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Abstract. The paper contains some musings about the abstractions introduced by Lucien
Le Cam into the asymptotic theory of statistical inference and decision theory. A short, self-
contained proof of a key result (existence of randomizations via convergence in distribution
of likelihood ratios), and an outline of a proof of a local asymptotic minimax theorem, are
presented as an illustration of how Le Cam’s approach leads to conceptual simplifications of
asymptotic theory.
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1.

Convergence of experiments

Over a period of almost half a century, Lucien Le Cam developed a general theory for handling
asymptotic problems in statistical decision theory. At the core of his thinking was the concept
of a distance between statistical models (or experiments, in Le Cam’s terminology). When
two models are close in Le Cam’s sense, there is an automatic transfer of solutions to certain
types of decision theoretic problems from one model to the other.

Most of the theory was described, in very general form, by Le Cam (1986). A gentler
account of a subset of the theory appeared in the smaller book by Le Cam & Yang (1990),
which will soon be reappearing in a second edition.

For too long, Le Cam’s approach had an unfair reputation as dealing only with “abstract
and abstruse problems” (Albers, Alexanderson & Reid 1990, page 178). But more recent
work—such as the groundbreaking papers of Brown & Low (1996) and Nussbaum (1996)—has
confirmed that Le Cam had long ago identified the essential mechanism at work behind the
suggestive similarities between certain types of asymptotic nonparametric problems.

We can think of an experiment as a family of probability measthtes {P, : 6 € ©}
defined on a sigma-fielf of a sample spac®. As Le Cam pointed out, the precise choice
of (2, F) is somewhat irrelevant. In many respects, they are just an artifice to let us interpret
the random variables of interest as measurable functions. What matters most is the ordering
and vector space properties satisfied by the random variables, the properties that identify the
space of all bounded, real-valued random variableS2aas anM-space.

Le Cam’s identification of probability measures with linear functionals on an abstract
M-space might appear shocking, but it does make clear that there is nothing sacred about the
choice of the sample space. Probability arguments that use onlytbpace properties are
valid for all choices of an underlyin@ andJ.

Strangely enough, | often find myself making analogous arguments about the irrelevance
of  when teaching introductory probability courses. Sample spaces are very good for
bookkeeping and forcing precise identification of random variables, but it is really more
important to understand how those random variables relate to each other and to the probabilities.
| seldom feel a need to identify explicitly an appropri&evhen solving a problem; and even
when there is an implicif2, | would have no compunction about changing it if there were a
more convenient way to represent the random variables.

Similar thoughts have occurred to me when dealing with empirical process theory. If
a result is true for one sequence of random variables (or random elements of a space more
complicated than the real line), and not for another sequence with the same joint distributions,
but defined on a differer®, are we relying too heavily on what should be irrelevant features
of the sample space? Maybe we need a stricter definition of a probability space? Such ideas
are not total heresy: compare, for example, with Doob’s comments on the assumption that
probability measures bperfectin Appendix | of Gnedenko & Kolmogorov (1968), or the
need forperfectmeasurable maps in the Dudley (1985) representation theorem. To paraphrase
Le Cam, Why cling to arf2 that causes trouble, if there are other choices that ensure nice
properties for the objects we care about?

I find myself a little too timid to take the logical next step, abandoning altogether the
sample space and treating probabilities as objects that don't need the support of a sigma-field,
as with Le Cam’s identification of probability models with subsets edpaces in duality
with M-spaces. It is a comfort, though, to know that there is always s@nfier which the
L-spaces andli-spaces of any particular problem correspond to sets of measures and functions
with an abundance of traditional regularity properties (the Kakutani representations—see pages
209-211 of Torgersen 1991).

| also see value in regarding Le Cam’s more general objects as idealized measures or
idealized decision procedures, particularly so if they appear only in the intermediate steps
of an argument concerning their traditional counterparts. For example, a theorem asserting
existence of a generalized estimator with desirable properties is a good place to start searching
for a traditional estimator with the same properties, just as a mathematician who is interested
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only in real roots of polynomials might find it easier to prove that all the complex roots lie on
the real axis, rather than establishing existence of real roots from scratch.

Let Q = {Qg : 6 € ®} be a family of probability measures iy, A), with the same
index set® as®P. Le Cam defined the distance betweékiandQ by means of randomizations.

