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1 The Research Question

On May 6, 2010, the U.S. stock market experienced what has come to be called the “flash crash,” in which
the prices of various stocks fluctuated violently. Overall, the market rapidly plunged about nine percent and
recovered minutes later. In respone, the SEC and stock exchanges devised the Single-Stock Circuit Breaker
(SSCB) rules, which were implemented gradually. According to Traders Magazine,!

The single-stock circuit breakers will pause trading in any component stock of the Russell 1000
or S&P 500 Index in the event that the price of that stock has moved 10 percent or more in the
preceding five minutes. The pause generally will last five minutes, and is intended to give the
markets a hiatus to attract trading interest at the last price, as well as to give traders time to
think rationally.

It is important to note that the rules do not apply to the first fifteen minutes or the last fifteen minutes
of each trading day.

Stock price fluctuations are not steady over the course of a day. They tend to be much stronger toward
the beginning and the end of the trading day. We refer to this daily pattern as the “volatility profile.”

Under the direction of Dr. Michael Kane, I am analyzing recent stock data. The aim of our research is to
understand the effects of the SSCB rules. It is possible that they could “distort” the natural daily volatility
patterns by suppressing volatility during the middle of the trading day. In general, this report addresses the
research question: do the SSCB rules have any effect on the daily volatility profiles of stocks?

To answer the question, we must first define the concept of a volatility profile more carefully and decide
how to estimate it from data, as described in Section 2. Then in Section 3, we retrieve the needed data
estimate volatility profiles for a period before the SSCB rules were implemented and a period afterward.
Finally, Section 4 attempts to answer our research question by using the fact that many stocks were not
subject to the SSCB rules; they will act as a control group of sorts.

Much of the data referenced in this report is available for download from my blog.?

Thttp://www.tradersmagazine.com/news /single-stock-circuit-breakers-sec-flash-crash-trading-106018-1.html
2http://blog.quantitations.com/tutorial /2013/01/14/single-stock-circuit-breakers,/



2 Volatility Profiles

2.1 Definition

Stock prices are generally modeled as Geometric Brownian Motion. Each stock is assumed to have a volatility
parameter that is roughly stable over time frames on the order of, say, a year. In practice, stock prices tend
to change much more rapidly at the beginning and end of each trading day than they do in the middle. To
analyze intra-day volatilities, we need to use a more general diffusion model that allows the volatility o to
depend on t. I will refer to a stock’s daily volatility function ¢ as its “volatility profile.” A priori, we will
not assume any parametric structure to o other than a general “smoothness.” As a proxy for a stock’s o, we
will estimate the volatilities at a set of times spread along the trading day.

2.2 Estimation
2.2.1 Assuming Constant Volatility over Small Intervals

In theory, one could compute volatility estimates over arbitrarily small time intervals. However, the more
you zoom in, the less “GBM-like” stock prices are. For our analysis, we broke each trading day (T' = 6.5
hours) into seventy-eight five-minute (I = 5 minutes) intervals. On day 4, represent a stock price in terms of
a standard Brownian Motion W; by

Ui(t) = exp (bio + tp + o(t)Wi(t))

We define n = T'/l = 78 random variables, one for each interval:

Xi,j = log (UZ([(JJZ(ZZ)I)I))

= logU;(jl) — log Ui ((j — 1)I)
= (bi,o +jlp + o (GOWi(j1)) — (bio + (7 = Dip+ o((j — DOWi((j — 1))
~lp+o(il—1/2) W;(51) — Wi((5 — 1)) by assumption explained below

As a first attempt, we are assuming o(j1) ~ o((j — 1)I) = o(j1 —1/2), that is, volatility is nearly constant
over small intervals. For a given stock, each X, ; is normal with mean I; and variance approximately /
times o(jl —1/2) (henceforth abbreviated to ¢%), and they are independent of each other. Notice that o7
represents the squared volatility at the midpoint of the jth interval.

Assume we have data for m trading days. For a given stock, the o function should be the same every

day. The random variable

m
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Unfortunately, after glancing at some plots (such as Figure 7), the assumption of nearly constant volatility
over five-minute intervals seems entirely untenable. Often, a volatility seems to change by a large proportion
over the course of five minutes. In fact, we would have to use extremely small intervals to make this assump-
tion remotely plausible. But small intervals of stock data are not very GBM-like, and can be problematic.

2.2.2 Assuming Linear Volatility over Small Intervals

After realizing this, I devised a more plausible assumption: the change in volatility over any five-minute
interval is approximately linear. Let V(t) be a process whose natural logarithm is a diffusion with linearly
changing o(¢). That is,

log V(t) = vo + ut +/0 o(T)dW (T)
= v + put + /0 (o0 + m7)dW (1)

Let us zero in on the complicated part of this expression by defining R(t) := fot(oo +m7)dW (7). At any
given time ¢, the behavior of the diffusion R(t) is locally approximated by a Brownian Motion with volatility
oo + mt. In other words, R(t + &) — R(t) should approach a N(0, (oo + mt)24) distribution for small 4.

By transforming the time axis of a standard Brownian Motion in just the right way, we can produce a
much more familiar-looking process with this same behavior. We need to find a transformation D such that
W(D(t)) has a ”volatility” of og + mt at any time t. A change in time of § from time ¢ must produce a
change in D by (o + mt)?J. That is, D satisfies D(t + §) = D(t) + (0o + mt)?J in the limit. Rearranging,
we find that a solution is D(t) = 03t + oomt® + m?t3/3. So our final result is

W (o2t + oomt? + m?t3/3)

This diffusion has the same infinitesimal behavior as R(t) at all times, so they are identical processes.
The following simulations support this result. We will use each method, in turn, to plot a diffusion on (0, 1)
with o(t) = 1 —t (i.e. linear with g = 1 and m = —1). First, we generate the desired diffusion sequentially.
Simulated diffusions of this type are shown in Figure 1.



