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Notes:

▶ Problem 3 is posted and due this upcoming Friday

▶ There was an early bug in the fake-test data; fixed as of 2016-02-20
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Today:

▶ Optimization theory behind support vector machines

▶ More examples
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Recall that we settled on the following definition for a the support vector machine:

max
||β||2=1

M

s.t. yi(xt
iβ + β0) > M − ξi, i = 1, . . . ,n

ξi > 0,
∑

i
ξi ≤ Constant.

This defines a margin around the linear decision plane of width and tries to minimize
the number of errors (ξ) for points that are on the wrong side of the margin.
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We then re-parameterized this by setting the margin to 1 but allowing the size of β to
grow:

min 1

2
||β||22

s.t. yi(xt
iβ + β0) > 1− ξi, i = 1, . . . ,n

ξi > 0,
∑

i
ξi ≤ Constant.

This defines a margin around the linear decision plane of width 1
||β|| , and tried to

minimize the number of errors ξ of points that are on the wrong side of the margin.
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Notice that we can rewrite

min 1

2
||β||22

s.t. yi(xt
iβ + β0) > 1− ξi, i = 1, . . . ,n

ξi > 0,
∑

i
ξi ≤ Constant

With a constant C > 0, which depends only on the constant in the original formulation,
as:

min 1

2
||β||22 + C ·

∑
i

ξi

s.t. yi(xt
iβ + β0) > 1− ξi, ξi > 0, i = 1, . . . ,n.

By noticing that the second form will find a β̂ that minimizes ||β||22 such that∑
i ξi ≤

∑
i ξ̂i.
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The�Lagrangian

Given a constrained optimization problem:

minf(x)
s.t. gj(x) = 0, j = 1, . . . ,K

We can define the primal Lagrangian function as:

LP = f(x)−
K∑

j=1

λjgj(x)

What does this function look like?
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The�Lagrangian�Dual

The Lagrangian dual function is then given as the infimum of LP as function of the λj
over values of x:

LD(λ) = inf
x
LP(x, λ)

= inf
x

f(x)−
K∑

j=1

λjgj(x)

 .

And the dual�problem is to find the maximum of the dual function over all choices of λ:

λ∗ = arg max
λ

LD(λ).

The optimal value of the primal problem, x∗, can be reconstructed by working
backwards:

x∗ = arg min
x

LP(x, λ∗).
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For a better understanding of the dual problem we can visualize the Lagrangian solution
as a saddle point1

1www.convexoptimization.com 10/28



It turns out that this is a very good framework for working with support vector machines.
We can define the Lagrangian function as:

LP =
1

2
||β||22 + C

∑
i

ξi −
∑

i
αi

[
yi(xt

iβ + β0)− (1− ξi)
]
−
∑

i
µiξi

Where αi and µi are the Lagrangian multipliers.
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Aside:

Technically, the theory of Lagrangian multipliers only apply when the constraints on the
solution are equality constraints rather than inequality constraints. The larger theory
needed for the general case uses the Karush-Kuhn-Tucker (KKT) conditions. These add
additional constraints on top of those presented here. Following the Elements of
Statistical Learning, we will not worry with those details here as they are more an
annoyance than an interesting conceptual difference.
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To construct the dual function, we need to take partial derivatives with respect to the
primal variables: β, β0, and ξi. If we plug these into the primal problem, we get the dual
function.
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For βj:

∂LP
∂βj

=
∂

∂βj

{
1

2
||β||22 + C ·

∑
i

ξi −
∑

i
αi

[
yi(xt

iβ + β0)− (1− ξi)
]
−
∑

i
µiξi

}

=
∂

∂βj

{
1

2
||β||22 −

∑
i

αiyi(xt
iβ)

}
= βj −

∑
i

αiyixi,j

Setting this equal to zero, and writing the equation simultaneously for all βj, we get:

β =
∑

i
αiyixi
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This necessary condition for the solution of the support vector machine is of
independent interest. It says that β can be written as a linear combination of the data
points xi. Any i such that αi is non-zero is called a support vector.
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For β0, the derivative is given as:

∂LP
∂β0

=
∂

∂β0

{
1

2
||β||22 + C ·

∑
i

ξi −
∑

i
αi

[
yi(xt

iβ + β0)− (1− ξi)
]
−

∑
i

µiξi

}

=
∂

∂β0

{
−
∑

i
αiyiβ0

}
= −

∑
i

αiyi

Which when set to zero gives:

0 =
∑

i
αiyi

This explains why the term β0 is often called the bias of the support vector machine.
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Finally, the derivative with respect to ξi is given as:

∂LP
∂ξi

=
∂

∂ξi

{
1

2
||β||22 + C ·

∑
i

ξi −
∑

i
αi

[
yi(xt

iβ + β0)− (1− ξi)
]
−

∑
i

µiξi

}

=
∂

∂ξi

{
C ·

∑
i

ξi +
∑

i
αi(1− ξi)−

∑
i

µi

}
= C − αi − µi

Setting this equal to zero we see that:

αi = C − µi.
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We now want to plug this into the Lagrangian primal function. We first use the fact that
αi = C − µi to unite the trailing terms with respect to αi:

LD =
1

2
||β||22 + C

∑
i

ξi −
∑

i
αi

[
yi(xt

iβ + β0)− (1− ξi)
]
−

∑
i

µiξi

=
1

2
||β||22 +

∑
i
(C − µi)ξi −

∑
i

αiyixt
iβ −

∑
i

αiyiβ0 +
∑

i
αi(1− ξi)

=
1

2
||β||22 +

∑
i

αiξi −
∑

i
αiyixt

iβ −
∑

i
αiyiβ0 +

∑
i

αi(1− ξi)