For example, if we_have a probability kern&l from @ to Y, then eachP, defines a
probability measur€), = P5 K, on A, corresponding to a two-step procedure for generating

an observatiory: first generate am from Py, then generate g from the probability
measureK,,. In more traditional notatiorf), (A) would be written/ K, (A) Py (dw), for each

Ain A. Again Le Cam allowed randomizations (which he called transitions) to be slightly
more exotic than probability kernels, in order to achieve a most convenient compactness
property for the space of all possible randomizations between two spaces—see my comments
at the end of Section 3 regarding minimax bounds.

Roughly speaking, two experiments are close if each is well approximated, in the sense of
total variation, by a randomization of the other. (Recall that the total variation distance between
two measureQ and Q on the same sigma-field is defmedﬂ@@ Qll1 = sups<1 |Q f—Qfl,
the f ranging over all measurable functions bounded in absolute value by 1. If the measures
have densitie§ andq with respect to a dominating measwethen| Q — Q|1 is equal to the
L1(n) norm ofg—q.) More formally, the distancégy (P, Q) is defined as the infimum over all
randomizations of the quantity sup, IP5 K, — Qgll1. The Le Cam distancae (P, Q) equals
the minimum ofsg (P, Q) andée(Q, P). Of course, the infimum over probability kernels gives
an upper bound foée (P, Q), which is often all that we need.

Le Cam’s method is most often applied to establish limit theory for sequences of
experimentsP, = {Pny : 0 € ®}. (I will assume allP, , are defined on the same sigma-field,
of the same2, to avoid further notational complication.) If the infimuiy (Q, P,), tends to
zero asn tends to infinity then | will writeP, € Q, or Q@ 3 P,. If both P, € Q and®P, 3 Q
then the experiment®, are said to converge (in Le Cam’s senseftowhich | will write as
P, zE Q.

The randomizations involved in the definition of Le Car¢sfit naturally with the idea of
randomized estimators (or, more generally, randomized procedures over some abstract action
space). In the traditional sense, a randomized estimatér bédsed on an observatignfrom
some (unknown)Qy, is just a probability kernep from Y into ®. If K is a randomization
from @ to Y, then we may define a new randomized estimatat,dfased on an observatian
from [Py, by averagingoy with respect toK,,: for eachw, generate & from K,,, then generate
atin © from py. | will write KZpy for this new estimator, the result of composing the two
randomizations.

For example, ifP, € Q, with corresponding randomizatiots,, and if p, is a randomized
estimator undefP, (that is, based on an observatierfrom somePy, 4), then the compositions
T = K,¥pn,y define a sequence of randomized estimators ugdéhat is, based on an
observationy from the correspondind)s). Any theory developed for the collection of all
randomized estimators undé&r automatically applies ta,, and thence tq,, within an
error term derived fromdg (Q, P,). See Section 3 for an example of this principle in action.
Similarly, if P, 3 Q, then theory for randomized estimators unffgthas an automatic transfer
to Q.

For many important statistical results, we do not need the approximation in total variation
to hold uniformly over the whole o0®. Instead, it often suffices to consider separately the
finite-parameter subexperiments. That is, for each finite subsEt ®, we need to find
randomizations (which are allowed to depend)rto make sup.g [|IP}y ;K,, — Qp |2 small. If
3s(Q, Pp), the infimum over all suchk, tends to zero as tends to infinity, for each finite,
then | will write P, €,, Q, or Q 3,, Py, with the subscriptw standing for “weaker”. Similarly,

I will write P, 3€,, Q for convergence of experiments in Le Cam'’s weaker sense.

Convergence in Le Cam’s weaker sense may be inferred from more classical results
about likelihood ratios. For example, the following Lemma easily handles some of the better
known results, such as theai¢k-Le Cam convolution theorems and local asymptotic minimax
theorems.
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<1> Lemma. Forn=1212...,letP, ={Pn; :i =12 ...,k} be a finite collection of
probability measures ori®2,, F,), dominated by probability measurds, with densities
Xni = dPpi/dPy,, and letQ = {Q; : i = 1, 2,...,k} be probability measures oY, A)
dominated by a probability measuf@ with densities Y = dQ;/dQ. Suppose the random
vectors X% = (Xn1, ..., Xnk) converge in distribution (undeP,) to Y = (Y1, ..., Yk)
(underQ). Then?, =€ Q.