LinearVolDiffusion <- function(end=1, initial=0, mu=0,
sigma0=1, m=0, n=1000) {
delta <- 1/n
x <- delta*(0:n)
y <- c(initial, rep(NA,n))
for(i in 1:n) {
t <- x[i] + delta/2
y[i+1] <- y[i] + muxdelta + rnorm(1l, sd=(sigma0 + m*t)*sqrt(delta))

}

return(cbind(x, y))

}

set.seed (1)
plot(c(0, 1),c(-1.25, 1.25), type= , main= ,
xlab= , ylab= )
for(i in 1:4) {
lines(LinearVolDiffusion(m=-1), col=i+1)

}
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Figure 1: Each simulated diffusion is generated by concatenating a sequence of small Brownian Motions with
different (linearly decreasing) volatilities.

Next, we generate the same diffusion using standard Brownian Motion and the D transformation discov-
ered earlier. Simulated results are in Figure 2.



BMrecur <- function(x, y, sigma) {
m <- length(x)
mid <- (m + 1)/2
delta <- x[m] - x[1]
y[mid] <- (y[1] + y[m])/2 + rnorm(1l, sd=sigma*sqrt(delta)/2)
if (m <= 3) {
return(y[mid])
} else {
return(c(BMrecur (x[1:mid], y[1:mid], sigma), y[mid],
BMrecur(x[mid:m], y[mid:m], sigma)))
}

}

GenerateBM <- function(end=1, initial=0, mu=0, sigma=1, log2n=10,
geometric=F) {
# Based on code written in Spring 2012 for a Stochastic Processes project
n <- 27log2n
x <- end*(0:n)/n
final <- initial + mu * end + rnorm(1l, sd=sigma*sqrt(end))
y <- c(initial, rep(NA, n - 1), final)
y[2:n] <- c(BMrecur(x, y, sigma))
if (geometric) y <- exp(y)
return(cbind(x, y))

}

right <- function(f, b=10) {
while (f(b) < 0) b <- 10*b
return(b)

}

D <- function(t, sigmaO=1, m=-1) {
return(sigma0~2*t + sigmaO*m*t~2 + m~2xt~3/3)

}

Dinv <- function(x, ...) {
sub <- function(t) D(t, ...) - x
return(uniroot (sub, lower=0, upper=right(sub))$root)

}

plot(c(0,1),c(-1.25,1.25), type= , xlab= , ylab= s
main= )
for(i in 1:4) {
b <- GenerateBM(end=D(1))
lines(sapply(b[,1], Dinv), b[,2], col=i+1)

}

The resemblance between Figures 1 and 2 gives us some reassurance that our results are correct.
Now consider the distribution of log V'(1)/V(0).

log V(1)/V(0) =log V(1) — log V(0)
= [vg + pl + W (a3l 4 oomi® + m?13/3)] — [vo]
= pl + W(l[(o0 +ml/2)® + (ml)?/12])
~ pul + W(l(oo +ml/2)?) if ml is small



Standard Brownian Motion with Transformed Time Axis
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Figure 2: Each simulated diffusion is generated by transforming the time axis of a standard Brownian Motion.

It is normally distributed with variance approximately I(cq + ml/2)?, assuming the product of m and I,
which is the change in ¢ over the interval, is much smaller than one. Plots indicate that this assumption holds
up quite well overall (though not perfectly). Therefore it is easy to see that estimating the variance from
a sample of random variables with this distribution allows us to estimate (oo + mi/2)%. Conveniently, this
is the squared volatility at time /2, the midpoint of the first interval (0,1). Earlier, we called this quantity
o2. Likewise, it can be shown that the same process provides an estimate for the squared volatilities at the
midpoints of the n consecutive intervals of length [ from (0, 7).

The upshot is, we can still use the same estimator Y} defined in Equation (1) to estimate the same quantity
0]2-, the squared volatility at the midpoint of the jth interval However, now we have justified ourselves with
a more believable model.

For simplicity, our analysis will use these estimated values of the squared volatility, rather that estimates
of the volatility itself. They are just as good for answering our research question. After all, squared-volatility
profiles have a one-to-one correspondence with volatility profiles.



3 Gathering and Processing the Data
3.1 Gathering Stock Trades

To estimate a stock’s volatility profile in the way described in Section 2, we need to know its price at the
beginning and end of every 5-minute interval for a set of trading days. This information, and more, can be
found in Trade and Quote (TAQ) data, which records the trades that occur every day.

The SSCB rules began taking effect on December 10th, 2010.2 We decided to select a period of time
before the SSCB rules were enacted and a period after the rules were in place to look for differences. The
two periods that we chose have about the same level of overall volatility, based on the Volatility Index (VIX),
which had a value of around 30 during both periods. This level of volatility is extraordinarily high, which
should make the SSCB rules more likely to have an effect.

Our Pre-SSCB period is May 17, 2010 through June 10, 2010; our Post-SSCB period is August 4,
2011 through August 29, 2011. Each period has eighteen trading days. For each of the trading days, we
downloaded the full TAQ record from the Wharton Research Data Services website, using the Yale Center
for Analytical Sciences subscription.

To demonstrate this data, here are the first few rows of a TAQ file:

SYMBOL,DATE, TIME,PRICE,SIZE,CORR,COND,EX
A,20100104,9:30:02,31.32,98,0,Q,T
A,20100104,9:30:50,31.39,100,0,F,T
A,20100104,9:30:50,31.4,300,0,F,T
A,20100104,9:30:50,31.41,100,0,Q,P

“SYMBOL” refers to the stock’s ticker symbol. “DATE” is a string comprising the year, month, and day
of the transaction; it is the same in every row of a given TAQ file. “TIME” is the hour, minute, and second
of the transaction, in Eastern Standard Time. “PRICE” is the amount of money exchanged per share of
stock in the transaction. “SIZE” is the number of shares traded in the transaction. The other columns are
unimportant for my analysis.

This data will allow me to compute a price at any given time. It also tells me how frequently each stock
is traded, which is information that I will make use of in my analysis.

Trading frequency is likely to be a confounding variable. This is because the set of stocks that were
subjected to the SSCB rules are systematically different from rest. The rules only applied to any stock in
the S&P 500 Index. These stock indices comprise only stocks with very large market capitalizations, and
they are traded more frequently than most.