=
1

2
||β||22 +

∑
i

αi −
∑

i
αiyixt

iβ −
∑

i
αiyiβ0

And the last term drops out:

LD =
1

2
||β||22 +

∑
i

αi −
∑

i
αiyixt

iβ − β0

∑
i

αiyi

=
1

2
||β||22 +

∑
i

αi −
∑

i
αiyixt

iβ

18/28



We now want to plug this into the Lagrangian primal function. We first use the fact that
αi = C − µi to unite the trailing terms with respect to αi:

LD =
1

2
||β||22 + C

∑
i

ξi −
∑

i
αi

[
yi(xt

iβ + β0)− (1− ξi)
]
−

∑
i

µiξi

=
1

2
||β||22 +

∑
i
(C − µi)ξi −

∑
i

αiyixt
iβ −

∑
i

αiyiβ0 +
∑

i
αi(1− ξi)

=
1

2
||β||22 +

∑
i

αiξi −
∑

i
αiyixt

iβ −
∑

i
αiyiβ0 +

∑
i

αi(1− ξi)

=
1

2
||β||22 +

∑
i

αi −
∑

i
αiyixt

iβ −
∑

i
αiyiβ0

And the last term drops out:

LD =
1

2
||β||22 +

∑
i

αi −
∑

i
αiyixt

iβ − β0

∑
i

αiyi

=
1

2
||β||22 +

∑
i

αi −
∑

i
αiyixt

iβ

18/28



Now, notice that since β =
∑

i αiyixi, we have that:

||β||22 =
∑

j
β2

j

=
∑

i′

∑
i
(αiyixi)

t(αi′yi′xi′)

=
∑

i′

∑
i

αiαi′yiyi′xt
ixi′

Also see that we can rewrite the last term in our dual function as:∑
i

αiyixt
iβ =

∑
i′

∑
i

αiαi′yiyi′xt
ixi′

= ||β||22.
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Finally, the dual function can be written as:

LD =
1

2
||β||22 +

∑
i

αi −
∑

i
αiyixt

iβ

=
∑

i
αi −

1

2
||β||22

=
∑

i
αi −

1

2
·
∑

i′

∑
i

αiαi′yiyi′xt
ixi′ .

Which we want to maximize under the constraints (the first is from the KKT conditions,
the second from the partial derivative of the bias):

0 ≤ αi ≤ C,
∑

i
αiyi = 0.
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To what extent can we make some sense of this equation? First notice the duality of the
problem if we flip the ±1 labeling of the classes yi:

LD =
∑

i
αi −

1

2
·
∑

i′

∑
i

αiαi′yiyi′xt
ixi′

The function only depends on the sign of yiyi′ . Also note that it only depends on the
data that serve as support vectors:

LD =
∑

i
αi −

1

2
·
∑

i′

∑
i

αiαi′yiyi′xt
ixi′ .
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Perhaps most importantly though, notice that only the outer product XXt effects the
final results:

LD =
∑

i
αi −

1

2
·
∑

i′

∑
i

αiαi′yiyi′xt
ixi′ .

As xt
ixi′ is the (i, i′)’th element of XXt. This is a measurement of how similar xi and xi′

are to one another (if scaled to both have length one, it is the cosine of the angle between
them).

So, we can see that:

1. There is a penalty for including two similar xi’s with the same class label

2. There is a benefit for including two similar xi’s with different class labels

Both of which actually make sense for a classification algorithm.
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Taking a step back now, how does logistic regression and support vector machines
compare?

1. Both separate the plane into two half-spaces which attempt to split the classes as
well as possible

2. However, logistic regression is (primarily) concerned with the correlation matrix
XtX between the variables and support vector machines only care about the
similarity matrix XXt between observations
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The�Kernel�Trick

In the case of logistic and linear regression I have shown how basis expansion can be
used to add non-linear effects into a linear model. One observation that makes support
vector machines attractive is that it is possible to mimic basis expansion without ever
having to actually project into a higher dimensional space.
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The�Kernel�Trick, cont.

Assume that we have a mapping h of samples x into a higher dimensional space. We can
re-write the dual function using inner product notation:

LD =
∑

i
αi −

1

2
·
∑

i′

∑
i

αiαi′yiyi′< h(xi), h(xi′) >.

It quickly becomes apparent that we only need a fast way of calculating inner products in
the space of h, which may not require actually determining and calculating h itself.
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The�Kernel�Trick, cont.

The projected inner product < h(xi), h(xi′) > is usually written directly as K(xi, xi′) for a
function K called the kernel. Popular choices include:

1. Linear: K(x, x′) =< x, x′ >

2. Polynomial: K(x, x′) = (1+ < x, x′ >)d

3. Radial: K(x, x′) = exp(−γ||x − x′||2)

4. Sigmoid: K(x, x′) = tanh(κ1 < x, x′ > +κ2)

Notice that these all require approximately the same effort to calculate as the linear
kernel.
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Finishing�the�optimization

Now, we can re-write the optimization problem as:

max 1tα− αtKα

s.t. 0 ≤ αi ≤ C

For a suitable matrix K, called the kernel matrix. This is a quadratic program with box
constraints, and can be solved fairly efficiently by general purpose solvers.
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More�information

I try to provide additional references for all of my lectures on the class website. For
today’s material (and Wednesday’s) I would like to make a particular point to mention
two references:

▶ Elements of Statistical Learning, Sections 12.1-12.4

▶ Convex Optimization, S. Boyd, Chapter 5 (5.5 in particular)

These contain many more details than I have time to cover, and assume a deeper
background in statistics / convex calculus.
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