If P, happens to be one of thg,;, the densitiesX,; are calledlikelihood ratios
(Likewise forQ.) For my method of proof there is no advantage in restricting the assertion to
this special case.

There are several ways to prove the Lemma. One elegant approach relates the Le Cam
distance to the distance between particular measures induced on a simplex in Euclidean space
by the experiments (the canonical representations of the experiments). The arguments typically
proceed via a chain of results involving comparison of risk functions or Bayes risks, as in
Section 2.2 of Le Cam & Yang 1990. | have no complaints about this approach, except that
it can appear quite technical and forbidding to anyone wondering whether it is worth learning
about Le Cam’s theory. | confess that on my first few attempts at reading Le Cam (1969), the
precursor to Le Cam & Yang 1990, | skipped over the relevant sections, mistakenly thinking
they were of no great significance—just abstract and abstruse theory. | hope that a short,
self-contained proof of the Lemma (Section 2), and an illustration of its use (Section 3), might
save others from making the same mistake.

The Lemma asserts thét,  Q andP, € Q. | will prove only the second assertion,
which is actually the more useful. (The proof of the other assertion is almost the same.) That
is, 1 will show that there exist probability kernels; y, from Y to Q, forn=1,2, ..., such
that max Q' Ky — Pnill1 — 0 asn — oo.

My method is adapted from a more familiar part of probability theory known as the method
of almost sure representation: the construction of an almost surely convergent sequence whose
marginal distributions are equal to a given weakly convergent sequence of probability measures
on a metric space. It is not really surprising that there should be strong similarities between
Le Cam’s randomizations and the coupling arguments needed to establish the representation.
In both cases, one artificially constructs joint distributions as a way of deriving facts about the
marginal distributions. The similarities are particularly striking for the coupling method used
by Dudley (1968, 1985), who actually constructed explicitly the probability kernels needed
for Lemma<1>. (Compare with the exposition in Section 9 of Pollard 1990.) The proof of
the Lemma would be even shorter if | were to invoke Dudley’s result directly, rather than
reproducing parts of his argument to keep the proof self-contained.

2. Construction of randomizations

Most calculations for Lemma 1> are carried out for a fixed. To simplify notation, it helps
initially to replace®, by a fixed collection? = {P; : i =1, 2, ..., k} of probability measures
on (2, ¥), dominated by a fixed probability measuPewith densitiesX; = dP; /dP.

We seek a probability kernéd from Y to Q to make eacl)/ K, close to the correspond-
ing P;. The kernel will be chosen so th@K, = P. The kernel artificially defines a joint
distribution M for (y, w), with marginal distribution®® and Q, and conditional distribution
Ky for o giveny. The L;(M) distance betweelX; andY;, reinterpreted as random variables
onY ® 2, will give a bound for| QK — P;||;.

For the application to the proof of Lemmai>, Assumption (iii) of the following
Lemma will be checked by means of the assumed convergence in distribution of the random
vectors{Xpu}.
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<2>

<3>

Lemma. Suppose there is a partition @& into disjoint Borel sets & B, ..., Bn, and
positive constants and ¢, for which

(i) diam(B,) < é for eacha > 1
(i) Qi{Y € Bo} <€ foreachi
(i) P{X € By} = (1 —¢)Q{Y € B,} for eachq.
Then there exists a probability kernel K frdgnto © for which

max||Q' Ky — Pi||y < 28 + 4e
]

Proof. Write A, for {Y € B,} andF, for {X € B,}, fora =0,1,..., m.

(R, B)

FO F(x
(Q,F,P)

(4, A, Q)

Assumption (iii) ensures that the defined onF by
en(F) = Y (P(F) — (1= QA )P(F | Fu)

o

is a probability measure. The probability kernel
Ky() =en()+@L—e) Yy {y e AJP( | Fy)

serves as a conditional distribution for the probability measure,
M=¢@Q®u+1-€)) (QAIQ( | A) ®P(- | Fy)

onA®JF. That is,

f / 9(y, @) M(dy, do) = / ( / 9y, ) Ky<dw>) Qy).

at least for bounded, product measurable functigingr, in the more concise linear functional
notation,MY-“g(y, w) = QY Kya(y, ). (The equality is easily checked whgns the indicator
function of a measurable rectangfe® F. A generating class argument extends to more
generalg.) In particular,M has marginalg) andP, andMY;(y)h(y) = QYih = Q;h and
MXj(w) f(w) =PX;f =P f.