3.2 Gathering a List of Stocks

It is easy to find a list of the current S&P 500 stocks, but the set of stocks changes over time. It is not as
simple to get the stock list for a particular date in history. Fortunately, I found a list of the recent changes
that have been made, along with the dates of those changes. Using this information, we can backtrack and
find the set of stocks that were in the S&P during the periods of interest. The code below finds the 485
stocks that were in the S&P 500 Index during both of our periods.

html <- function(url) {
# Attempts to retrieve html from url twice
x <- NA
try(x <- htmlParse(url), silent = T)
if (is.na(x)) {
Sys.sleep(5) # Pause and try again
try(x <- htmlParse(url), silent = T)
if (is.na(x))
print (paste( , url))

3http://www.tradersmagazine.com/news/single-stock-circuit-breakers-sec-flash-crash-trading-106018-1.html



}

return(x)
}
url <-
x <= html (url)
# List of current S&P 500 stocks
pattern <- text
index <- xpathSApply(x, pattern, xmlValue)
# List of changes and dates
pattern <-
changes <- xpathSApply(x, pattern, xmlValue)
changes <- changes[-(1:2)]
n <- length(changes)
new <- rep(NA, n)
old <- rep(NA, n)
dates <- rep(NA, n)
for(i in 1:n) {
v <- strsplit(changes[i], ) [[1]1]
if (nchar(v[1]) > 10) {
dates[i] <- v[1]
new[i] <- v[2]
old[i] <- v[4]
} else {
dates[i] <- dates[i-1]
new[i] <- v[1]
old[i] <- v[3]

}
}

dates <- strptime(dates, )
historicSP <- function(date) {
# Returns the 500 S&P stocks on the date given
stocks <- index
date <- strptime(date, )
for(i in 1:n) {
if (dates[i] < date) break
stocks [stocks==new[i]] <- old[il]

}

return(stocks)

}

# No stocks changed during the periods themselves,
# but several changes happened between the two periods.

SP2010 <- historicSP( )
SP2011 <- historicSP( )
SP <- intersect(SP2010, SP2011)
writeLines(SP, )

For comparison, we need a “control” group of stocks. I decided to use the Russell 1000 Index stocks*
as the control. In fact, nearly all of the S&P 500 stocks are in the Russell 1000, so our control group will
actually be the set difference, which ends up leaving a total of 507 stocks. These stocks have a large market
capitalization and are actively traded, so they are likely to be comparable. Incidentally, the Russell 1000
stocks came under the SSCB rules as well, but that started after the time periods of our analysis.?

4www.russell.com /indexes/documents/Membership/Russell1000_Membership_list.pdf

Shttp://www.sec.gov/investor /alerts/circuitbreakers.htm



R <- readLines( )

# Remove any stocks from SP2010 or SP2011
R <- setdiff (R, SP2011)

R <- setdiff(R, SP2010)

writeLines(R, )

3.3 Gathering Market Capitalizations

To attempt to control for any systematic differences between the two groups, we decided to take market
capitalization into account. Market capitalization “is the total value of the issued shares of a publicly traded
company; it is equal to the share price times the number of shares outstanding.”® We need to determine the
market cap of stocks at particular past dates. Our TAQ data gives us the share prices for these dates, so we
only needed to find the number of shares outstanding during the periods. I wrote code to scrape the web
and estimate past shares outstanding.

My code estimates the number of shares outstanding on any historical date by considering the current
number of shares outstanding and the splits that have occurred since that date. This procedure is definitely
not perfect! Splits have a big impact on the number of shares outstanding, but other factors” can affect the
number as well. Hopefully, the fluctuations caused by the other factors are relatively small. Regardless, the
other factors are much harder to get historical data for.

The current number of shares outstanding can be retrieved from Yahoo! Finance.® Unfortunately,
this database is incomplete; in particular, many small stocks are missing. Split histories can be found at
GetSplitHistory;? it was also missing many stocks.

My code uses the XML package and the XPath specification for parsing XML. Also, because web scraping
can take a long time and is particularly vulnerable to failure, I created an append.csv function. It behaves
much like write.csv, but it builds the csv file one line at a time, in order to save your progress as you go.

8

3.3.1 Scraping Yahoo! Finance and GetSplitHistory

The functions that perform the scraping are posted below. It relies on the html function defined in Section 3.2.

outstanding <- function(symbol, dates) {

# Scrapes finance.yahoo.com and getsplithistory.com to
# determine the number of outstanding shares of a stock
# on any given date. Works as of early January 2013, but
# may stop working if either site changes its html.

# First get current number of shares from Yahoo

yahooURL <-

thisURL <- gsub( , symbol, yahooURL)

x <- html(thisURL)

if (x$fail) return(rep(NA, length(dates)))

pattern <- text text

y <- xpathSApply(x$html, pattern, xmlValue)

if (length(y)==0) {
print (paste (symbol, ))
return(rep(NA, length(dates)))

}

power <- switch(substr(y, nchar(y), nchar(y)), M=6, B=9)

currentshares <- as.numeric(substr(y, 1, nchar(y)-1))*10"power

6http://en.wikipedia.org/wiki/Market_capitalization
"http://answers.yahoo.com/question/index?qid=20061026104715AAJUVbe
8http://finance.yahoo.com/

9http://getsplithistory.com/

10



# Next, use split history to determine past shares
gshURL <-
thisURL <- gsub( , symbol, gshURL)
x <- html(thisURL)
if (x$fail) return(rep(NA, length(dates)))
pattern <-
y <- xpathSApply(x$html, pattern, xmlValue)
if (length(y)==0) {
pattern <- text
y <- xpathSApply(x$html, pattern, xmlValue)
if (length(y)>0) {
print (paste(symbol, ))
return(rep(NA, length(dates)))
}
# stock has never split
return(rep(currentshares, length(dates)))
}
splitdates <- strptime(substr(y, 1, 12), )
ratios <- as.numeric(substr(y, 13, 13)) /
as.numeric(substr(y, 17, 17))
results <- rep(currentshares, length(dates))
for(i in 1:length(dates)) {
j<1
while(dates[i] <= splitdates[j]) {
results[i] <- results[i]/ratios[j]
if (j==length(splitdates)) break
j <= j+1
}
}
return(results)
}
append.csv <- function(row, rowname="", file= ) {
# Adds one row to a csv file
if(file.exists(file)) {

cat(rowname, row, file=file, sep= , append=T)
} else { # row is assumed to be the header
cat(row, file=file, sep= )
}
cat ( , file=file, append=T)

