Kω on A, corresponding to a two-step procedure for generating
an observationy: first generate anω from Pθ , then generate ay from the probability
measureKω. In more traditional notation,̃Qθ (A) would be written

∫
Kω(A)Pθ (dω), for each

A in A. Again Le Cam allowed randomizations (which he called transitions) to be slightly
more exotic than probability kernels, in order to achieve a most convenient compactness
property for the space of all possible randomizations between two spaces—see my comments
at the end of Section 3 regarding minimax bounds.

Roughly speaking, two experiments are close if each is well approximated, in the sense of
total variation, by a randomization of the other. (Recall that the total variation distance between
two measures̃Q andQ on the same sigma-field is defined as‖Q̃−Q‖1 = sup| f |≤1 |Q̃ f −Q f |,
the f ranging over all measurable functions bounded in absolute value by 1. If the measures
have densities̃q andq with respect to a dominating measureµ, then‖Q̃−Q‖1 is equal to the
L1(µ) norm of q̃−q.) More formally, the distanceδ2(P,Q) is defined as the infimum over all
randomizations of the quantity supθ∈2 ‖Pωθ Kω−Qθ‖1. The Le Cam distance12(P,Q) equals
the minimum ofδ2(P,Q) andδ2(Q,P). Of course, the infimum over probability kernels gives
an upper bound forδ2(P,Q), which is often all that we need.

Le Cam’s method is most often applied to establish limit theory for sequences of
experiments,Pn = {Pn,θ : θ ∈ 2}. (I will assume allPn,θ are defined on the same sigma-field,
of the sameÄ, to avoid further notational complication.) If the infimum,δ2(Q,Pn), tends to
zero asn tends to infinity then I will writePn b Q, or Q c Pn. If both Pn b Q andPn c Q

then the experimentsPn are said to converge (in Le Cam’s sense) toQ, which I will write as
Pn cb Q.

The randomizations involved in the definition of Le Cam’sδ2 fit naturally with the idea of
randomized estimators (or, more generally, randomized procedures over some abstract action
space). In the traditional sense, a randomized estimator ofθ , based on an observationy from
some (unknown)Qθ , is just a probability kernelρ from Y into 2. If K is a randomization
from Ä to Y, then we may define a new randomized estimator ofθ , based on an observationω
from Pθ , by averagingρy with respect toKω: for eachω, generate ay from Kω, then generate
a t in 2 from ρy. I will write K y

ωρy for this new estimator, the result of composing the two
randomizations.

For example, ifPn b Q, with corresponding randomizationsKn, and ifρn is a randomized
estimator underPn (that is, based on an observationω from somePn,θ ), then the compositions
τn = K y

nρn,y define a sequence of randomized estimators underQ (that is, based on an
observationy from the correspondingQθ ). Any theory developed for the collection of all
randomized estimators underQ automatically applies toτn, and thence toρn, within an
error term derived fromδ2(Q,Pn). See Section 3 for an example of this principle in action.
Similarly, if Pn c Q, then theory for randomized estimators underPn has an automatic transfer
to Q.

For many important statistical results, we do not need the approximation in total variation
to hold uniformly over the whole of2. Instead, it often suffices to consider separately the
finite-parameter subexperiments. That is, for each finite subsetS of 2, we need to find
randomizations (which are allowed to depend onS) to make supθ∈S‖Pωn,θKω −Qθ‖1 small. If
δS(Q,Pn), the infimum over all suchK , tends to zero asn tends to infinity, for each finiteS,
then I will write Pn bw Q, or Q cw Pn, with the subscriptw standing for “weaker”. Similarly,
I will write Pn cbw Q for convergence of experiments in Le Cam’s weaker sense.

Convergence in Le Cam’s weaker sense may be inferred from more classical results
about likelihood ratios. For example, the following Lemma easily handles some of the better
known results, such as the H´ajek-Le Cam convolution theorems and local asymptotic minimax
theorems.
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<1> Lemma. For n = 1, 2, . . ., let Pn = {Pn,i : i = 1, 2, . . . , k} be a finite collection of
probability measures on(Än,Fn), dominated by probability measuresPn with densities
Xn,i = dPn,i /dPn, and letQ = {Qi : i = 1, 2, . . . , k} be probability measures on(Y,A)
dominated by a probability measureQ with densities Yi = dQi /dQ. Suppose the random
vectors Xn := (Xn,1, . . . , Xn,k) converge in distribution (underPn) to Y := (Y1, . . . ,Yk)

(underQ). ThenPn cb Q.

If Pn happens to be one of thePn,i , the densitiesXn,i are calledlikelihood ratios.
(Likewise forQ.) For my method of proof there is no advantage in restricting the assertion to
this special case.