Notice that the probability measuidy = >, (QAL)Q(- | Ay) ® P(- | F,) concentrates
on the subset, A, ® F, of the product space. For evety, ) generated fronil, the points
X(w) and Y(y) must both lie in the sam&,. Whena > 1, as will happen with highvly
probability, the distance betweefi(w) andY (y) must be smaller tha#, by Assumption (i).

The Lemma asserts existence of a bound on

l?‘uri Qi (VK T (w) = PXi(w) f (w)| = ‘?‘ue IMY*Y; (y) f (@) — MY X (w) f ()]

The right-hand side is smaller tha|Y; — X;|, which we can rewrite asM (Y; — Xj)*"
becauseMY; = 1 = MX;. The contribution toM (Y; — X;)* from eQ ® u is less than
€QY; = €. The contribution from(1 — €)M is less than

MYi{y € Ao, ® € Fo} + Mo (Usz1{y € Ay, w € Fo}IYi — Xi|) < QiAo +6.
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O The assertion of the Lemma follows.

Write Q for the distribution ofY underQ, a probability measure on the Borel sigma-field
of RX. For a property like (iii) to follow from convergence in distribution, we shall need
the B, to be Q-continuity sets, that is, each bounda, should have zerd@) measure
(Pollard 1984, Section 111.2). Such partitions are easy to construct from closedBiglls)
with radiusr and centelty. For eachy, the boundarie$B(y,r), for 0 < r < oo, are disjoint
sets. At most countably many of those boundaries can have strictly poQtiveasure. In
particular, for each > O there is arry with ry < § and QdB(y, ry) = 0. Some finite
subcollection of such balls covers an arbitrarily large compact subs@t.ofrhe partition
generated by these balls then satisfies requirements (i) and (ii) of Lenzma

Partial proof of Lemma<1>. Let {§;} and{¢j} be sequences of positive numbers, both
tending to zero. For each construct partitionsr; over R¥ into finite collections ofQ-
continuity sets satisfying the analog of properties (i) and (ii) of Lemam-, with §
replaced bys; ande replaced bye;. The convergence in distribution gives anfor which
Pa{Xn € B} > (1 — ¢)Q{Y € B} for all B € 7j, if n > n;. With no loss of generality we
may assume ¥ n; < np < .... For eachn construct the kerneK, y using the partitiony;

O for the j such that; <n < nj 1.

Remarks

(1) We don't really need, to dominateP,. It would suffice to haveX,,; as the density of
the part ofP,; that is absolutely continuous with respectg providedPX,; — 1 for
eachi. Such a condition is equivalent to an assumption that éBgh: n=1,2,...}
sequence be contiguous {B,}. Another Le Cam idea.

(2) The minimum expectatiobl| X; — Y;| defines the Monge-Wasserstein distance, which
coincides (Dudley 1989, Section 11.8) with the bounded-Lipschitz distance between
the marginal distributions. The Lemma essentially provides an alternative proof for
one of the inequalities comprising Theorem 1 of Le Cam & Yang (1990, Section 2.2).

3. Local asymptotic minimax theorem

The theorem makes an assertion about the minimax risk for a sequence of experiments
Pn = {Pnyt : t € Ty} for which theT, are sets that expand to some 3et(More formally,
liminf T, = T, that is, each point o belongs toT, for all large enougm.) The contorted
description ofT, is motivated by a leading case, whéfg; denotes the joint distribution of

n independent observations from some probability mea&yfea 1, with {A,} a sequence of
rescaling matrices, such ag/./n. If 6y is an interior point of some subsét of RY then

the setsT, = {t € RY : 6y + Ayt € ®} expand to the whole oRY, in the desired way. The
experimentP, captures the behavior of tHé, : 6 € ®} model in shrinking neighborhoods

of 6, which explains the use of the terfacal.