}

For any given stock symbol, I can call the outstanding function, passing in the desired dates, to get an
estimate of that stock’s number of shares outstanding on those dates.

library (XML)

symbols <- c(readLines( ), readLines( ))
dates <- c( ) ) > )
append.csv(dates, )

results <- matrix(NA, length(symbols), length(dates))
colnames(results) <- dates
rownames (results) <- symbols
dates <- strptime(dates, )
for(i in 1:length(symbols)) {
results[i,] <- outstanding(symbols[i], dates)

11



append.csv(results[i,], , rowname = symbols[i])
Sys.sleep(5)

}

This creates a file “outstanding.csv” with the number of shares outstanding on each date for each stock.
For example,

,20100517,20100610,20110804,20110829
A,347930000,347930000,347930000,347930000
AA,1.07e+09,1.07e+09,1.07e+09,1.07e+09
AAP,73170000,73170000,73170000,73170000
AAPL,940690000,940690000,940690000,940690000

For any past date, I will multiply a stock price by the number of shares outstanding to estimate a stocks
market capitalization on that date.

3.4 Processing the Data
3.4.1 Splitting up the TAQ Files

Each raw TAQ data file is too big to open all at once using, for example, read.csv. Attempting to open
one on our machine (with 8 GB of RAM) results in memory swapping, slowing the processing to a practical
standstill.

Instead, I processed the TAQ files by reading in one line at a time, which uses a negligible amount of
memory. I wrote a Python script “TAQprocess.py” which is shown below. The code is object-oriented,
which slows it down somewhat. But in this case, making the code easier to read and manage seemed worth
the added computation time.

# Based on code written for a Statistical Computing assignment
import sys
import os
import string
def toSeconds(time):
timev = time.split(":")
return(3600*int (timev[0]) + 60*int(timev[1]) + int(timev[2]))
class Line:
def __init__(self, ifile):
self.ifile = ifile
skip = self.ifile.readline()
skip = self.next()
def next(self):
linev = self.ifile.readline().split( , 5)
if len(linev) ==
return False
self.symbol = linev[0]
self.time = toSeconds(linev[2])
self .price = float(linev[3])
self.size = int(linev[4])
return True
class Stock:
def __init__(self, symbol):
self.symbol = symbol
self.ofile = open( % (sys.argv[1], symbol), )
self .write( )
def next(self, symbol):

12



self.close()
self.__init__(symbol)

def write(self, text):
self.ofile.write(text)

def close(self):
self.ofile.close()

class Second:

def __init__(self, line):
self.time = line.time
self.spent = line.pricexline.size
self.volume = line.size

def add(self, line):
self.spent += line.price*line.size
self.volume += line.size

def next(self, stock, line):
self.write(stock)
self.__init__(line)

def write(self, stock):

stock.write( % (self.time, round(self.spent/self.volume, 2)))
print % sys.argv[1]
os.makedirs( % sys.argv[1])
os.system( % (sys.argv[1], sys.argv[1]))

ifile = open(sys.argv[1])

line = Line(ifile)

stock = Stock(line.symbol)

second = Second(line)

while line.next():

if line.symbol != stock.symbol:

second.next (stock, line)
stock.next (line.symbol)

elif line.time == second.time:
second.add(line)
else:

second.next (stock, line)
second.write(stock)
stock.close()
ifile.close()
os.remove(sys.argv[1])

The following R code was used to run the script on each date of interest. It processes the files in parallel,
making use of all twelve cores on Dr. Kane’s machine.

require(foreach)

require (doMC)
registerDoMC()
taqfiles <- list.files( )
taqfiles <- taqfiles[grep( , tagfiles)]
taqdates <- substring(taqfiles, 5, 12)
taqdates <- c(taqdates[taqdates >= & taqdates <= 1,
taqdates[taqdates >= & taqdates <= iD)
a <- foreach(tagdate=taqdates, .combine=c) %dopar) {
command <- paste( , tagdate)
system(command)

}

13



Now we have one folder for each date of interest. Within that folder, there is a file for each stock that
was represented on that day’s TAQ file. This stock’s file has a row for each second of the day during which
trades occurred. Each row consists of two columns: time of day (in seconds) and weighted average trade
price. For example,

time,price
34201,52.41
34205,52.4
34210,52.41
34222,52.4

3.4.2 Calculating Market Capitalization

For a handful of stocks, I was unable to retrieve Yahoo! Finance or GetSplitHistory data, so they were
thrown out. Also, one stock split during the period of study; it was tossed out for simplicity. This left 473
S&P stocks and 488 Russell stocks. Next, the stocks that were not traded every day during the periods of
interest were discarded. This leaves 464 S&P stocks and 430 Russell stocks. The list of all remaining stocks
was stored in the file “symbols.txt.”

# Discard
shares <-
shares <-
shares <-
stocks <-
# Discard
setwd (

stocks based on failure to acquire shares outstanding data
read.csv( , row.names=1)
shares[complete.cases(shares), ]

shares[-which(shares[, 1] != shares[, 4]), 1]

rownames (shares)

stocks based on insufficient TAQ data

)

dates <- list.files()

for (date

in dates[1:length(dates)]) {

files <- list.files(date)
datestocks <- substr(files, 1, nchar(files) - 4)
stocks <- intersect(stocks, datestocks)

}

o <- order(stocks)

stocks <- stocks[o]

shares <- shares[o, ]

writeLines(stocks, )

shares <- shares[which(rownames(shares) %in% stocks), ]

write.csv(shares, )

Finally, multiplying the number of shares outstanding by the share price tells us the market capitalization
of each stock for each period. Of course, each stock does not have a single price for each period. Instead, I
compute the average price.

require(foreach)

require (doMC)

registerDoMC()

