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Notes:

» Reminder that I will have office hours immediately after today’s lecture two
buildings down, at 24 Hillhouse

» Problem Set 2 due on Friday; make sure to test your code with the train.csy, test.csy
and results.csv given on the website (aim for a hlgh correlation, not the exact same
results)

» Problem 3 will be posted tonight, and due next Friday
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Today

» Another look at linear models for classification
> An introduction to support vector machines

> Data examples of SVMs
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Linear Classification Models
On the problem sets | have had you encode a categorical variable y as £1, and then run

linear regression where we pretend that the y values are continuous. For example, we
might assume the following linear model:

y=Po+ Bra1 + Baxa + €

And use ordinary least squares to estimate the unknown g coefficients.
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Linear Classification Models, cont.

Once we have estimates 3, we can convert these to class predictions by determining the
sign of the fitted values:

Y = sign(Bo + Brxi1 + Paxi2)

And use ordinary least squares to estimate the unknown f coefficients.
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Linear Classification Models, cont.

Now, one interesting thing about this predictor, is that we can understand the set:
{(3317332) st. Bo+ Bran + Barp = 0}

As being a line in two dimensional space. Furthermore, the set:
{(961,«’102) s.t. Bo T 31531 T 32372 > 0}

Is one of the two half space created by the previous line. The set where the linear
predictor is negative is simply the other half space.

Aside: Why does this line have three parameters rather than the usual two?
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FIGURE 4.15. The linear algebra of a hyperplane (affine set).
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Linear Classification Models, cont.

Let’s look at this using a small two dimensional example.
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Logistic regression
There is more than one way to estimate the best separating line that gives a linear
partition of the parameter space into two classes. One commonly used example is

I()gISlI(' I'(‘gl’(‘,SSI()II.

For this discussion, I'll re-parameterize the response variable y to be 0 and 1.
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Logistic regression, cont.

Consider a model where we assume that for each y; there exists an unknown p; such that:

Ply;=0]=1-p; (1)
Plyi=1] =p: (2)

In statistical terminology, we would say that y; is a random variable with a Bernoulli
distribution with parameter p;.
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Logistic regression, cont.

Now, we want to somehow specify a relationship between a set of predictor variables z;
and the value p;. A common selection is to use the logit function:

1

P T @Bt A0)

This has some deeper motivations if we look at the theory of exponential families or
describe the quantity in terms of the log-odds ratio.

For us, just notice that if ;8 4 B is zero, we get a p; of 0.5. When the linear quantity

goes o positive infinity, the probabilities go to 1, and likewise when limiting to negative
infinity, the probabilities go to zero.
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Logistic regression, cont.

How do we use this formulation to actually predict the g and 5y? The standard approach
is Lo use maximum likelihood estimation. In short, we maximize the probability of
observing the data y; conditioned on the estimated parameters and the z;’s.
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Logistic regression, cont.

How do we use this formulation to actually predict the g and 5y? The standard approach
is Lo use maximum likelihood estimation. In short, we maximize the probability of
observing the data y; conditioned on the estimated parameters and the z;’s.

Computational this can be done by a modified form of iteratively re-weighted least
squares. Conceptually, we iteratively fit models that look like this:

7= (XWX) X Wy

For some diagonal matrix of weights W. This is a second order method and converges
quite rapidly.
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Logistic regression, conl.

Notice that once again, we have a hyperplane defined by the set 28 + fy that gives a
linear separation between the two classes we wish to categorize.

How does this compare to the plane produced by linear regression?
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Logistic regression, cont.

As with linear regression, we can do basis expansion to get non-linear classification
boundaries. So, for example, here we could treat 22 and 23 as the new third and fourth
dimensions of the predictor matrix. We learn a linear separating plane in this higher
dimensional space. However, when we project these predictions back down into the
original space, the effect is to give a non-linear boundary between the classes.
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Support vector machines

Support vector machines are powerful machine learning algorithms that also construct
separating planes for classification. They are conceptually fairly simple, but the
underlying mathematies for learning them from data can become a bit tricky.
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Support vector machines, cont.

The linear, hard-margin classification case can be described quite succinctly: Pick two
parallel hyperplanes that separate the two classes such that the distance between the
hyperplanes is maximal; the maximum-margin hyperplane is the midpoint of these two
separating planes.

20/34



FIGURE 4.16. The same data as in Figure 4.14. The shaded region delineates
the mazimum margin separating the two classes. There are three support points
indicated, which lie on the boundary of the margin, and the optimal separating
hyperplane (blue line) bisects the slab. Included in the figure is the boundary found
using logistic regression (red line), which is very close to the optimal separating
hyperplane (see Section 12.3.3).
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As we jusl saw, a hyperplane can be represented as the set:
{xe R st Bo+pz= 0}

For a given 3y and ' € RP. And the ‘side’ of the hyperplane that a point z is on can be
determined by:

sign (ﬂo + ,Bt:z:)
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Notice that we want 8y + 'z; to be positive if y; is positive and negative if y; is negative.
We can then compactly write the necessary and sufficient condition for a hyperplane
correctly separating the input points:

yi(zB+ Bo) >0, i=1,...,n
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Notice that we want 8y + 'z; to be positive if y; is positive and negative if y; is negative.
We can then compactly write the necessary and sufficient condition for a hyperplane
correctly separating the input points:

yi(zB+ Bo) >0, i=1,...,n

Assuming we have such a separating hyperplane, the minimal value of the left hand side
gives a measurement of the distance of the closest point to the separating plane. In order
to make this distance consistent, we only consider for the moment ||3||2 = 1.
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Now, we have said that a support vector machine minimizes the margin of a separating

hyperplane. This can be written as:

max M
[1B]l2=1

st y(ziB+Bo) > M, i=1,...,n

The quantity M is called the margin.
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It will be easier going forward to fix the value of M to be 1 and then minimize the size of
B:

. 1 9

min —
sl
t .
st g8+ Po)>1, i=1,...,n

Where the factor of 1/2 and squared norm are added for later notational convenience.

This defines a margin around the linear decision plane of width ﬁ
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Soft margin and Cost Function

What happens, as in our original example, when there is not such separating
hyperplane? We introduce slack variables that produce a so-called soft margin: the
optimization algorithm has a certain amount of leeway in allowing some points to be on
the wrong side of the classification.
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Incorporating into our current specification, we add a & for each observation and rewrite
our optimization problem as:

1
min 2||/8||2
st g(aB+Bo)>1—¢&, i=1,...,n
& >0, Zfi < Constant.

?

So &; will be non-zero for mis-classified points, and the amount of misclassification
allowed 1s controlled by the constant in the model.
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FIGURE 12.1. Support vector classifiers. The left panel shows the separable
case. The decision boundary is the solid line, while broken lines bound the shaded
mazimal margin of width 2M = 2/||B||. The right panel shows the nonseparable
(overlap) case. The points labeled £ are on the wrong side of their margin by
an amount § = ME;; points on the correct side have & = 0. The margin is
mazimized subject to a total budget Y & < constant. Hence Y&} is the total
distance of points on the wrong side of their margin.
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Soft margin and Cost Function, cont.

So now, how does this boundary compare to the example we were working with for
linear and logistic regression?

30/34






Non-linear SVM

Much like linear and logistic regression, there is a way to do SVM in a higher
dimensional space via basis expansion in order to capture non-linear effects.
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Next for SVMs

So we have only scratched the surface of some of the interesting complexity of support
vector machines. Next time I'll delve into the actual computational aspects of optimizing
the SVM equations. This is actually quite important to understand as it gives us more
intuition for why they are so predictive in higher dimensional spaces.
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