There are several ways to prove the Lemma. One elegant approach relates the Le Cam
distance to the distance between particular measures induced on a simplex in Euclidean space
by the experiments (the canonical representations of the experiments). The arguments typically
proceed via a chain of results involving comparison of risk functions or Bayes risks, as in
Section 2.2 of Le Cam & Yang 1990. I have no complaints about this approach, except that
it can appear quite technical and forbidding to anyone wondering whether it is worth learning
about Le Cam’s theory. I confess that on my first few attempts at reading Le Cam (1969), the
precursor to Le Cam & Yang 1990, I skipped over the relevant sections, mistakenly thinking
they were of no great significance—just abstract and abstruse theory. I hope that a short,
self-contained proof of the Lemma (Section 2), and an illustration of its use (Section 3), might
save others from making the same mistake.

The Lemma asserts thatPn c Q and Pn b Q. I will prove only the second assertion,
which is actually the more useful. (The proof of the other assertion is almost the same.) That
is, I will show that there exist probability kernelsKn,y, from Y to Än for n = 1, 2, . . ., such
that maxi ‖Qy

i Kn,y − Pn,i ‖1→ 0 asn→∞.
My method is adapted from a more familiar part of probability theory known as the method

of almost sure representation: the construction of an almost surely convergent sequence whose
marginal distributions are equal to a given weakly convergent sequence of probability measures
on a metric space. It is not really surprising that there should be strong similarities between
Le Cam’s randomizations and the coupling arguments needed to establish the representation.
In both cases, one artificially constructs joint distributions as a way of deriving facts about the
marginal distributions. The similarities are particularly striking for the coupling method used
by Dudley (1968, 1985), who actually constructed explicitly the probability kernels needed
for Lemma<1>. (Compare with the exposition in Section 9 of Pollard 1990.) The proof of
the Lemma would be even shorter if I were to invoke Dudley’s result directly, rather than
reproducing parts of his argument to keep the proof self-contained.

2. Construction of randomizations

Most calculations for Lemma<1> are carried out for a fixedn. To simplify notation, it helps
initially to replacePn by a fixed collectionP = {Pi : i = 1, 2, . . . , k} of probability measures
on (Ä,F), dominated by a fixed probability measureP, with densitiesXi = dPi /dP.

We seek a probability kernelK from Y to Ä to make eachQy
i Ky close to the correspond-

ing Pi . The kernel will be chosen so thatQyKy = P. The kernel artificially defines a joint
distributionM for (y, ω), with marginal distributionsP andQ, and conditional distribution
Ky for ω given y. The L1(M) distance betweenXi andYi , reinterpreted as random variables
on Y⊗Ä, will give a bound for‖Qy

i Ky − Pi ‖1.
For the application to the proof of Lemma<1>, Assumption (iii) of the following

Lemma will be checked by means of the assumed convergence in distribution of the random
vectors{Xn}.
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<2> Lemma. Suppose there is a partition ofRk into disjoint Borel sets B0, B1, . . . , Bm, and
positive constantsδ and ε, for which

(i) diam(Bα) ≤ δ for eachα ≥ 1

(ii) Qi {Y ∈ B0} ≤ ε for each i

(iii) P{X ∈ Bα} ≥ (1− ε)Q{Y ∈ Bα} for eachα.

Then there exists a probability kernel K fromY to Ä for which

max
i
‖Qy

i Ky − Pi ‖1 ≤ 2δ + 4ε

Proof. Write Aα for {Y ∈ Bα} and Fα for {X ∈ Bα}, for α = 0, 1, . . . ,m.

Fα

Bα

Aα

Y

X

(Ω, F, P) (Y, A, Q)

(Rk,B)

F0

B0

A0

Assumption (iii) ensures that theµ defined onF by

εµ(F) =
∑
α

(
P(Fα)− (1− ε)QAα

)
P(F | Fα)

is a probability measure. The probability kernel

Ky(·) = εµ(·)+ (1− ε)
∑
α

{y ∈ Aα}P(· | Fα)

serves as a conditional distribution for the probability measure,

<3> M = ε (Q⊗ µ)+ (1− ε)
∑
α

(QAα)Q(· | Aα)⊗ P(· | Fα)

on A⊗ F. That is,∫∫
g(y, ω)M(dy, dω) =

∫ (∫
g(y, ω) Ky(dω)

)
Q(dy),

at least for bounded, product measurable functionsg; or, in the more concise linear functional
notation,My,ωg(y, ω) = QyKω

y g(y, ω). (The equality is easily checked wheng is the indicator
function of a measurable rectangleA ⊗ F . A generating class argument extends to more
generalg.) In particular,M has marginalsQ andP, andMYi (y)h(y) = QYi h = Qi h and
MXi (ω) f (ω) = PXi f = Pi f .