DayAverage <- function(stock, date) {
filename <- pasteO(date, , stock, )

x <- read.csv(filename)

n <- length(x$time)

if (n==1) return(x$pricel[1])
total <- O

for(i in 1:(n-1)) {

total

<- total + x$price[il*(x$time[i+1]-x$time[i])
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}

total <- total + x$price[n]*(57600-x$time [n])
avg <- total/(57600-x$time[1])
return(avg)
}
# Detemine Average Price for each Stock in each Period
stocks <- readLines( )
n <- length(stocks)
setwd ( )
dates <- list.files()
years <- c( , )
prices <- matrix(NA, n, length(years),
dimnames=1list(stocks, years))
for(i in 1:length(years)) {
yeardates <- dates[grep(years([i], dates)]
m <- length(yeardates)
prices[,i] <- foreach(stock=stocks, .combine=c) %dopar’% {
print (paste(years[i], stock))
avgs <- rep(NA, m)
for(j in 1:m) {
avgs[j] <- DayAverage(stock, yeardates[j])
}

return (mean (avgs))

}
}

# Multiply Price by Shares Outstanding to get Market Cap
setwd ( )

shares <- read.csv( , row.names=1)

cap <- cbind(shares[,1]*prices[,1], shares[,3]*prices[,2])
colnames(cap) <- years

write.csv(cap, )

Figure 3 gives a glance at the spread of market caps and the relationships among market caps for the
two periods.

par (mfrow=c(1, 2))
boxplot(log(cap), main= , ylab= )
plot(log(cap), main= )

Because the market caps of the two years are so highly correlated (R? is over .94), I will simply take the
means of the two years to be the single market cap for each stock.

cap.mean <- apply(cap, 1, mean)
write.csv(cap.mean, )

3.5 Cleaning the Data

On some holidays the stock market is only open for a shortened trading day. If any partial trading days
are present in our data set we should throw them out. I would guess that any partial trading days should
have noticeably less trading activity than ordinary trading days. Figure 4 shows boxplot of trading activity.
Because we see no lower outliers, I assume there are no partial trading days in my data set.
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Figure 3: (a) Market capitalizations of all stocks during the 2010 period and the 2011 period. (b) Scatterplot
showing how closely related the market caps are between the two periods.

stocks <- readLines( )
n <- length(stocks)
setwd ( )

dates <- list.files()
# For each stock, record the number of seconds in which trades
# occurred on each date of interest.
activity <- matrix(NA, n, length(dates),
dimnames=1ist (stocks, dates))
for(i in 1:length(dates)) {

files <- pasteO(dates[i], , stocks, )
for(j in 1:n) {
command <- paste( , files[j1)
r <- system(command, intern=T)
activity[j,i] <- as.integer(unlist(strsplit(r, M [11)-1

}
}

write.csv(activity, )

act.daymeans <- apply(activity, 2, mean)
boxplot(log(act.daymeans), main= s
ylab= )

Ultimately, we want to compare the SSCB stocks to the others, in hopes of seeing differences caused
by the SSCB rules. To that end, we will try to control for some systematic differences, including trading
activity. As a first step, I want to remove the control stocks whose trading activity is far below that of the
SSCB stocks in order to make the groups more similar. Figure 5 shows how dissimilar the groups are.
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Trading Activity Each Day

8.4

Log of Avg Num Seconds in which Trades Occurred
8.2

Figure 4: Boxplot of average number of seconds in which trades occurred over all stocks.

SSCBstocks <- readLines( )

mins <- apply(activity, 1, min)

sscb <- names(mins) %inj SSCBstocks

boxplot(log(mins) ~ sscb, names=c( s ), main= s
ylab= )

I decided to discard any stock that had a day of fewer than 400 seconds of trading. The control group
still skews lower, but at least they are in the same ballpark now, as Figure 6 demonstrates. Another benefit
of discarding stocks whose activity is below this minimum threshold is that their data is less reliable.

mins <- mins[mins >= 400]
sscb <- names(mins) %in’% SSCBstocks

boxplot(log(mins) ~ sscb, names=c( s ), main= s
ylab= )
writeLines (names(mins), )

At this point, we have 463 SSCB stocks and 404 control stocks remaining.
As we did with the market cap data, we will average the activity levels of the two periods into a single
overall measure of trading frequency for each stock. We will control for these values in Section 4.3.2.

activity <- activity[rownames(activity) %in’ names(mins), ]
act.mean <- apply(activity, 1, mean)

write.csv(act.mean, )

# Also, synchronize mean market caps with final list of stocks
cap.mean <- cap.mean[names(cap.mean) %in% names(mins)]
write.csv(cap.mean, )
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Figure 5: For each stock, we have 36 trading days worth of activity. These boxplots correspond to each
stock’s least active day.
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Figure 6: Boxplots of minimum trading activity after removing all stocks below the threshold of 400 seconds.
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3.6 Computing Volatility Estimates

Now that the stock data has been simplified, cleaned, and organized into manageable chunks, we can estimate
the volatility profiles. Notice that far outliers are discarded by this code. Otherwise, they tend to dominate
the results. There are certainly interesting things we could learn by analyzing the outliers, but our present
research question is about the ordinary volatility profiles of stocks rather than the extraordinary events.

require(foreach)
require (doMC)
registerDoMC()
Prices <- function(S, times) {
m <- length(S$price)
n <- length(times)
p <- rep(NA, n)
j <1
for(i in 1:n) {
while(j < m) {
if (S$time[j+1] > times[i]) break
j <= j+1
}
plil <- S$pricelj]
}
return(p)
}
X <- function(S, 1=5) {
times <- seq(34200, 57600, by=60%1)
p <- Prices(S, times)
return(p[-1]/p[-length(times)])
}
out.discard <- function(x, threshold = 3) {
scores <- (x - mean(x)) / sd(x)
return(x[abs(scores) <= threshold])
}
Y <- function(x, 1=5) {
x <- out.discard(x)
num <- sum((x-mean(x))"2)
denom <- (length(x)-1)*1/60/6.5/252
return(num/denom)

}

Profile <- function(stock, dates, period, 1=5) {

if (390%%1) stop( )
stockfiles <- paste0( , dates, , stock, )
print (paste( , stock))

M <- matrix(NA, length(dates), 390/1)
for(i in 1:length(dates)) {

S <- read.csv(stockfiles[i])

M[i,] <= X(S, 1)
}
filename <- pasteO( , period, , stock, )
print (paste( , filename))
write.csv(M, filename)
result <- rep(NA, 390/1)
try(result <- apply(M, 2, Y), silent=T)
return(result)
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Figure 7: 78 estimated points along the squared volatility profile of a random stock.
}
stocks <- readLines( )
dates <- list.files( )
for(year in c( , N A

yeardates <- dates[grep(year, dates)]

a <- matrix(unlist(mclapply(stocks, Profile, yeardates, year)),
nrow=length(stocks), byrow=T)

rownames (a) <- stocks

write.csv(a, pasteO(year, ))

}

Now, we have two files: “2010.csv” and “2011.csv.” Each file has 867 rows, one for each stock that we
will analyze. There are 78 columns corresponding to the midpoints of the 78 five-minute intervals of the
trading day. Cell [z, j] of the matrix contains the estimated volatility of stock ¢ at the midpoint of interval j.