In fact, the theorem has nothing to do with independence and nothing to do with the
possibility that?, might reflect local behavior of some other model. It matters only that
Pn €, Q for some experimen® = {Q; : t € T}, a family of probability measures on sorfe
For example P, might satisfy the “local” asymptotic normality property,

dPn

dPn o
where Z,, is a random vector (not depending tnthat converges in distribution til (0, 14)
underPp o, anden(t) — 0 in Py probability for each fixed. In that case, Lemma1>
establishe®, €, Q with Q; denoting theN(t, l4) distribution onRRY.

The concept of minimax risk requires a loss functiboy(-), defined on the space of
actions. For simplicity, let me assume that the task is estimation of the parametethat

= (L4 en(t)) expit'Z, — |t|?/2)  for eacht in RY,
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<4>

<5>

<6>

L{(2) is defined for allt andz in T. | will also assumeL; > 0. For a randomized estimator
given by a probability kernebp from Y to T, the risk is defined as

R, 1) = / / Le(2)py(d2) Qi (dy),

or Qtyp§Lt(z), when expressed in linear functional notation. The minimax riskdas
defined asR = inf, sug.r R(p, t), the infimum ranging over all randomized estimators
from Y to T. If, for each finite constanM and each finite subse® of T, we define
R(p, S, M) = maxes(@%’p§ (M A Li(2)), thenR can be rewritten as ipiups yy R(p, S, M).
It is often possible (see comments below) to interchange the inf and sup, to establish a
minimax equality

R = infsupR(p, S, M) = supinf R(p, S, M)

P SM SM P

Notice that<4> involves only the limit experimen®; it has nothing to do with thé&,.

As explained by Le Cam & Yang (1990, page 84), in the context of convergence to mixed
normal experiments, the following form of the theorem is a great improvement over more
traditional versions of the theorem. For example, it implies that

liminf supPy 7y Lt (2) > R,

n—o0 teTh
for every sequence of randomized estimatoats.

Theorem. Suppose P, €, Q. Suppose the minimax equality <4> holds for the limit
experiment Q. Then for each R < R there exists a finite M and a finite subset S of the
parameter set T such that

nt*w

inf rpeéx]P"" Z(MALi(2) >R for all n large enough.
T €

Proof. (Compare with Section 7.4 of Torgersen 1991.) The argument is exceedingly easy.
Given constantlR < R” < R, equality <4> gives a finiteM and a finite subse$ of T for
which

inf maxQ{ p; (M A Li(2)) > R’
p teS

For that finiteS, there exist randomizations, from Y into , for which

€n = q]e%xHQE’Kn,y —Pntlli — O asn — oo.

For every randomized under P, the nonnegative functiorf;(w) = 2 (M A L(2)) is
bounded byM. The functionf;/M is one of those covered by the supremum that defines the
total variation distance. Consequently,

P2 12 (M A Li(2) = P2, fi(w) > Q{K;;yft(w) — Meq
=Q{K? 72 (M A L{(2)) — Meq

ny-w
Take the maximum ovet in S. The lower bound becomeR(p’, S, M) — M¢,, where
p" = Kgy7,, one of the randomized estimators covered by the infimum on the left-hand
side of <6>. That is, for everyr, the maximum ovelS is greater tharR” — Me,,, which is
eventually larger tharR'.

As the proof showed, the theorem is not very sensitive to the definition of randomization
(the Kp) or randomized estimator (theand p). It mattered only that the compositid(y, 7,
is also a randomized estimator. With Le Cam’s more general approachKwi#imy transition
and r any generalized procedure, the composition is also a generalized procedure. The
method of proof is identical under his approach, but with one great advantage: the minimax
equality <4> comes almost for free.

Under a mild semi-continuity assumption on the loss function, there is a topology that
makes the seR of all generalized estimators compact, and for which the map R(p, S, M)
is lower semi-continuous, for each fixesl and M. For eachR” < R, the open sets
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Rsm = {p € R: R(p, S, M) > R’} coverR. By compactnessR has a finite subcover
Uizt..mRs.m - With S=U;§ andM = max M;, we haveR(p, S, M) > R” for everyp
in R, as required for<4>.

In effect, by enlarging the class of objects regarded as randomizations or randomized
estimators, Le Cam cleverly removed tménimaxfrom the hypotheses of the local asymptotic
minimax theorem. With the right definitions, the theorem is an immediate consequence of the
lower semi-continuity of risk functions—which is essentially what Le Cam (1986, Section 7.4)
said.
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