Notice that the probability measureM0 =
∑

α(QAα)Q(· | Aα)⊗ P(· | Fα) concentrates
on the subset∪αAα⊗ Fα of the product space. For every(y, ω) generated fromM0, the points
X(ω) and Y(y) must both lie in the sameBα. Whenα ≥ 1, as will happen with highM0

probability, the distance betweenX(ω) andY(y) must be smaller thanδ, by Assumption (i).
The Lemma asserts existence of a bound on

sup
| f |≤1
|QyYi (y)K

ω
y f (ω)− PωXi (ω) f (ω)| = sup

| f |≤1
|My,ωYi (y) f (ω)−My,ωXi (ω) f (ω)|

The right-hand side is smaller thanM|Yi − Xi |, which we can rewrite as 2M (Yi − Xi )
+

becauseMYi = 1 = MXi . The contribution toM (Yi − Xi )
+ from εQ ⊗ µ is less than

εQYi = ε. The contribution from(1− ε)M0 is less than

MYi {y ∈ A0, ω ∈ F0} +M0
(∪α≥1{y ∈ Aα, ω ∈ Fα}|Yi − Xi |

) ≤ Qi A0+ δ.
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The assertion of the Lemma follows.¤
Write Q for the distribution ofY underQ, a probability measure on the Borel sigma-field

of Rk. For a property like (iii) to follow from convergence in distribution, we shall need
the Bα to be Q-continuity sets, that is, each boundary∂Bα should have zeroQ measure
(Pollard 1984, Section III.2). Such partitions are easy to construct from closed ballsB(y, r )
with radiusr and centery. For eachy, the boundaries∂B(y, r ), for 0< r <∞, are disjoint
sets. At most countably many of those boundaries can have strictly positiveQ measure. In
particular, for eachδ > 0 there is anr y with r y < δ and Q∂B(y, r y) = 0. Some finite
subcollection of such balls covers an arbitrarily large compact subset ofRk. The partition
generated by these balls then satisfies requirements (i) and (ii) of Lemma<2>.

Partial proof of Lemma<1>. Let {δj } and {εj } be sequences of positive numbers, both
tending to zero. For eachj construct partitionsπj over Rk into finite collections ofQ-
continuity sets satisfying the analog of properties (i) and (ii) of Lemma<2>, with δ

replaced byδj and ε replaced byεj . The convergence in distribution gives annj for which
Pn{Xn ∈ B} ≥ (1− εj )Q{Y ∈ B} for all B ∈ πj , if n ≥ nj . With no loss of generality we
may assume 1= n1 < n2 < . . .. For eachn construct the kernelKn,y using the partitionπj

for the j such thatnj ≤ n < nj+1.¤

Remarks

(1) We don’t really needPn to dominatePn. It would suffice to haveXn,i as the density of
the part ofPn,i that is absolutely continuous with respect toPn, providedPXn,i → 1 for
eachi . Such a condition is equivalent to an assumption that each{Pn,i : n = 1, 2, . . .}
sequence be contiguous to{Pn}. Another Le Cam idea.

(2) The minimum expectationM|Xi − Yi | defines the Monge-Wasserstein distance, which
coincides (Dudley 1989, Section 11.8) with the bounded-Lipschitz distance between
the marginal distributions. The Lemma essentially provides an alternative proof for
one of the inequalities comprising Theorem 1 of Le Cam & Yang (1990, Section 2.2).

3. Local asymptotic minimax theorem

The theorem makes an assertion about the minimax risk for a sequence of experiments
Pn = {Pn,t : t ∈ Tn} for which theTn are sets that expand to some setT . (More formally,
lim inf Tn = T , that is, each point ofT belongs toTn for all large enoughn.) The contorted
description ofTn is motivated by a leading case, wherePn,t denotes the joint distribution of
n independent observations from some probability measurePθ0+Ant , with {An} a sequence of
rescaling matrices, such asId/

√
n. If θ0 is an interior point of some subset2 of Rd then

the setsTn = {t ∈ Rd : θ0 + Ant ∈ 2} expand to the whole ofRd, in the desired way. The
experimentPn captures the behavior of the{Pθ : θ ∈ 2} model in shrinking neighborhoods
of θ0, which explains the use of the termlocal.