Finally, here is a typical example of a squared volatility profile estimate.

52010 <- read.csv( , row.names=1)

set.seed(1)
i <- runif(1, 1, nrow(s2010))
t <= 2.5 +5 % (0:77)
plot(t, s2010[i,], main=rownames(s2010) [i],
xlab= , ylab= )
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4 Analysis

4.1 Transformation

It is clear to me from browsing many more plots like Figure 7 that the first and last points of the day tend to
be the highest. They also seem to have the most variability. In fact, the spread versus level plot in Figure 8a
confirms that a strong relationship exists between spread and level. Times of the day with higher volatilities
also have higher variation in their volatilities. Generally, analyses go more smoothly if this relationship can
be transformed away. A log transform does the trick, as Figure 8b shows.

52010 <- read.csv( , row.names=1)
52011 <- read.csv( , row.names=1)

par (mfrow=c(1, 2))
means <- apply(s2010, 2, mean)
sds <- apply(s2010, 2, sd)

plot(means, sds, xlab = , ylab = , main = )
trans <- log(s2010)
means <- apply(trans, 2, mean)
sds <- apply(trans, 2, sd)
plot(means, sds, xlab = , ylab = , main = )
(a) Original Data (b) Log Transformed Data
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Figure 8: (a) In the original spread versus level plot, the spreads are strongly correlated with level. (b) After
log-transforming, this relationship basically vanishes.

Let us transform both the 2010 and 2011 data.
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# One stock has a zero in 2010, which would cause problems
# We remove it from the analysis: SIRI (control group)
mins <- apply(s2010, 1, min)

problem <- which.min(mins)

2010 <- s2010[-problem, ]

s2011 <- s2011[-problem, ]

52010 <- 1log(s2010)
$2011 <- log(s2011)

4.2 Basis Expansion

Clearly, we expect neighboring data points of a volatility profile to be very close to each other. In such
cases as this, one can often improve the quality of one’s data by letting neighboring points “inform” each
other. By trying various polynomial fits, I found that a fifth-degree is the smallest polynomial fit that leaves
essentially no discernible structure in the residuals. It follows the basic shape of the curves remarkably well
as shown in Figure 9.

# Initialize

par (mfrow=c(3, 2))

stocks <- rownames(s2010)

n <- nrow(s2010)

m <- ncol(s2010)

t <= 2.5 + 5 % (0:77)

t.mat <- cbind(t, t72, t73, t74, t75)

# Demonstrate fit on first few stocks
for(i in 1:3) {
v <- unlist(s2010[i, 1)
L <- Im(v ~ t.mat)
plot(t, v, main=stocks[i], xlab= s
ylab= )
lines(t, L$fit, col=2)
plot(t, L$res, main=paste(stocks[i], ), xlab= s
ylab= )
abline(h=0, col=2, 1lty=2)

For the remainder of our analysis I will assume that the 78 data points are well summarized by a fifth
degree polynomial. 1 believe that switching to this polynomial basis will introduce very little bias, while
decreasing variance appreciably. Each stock’s volatility profile will be represented by the six coefficients of
this fit.

p <- ncol(t.mat) + 1
coef2010 <- matrix(NA, n, p, dimnames=list(stocks, 0:(p-1)))
coef2011 <- matrix(NA, n, p, dimnames=list(stocks, 0:(p-1)))
for (i in 1:n) {

# 2010 coefficients

v <- unlist(s2010[i, 1)

L <- Im(v ~ t.mat)

coef2010[i, ] <- L$coef

# 2011 coefficients

v <- unlist(s2011[i, 1)
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Figure 9: A fifth-degree polynomial fit captures the shape of the data remarkably well and leaves no dis-
cernible pattern in the residuals.
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L <- Im(v ~ t.mat)
coef2011[i, ] <- L$coef

}

4.3 Controlling for Other Factors

Because our groups are systematically different, we should try to control for those differences the best we
can. We have gathered market cap and trading frequency data so we will control for those variables.

4.3.1 Market Capitalization

As shown in Figures 10 and 11, the relationships between market cap and coefficient estimates is extremely
weak. Still, T used a quadratic fit across the board to remove any slight effects. This will not do any harm
in cases where there is no effect, because it will leave those data points essentially unchanged.

cap.mean <- read.csv( , row.names=1)$x[-problem]

cap.logmean <- log(cap.mean)

cap.mat <- cbind(cap.logmean, cap.logmean~2)
coef .means2010 <- apply(coef2010, 2, mean)
coef .means2011 <- apply(coef2011, 2, mean)
grid <- seq(20, 26, by = 0.1)

# 2010 coefficients
par (mfrow=c(3, 2))
for(i in 1:6) {
plot(cap.logmean, coef2010[, i], main= s
xlab= , ylab=bquote( Z 7, @E=1) )
L <- 1m(coef2010[, i] ~ cap.mat)
lines(grid, cbind(1, grid, grid~2) %*% L$coef, col = 2)
coef2010[, i] <- L$res + coef.means2010[i]

# 2011 coefficients
par (mfrow=c(3, 2))
for(i in 1:6) {
plot(cap.logmean, coef2011[, i], main= s
xlab= , ylab=bquote( Tttt (i) 7 ))
L <- 1lm(coef2011[, i] ~ cap.mat)
lines(grid, cbind(1, grid, grid~2) %*% L$coef, col = 2)
coef2011[, i] <- L$res + coef.means2011[i]

4.3.2 Trading Frequency

Before we control for trading frequency, let us take this opportunity to glance at the group differences in
market cap and trading frequency. Figure 12a shows that the groups have about the same average market
cap, but the S&P 500 stocks are traded much more frequently on average.