In fact, the theorem has nothing to do with independence and nothing to do with the
possibility thatPn might reflect local behavior of some other model. It matters only that
Pn bw Q for some experimentQ = {Qt : t ∈ T}, a family of probability measures on someY.
For example,Pn might satisfy the “local” asymptotic normality property,

dPn,t

dPn,0
= (1+ εn(t)) exp(t ′Zn − |t |2/2) for eacht in Rd,

where Zn is a random vector (not depending ont) that converges in distribution toN(0, Id)

underPn,0, and εn(t) → 0 in Pn,0 probability for each fixedt . In that case, Lemma<1>

establishesPn cbw Q with Qt denoting theN(t, Id) distribution onRd.
The concept of minimax risk requires a loss functionLt (·), defined on the space of

actions. For simplicity, let me assume that the task is estimation of the parametert , so that
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Lt (z) is defined for allt andz in T . I will also assumeLt ≥ 0. For a randomized estimator
given by a probability kernelρ from Y to T , the risk is defined as

R(ρ, t) =
∫∫

Lt (z)ρy(dz)Qt (dy),

or Qy
t ρ

z
yLt (z), when expressed in linear functional notation. The minimax risk forQ is

defined asR = infρ supt∈T R(ρ, t), the infimum ranging over all randomized estimators
from Y to T . If, for each finite constantM and each finite subsetS of T , we define
R(ρ, S,M) = maxt∈SQy

t ρ
z
y (M ∧ Lt (z)), then R can be rewritten as infρ supS,M R(ρ, S,M).

It is often possible (see comments below) to interchange the inf and sup, to establish a
minimax equality

<4> R= inf
ρ

sup
S,M

R(ρ, S,M) = sup
S,M

inf
ρ

R(ρ, S,M)

Notice that<4> involves only the limit experimentQ; it has nothing to do with thePn.
As explained by Le Cam & Yang (1990, page 84), in the context of convergence to mixed

normal experiments, the following form of the theorem is a great improvement over more
traditional versions of the theorem. For example, it implies that

lim inf
n→∞ sup

t∈Tn

Pωn,tτ
z
n,ωLt (z) ≥ R,

for every sequence of randomized estimators{τn}.
<5> Theorem. Suppose Pn bw Q. Suppose the minimax equality <4> holds for the limit

experiment Q. Then for each R′ < R there exists a finite M and a finite subset S of the
parameter set T such that

inf
τ

max
t∈S

Pωn,tτ
z
ω (M ∧ Lt (z)) > R′ for all n large enough.

Proof. (Compare with Section 7.4 of Torgersen 1991.) The argument is exceedingly easy.
Given constantsR′ < R′′ < R, equality<4> gives a finiteM and a finite subsetS of T for
which

<6> inf
ρ

max
t∈S

Qy
t ρ

z
y (M ∧ Lt (z)) > R′′

For that finiteS, there exist randomizationsKn from Y into Än for which

εn := max
t∈S
‖Qy

t Kn,y − Pn,t‖1→ 0 asn→∞.
For every randomizedτ under Pn, the nonnegative functionft (ω) = τ z

ω (M ∧ Lt (z)) is
bounded byM . The function ft/M is one of those covered by the supremum that defines the
total variation distance. Consequently,

Pωn,tτ
z
ω (M ∧ Lt (z)) = Pωn,t ft (ω) ≥ Qy

t Kω
n,y ft (ω)− Mεn

= Qy
t Kω

n,yτ
z
ω (M ∧ Lt (z))− Mεn

Take the maximum overt in S. The lower bound becomesR(ρ ′, S,M) − Mεn, where
ρ ′ = Kω

n,yτω, one of the randomized estimators covered by the infimum on the left-hand
side of<6>. That is, for everyτ , the maximum overS is greater thanR′′ − Mεn, which is
eventually larger thanR′.¤

As the proof showed, the theorem is not very sensitive to the definition of randomization
(the Kn) or randomized estimator (theτ andρ). It mattered only that the compositionKω

n,yτω
is also a randomized estimator. With Le Cam’s more general approach, withKn any transition
and τ any generalized procedure, the composition is also a generalized procedure. The
method of proof is identical under his approach, but with one great advantage: the minimax
equality<4> comes almost for free.

Under a mild semi-continuity assumption on the loss function, there is a topology that
makes the setR of all generalized estimators compact, and for which the mapρ 7→ R(ρ, S,M)
is lower semi-continuous, for each fixedS and M . For eachR′′ < R, the open sets
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RS,M = {ρ ∈ R : R(ρ, S,M) > R′′} cover R. By compactness,R has a finite subcover
∪i=1,...,mRSi ,Mi . With S= ∪i Si and M = maxi Mi , we haveR(ρ, S,M) > R′′ for everyρ
in R, as required for<4>.

In effect, by enlarging the class of objects regarded as randomizations or randomized
estimators, Le Cam cleverly removed theminimaxfrom the hypotheses of the local asymptotic
minimax theorem. With the right definitions, the theorem is an immediate consequence of the
lower semi-continuity of risk functions—which is essentially what Le Cam (1986, Section 7.4)
said.
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