Figure 12b shows an unexpected relationship between market cap and trading frequency. The slight
trend shown does not hold up more generally, but it is only a peculiarity of how our data was selected: S&P
500 stocks are among the most frequently traded, while Russell 1000 stocks are among the largest.
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Figure 10: Relationships between market cap and 2010 coefficient estimates.
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Figure 12: (a) Green points indicate SSCB stocks. Although they have about the same market caps, they are
traded more frequently than the control stocks. (b) Relationship between market cap and trading frequency.

act.mean <- read.csv( , row.names=1)$x[-problem]
SSCBstocks <- readLines( )

act.logmean <- log(act.mean)

par (mfrow=c(1, 2))
sscb <- stocks %inY% SSCBstocks

plot(cap.logmean, act.logmean, col=sscb+2, main= , xlab= s
ylab= )

plot(cap.logmean, act.logmean, main= , xlab= ,
ylab= )

L <- 1lm(act.logmean ~ cap.mat)
lines(grid, cbind(1, grid, grid~2) %*J% L$coef, col = 2)
act.logmean <- L$res + mean(act.logmean)

As shown in Figures 13 and 14, the trading frequency has a somewhat stronger effect on the coefficient
estimates than we saw with market cap. Again, I used a quadratic fit across the board to control.

act.mat <- cbind(act.logmean, act.logmean”2)
grid <- seq(7, 9.5, by = 0.1)

# 2010 coefficients
par (mfrow=c(3, 2))
for(i in 1:6) {
plot(act.logmean, coef2010[, i], main= s
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xlab= s
ylab=bquote ( ® 8%, @E=1) )
L <- 1m(coef2010[, i] ~ act.mat)
lines(grid, cbind(1, grid, grid~2) %*% L$coef, col = 2)
coef2010[, i] <- L$res + coef.means2010[i]

}

# 2011 coefficients
par (mfrow=c(3, 2))
for(i in 1:6) {
plot(act.logmean, coef2011[, i], main= ,
x1lab= s
ylab=bquote ( ® 8. @=1) )
L <- 1m(coef2011[, i] ~ act.mat)
lines(grid, cbind(1l, grid, grid~2) Y%x*J% L$coef, col
coef2011[, i] <- L$res + coef.means2011[i]

}

2)

4.4 Comparing Groups

First, we will compare the groups based on the 2010 data. Then, we will compare them based on the 2011
data. Finally, we will compare the changes that the two groups experienced from 2010 to 2011.

4.4.1 Before the SSCB Rules

Figure 15 gives a glimpse at the average volatility profiles of the SSCB and control groups in 2010. They
have a similar basic shape, and the sample average of the control group is higher overall.

Tmat <- cbind(1l, t.mat)

sscb.avg2010 <- apply(coef2010[sscb, ], 2, mean)

control.avg2010 <- apply(coef2010[!sscb, ], 2, mean)

sscb.fit <- Tmat %*% sscb.avg2010

control.fit <- Tmat %*J control.avg2010

plot(t, sscb.fit, type= , col=3, main= )
ylab= , xlab= )

lines(t, control.fit, col=2)

In order to get a sense of the shape of the 2010 data, let us consider the pairs plot of the coefficient
estimates in Figure 16. The estimates of the different coefficients have an extremely large correlation in many
cases. This means that the data could probably be summarized well by a lower-dimensional representation.
Furthermore, each plot looks reasonably bivariate normal.

pairs(coef2010, main= )

In fact, a plot of the first two principal components (Figure 17) also shows a basically ellipsoidal data
cloud. And the covariance structures of the groups appear to be similar to each other.

pc <- princomp(coef2010, cor=T)

plot(pc$scores[, 1], pc$scores[, 2], col=sscb+2, xlab= s
ylab= , main= )

vars <- pc$sd”2
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Figure 13: Relationships between trading frequency and 2010 coefficient estimates.
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2010 Average Log of Squared Volatility Profiles

2 ©

= <7

C_B |

(@]

> _

o

o

8 ©

:; —]

z 9

(7))

Y

o _

(@)

(@]

- o
@ -

0 100 200 300 400

Minutes into Day

Figure 15: Average log of squared volatility profiles for each group in 2010. The red curve represents the
control group average, while the green curve represents the SSCB group average.

# See proportion of variability in each component
vars/sum(vars)

## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6
## 8.607e-01 1.015e-01 3.660e-02 1.213e-03 3.044e-05 3.143e-07

Based on approximate normality and similar covariance structures, a linear discriminant analysis could
can help us visualize the separation between the groups. Figure 18 shows boxplots of the two groups scores
in the direction of maximum discrimination. Although they are different on average, there is not a strong
separation between them.

library(MASS)

# Scale to avoid R's error with small numbers.
# (This is fine because LDA is scale-invariant.)
scale2010 <- apply(coef2010, 2, scale)

z <- l1lda(sscb ~ scale2010)

# Plot the LDA scalings
r <- scale2010 %*}, z$scaling

SSCB <- factor(sscb, c(TRUE, FALSE), c( 5 ))
boxplot(r ~ SSCB, main= 5
ylab= )

MANOVA confirms groups’ volatility profiles were significantly different on average in 2010.
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Figure 16: Pairs plot showing the relationships between the coefficient estimates of the 2010 data.
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2010 Principal Component Projection
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Figure 17: Projection of 2010 coefficient estimates into first two principal component scores. The red points
indicate control stocks, while the green points are SSCB stocks.
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Figure 18: Boxplots of the best linear discriminator score of the stocks’ 2010 coefficient estimates.
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2011 Average Log of Squared Volatility Profiles
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Figure 19: Average log of squared volatility profiles for each group in 2011. The red curve represents the
control group average, while the green curve represents the SSCB group average.

m <- manova(coef2010 ~ sscb)

summary .manova(m, test= )

#H# Df Wilks approx F num Df den Df Pr(>F)

## sscb 1 0.903 15.4 6 859 <2e-16 **x

## Residuals 864

## ——-

## Signif. codes: O '#xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

4.4.2 After the SSCB Rules

Next, we repeat all of the same procedures on the 2011 coefficient estimates. Figure 19 shows that the
volatility profiles are similar to their 2010 shapes, although they are somewhat smoother now. The control
group is still higher than the SSCB group.

sscb.avg2011 <- apply(coef2011[sscb, ], 2, mean)

control.avg2011 <- apply(coef2011[!sscb, ], 2, mean)

sscb.fit <- Tmat %*J, sscb.avg2011

control.fit <- Tmat %%*J, control.avg2011l

plot(t, sscb.fit, type="1", col=3, main= ,
ylab= , xlab= )

lines(t, control.fit, col=2)

The pairs plot (Figure 20) is basically the same as that of the 2010 data.



pairs(coef2011, main= )

Again, the principal component scatterplot (Figure 21 shows normal-looking data clouds with similar
covariance structures. The plot shows a far outlier, but we have so many data points that its impact is too
small to worry about. Furthermore, it may be of interest on its own, but it does not seem relevant to our
particular research question.

pc <- princomp(coef2011, cor=T)

plot(pc$scores[, 1], pc$scores[, 2], col=sscb+2, xlab= s
ylab= , main= )

vars <- pc$sd”2

vars/sum(vars)

## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6
## 8.623e-01 1.039e-01 3.267e-02 1.162e-03 2.762e-05 3.895e-07

The linear discriminant projection (Figure 22) shows a very similar picture to the 2010 data. There is
an average difference, but there is not a strong separation.

scale2011 <- apply(coef2011, 2, scale)

z <- lda(sscb ~ scale2011)

r <- scale2011 x*J, z$scaling

boxplot(r ~ SSCB, main= s
ylab= )

In 2011, the groups’ volatility profiles are still significantly different.

m <- manova(coef2011 ~ sscb)

summary .manova(m, test= )

#H# Df Wilks approx F num Df den Df Pr(>F)

## sscb 1 0.905 15.1 6 859 <2e-16 *xx*x

## Residuals 864

## ——-

## Signif. codes: O '**x' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

4.4.3 Changes

Next, let us consider the change in the coefficients for each group. This will be the key in our investigation
of the effects of the SSCB rules. For each group, the matrix of coefficient changes is defined to be the 2011
matrix of estimated coefficients minus the 2010 matrix. We repeat all of the same techniques once more.

First, Figure 23 shows us that the two groups’ changes had very similar shapes, and that the SSCB
changes were more sizable.

sscb.avgChange <- sscb.avg2011 - sscb.avg2010
control.avgChange <- control.avg2011l - control.avg2010
sscb.fit <- Tmat %*J, sscb.avgChange
control.fit <- Tmat %#*J, control.avgChange
plot(t, sscb.fit, type= , col=3, ylab= s
xlab= , main= )
lines(t, control.fit, col=2)

The pairs plot (Figure 24) shows very strong correlations between the changes in the coefficient estimates.
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Figure 20: Pairs plot showing the relationships between the coefficient estimates of the 2011 data.

36



2011 Principal Component Projection
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Figure 21: Projection of 2011 coefficient estimates into first two principal component scores. The red points
indicate control stocks, while the green points are SSCB stocks.
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Figure 22: Boxplots of the best linear discriminator score of the stocks’ 2011 coefficient estimates.
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Change in Average Log of Squared Volatility Profiles
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Figure 23: Average change in log of squared volatility profiles for each group in 2010. The red curve
represents the control group average, while the green curve represents the SSCB group average.

change <- coef2011 - coef2010
pairs(change, main= )

The principal component projection (Figure 25) shows two ellipsoidal data clouds with similar covariance
structures.

pc <- princomp(change, cor=T)

plot(pc$scores[, 1], pc$scores[, 2], col=sscb+2, xlab= s
ylab= , main= )

vars <- pc$sd”2

vars/sum(vars)

#i# Comp. 1 Comp. 2 Comp. 3 Comp .4 Comp.5 Comp. 6
## 8.585e-01 1.120e-01 2.850e-02 1.002e-03 2.625e-05 2.027e-07

The linear discriminant projection (Figure 26) shows somewhat less separation than we saw on the other
plots. But there does seem to be an average difference. The plot shows a far outlier, but we have so many
data points that its impact is not very large.

scalechange <- apply(change, 2, scale)

z <- lda(sscb ~ scalechange)

r <- scalechange %*% z$scaling

boxplot(r ~ SSCB, main= s
ylab= )

MANOVA tells us that the changes in volatility profiles were significantly different between the two
groups on average.
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Figure 24: Pairs plot showing the relationships between changes in the coefficient estimates.
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Figure 25: Projection of changes in coefficient estimates into first two principal component scores. The red
points indicate control stocks, while the green points are SSCB stocks.
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Figure 26: Boxplots of the best linear discriminator score of the stocks’ changes coefficient estimates.
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m <- manova(change ~ sscb)

summary.manova(m, test= )

## Df Wilks approx F num Df den Df Pr(>F)

## sscb 1 0.954 6.88 6 859 3.8e-07 **x

## Residuals 864

## ——-

## Signif. codes: O '#xx' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

4.5 Conclusions

Unfortunately, controlling for market cap and trading frequency were not enough to make the two groups’
2010 volatility profiles the same. Therefore, we have no hope of saying that they were comparable before
the SSCB rules. Then, if one group changed differently from the other, it could be due to other systematic
differences rather than the SSCB rules. With that in mind, let us recall the main results.

Although the changes in the two groups’ volatility profiles were significantly different on average, they
were not substantially different. They overlap to a large extent (Figure 26) and they were in the same basic
direction (Figure 23). In other words, one would have very little power in classifying a stock into one of the
groups based on its volatility profile change.

The analysis was unable to determine whether the SSCB rules had a significant impact on volatility
profiles. However, I do think that it establishes that the rules most likely did not have a dramatic effect on
the overall volatility profiles of the affected stocks as of late 2011. Of course, they may have affected the
stocks in some other way that a different analysis could uncover.

While our SSCB questions are not entirely answered, looking at our estimated volatility profiles brings
other interesting questions to light. Why were are the two groups’ volatility profiles different, even after
taking market cap and trading frequency into account? And more interestingly, why did volatility profiles
change in the way that they did (see Figure 23) between our two periods of study?
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