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1. Additional notation and definitions. In the main paper:

• Section 2 defines the basic notation;
• Section 4.2.1 states Conditions 1–3;
• Section 4.2.2 defines the vectors Qa and Qb and the prediction errors a∗i

and b∗i , and introduces the σ2
x and σx,y notation for population variances and

covariances;
• Section 5 defines the vector Q and the prediction errors a∗∗i and b∗∗i .

Let p̃A = nA/n [as in remark (iii) after Corollary 1.2].
Extend Section 2’s notation for population and group means to cover any scalar,

vector, or matrix expression. For example:

abA =
1
nA

∑
i∈A

aibi, azA =
1
nA

∑
i∈A

aizi, z′zA =
1
nA

∑
i∈A

z′izi.

Extend Freedman’s (2008b) angle bracket notation to cover all the finite limits
assumed in Condition 2. For example:

〈az〉= lim
n→∞

1
n

n

∑
i=1

aizi, 〈z′z〉= lim
n→∞

1
n

n

∑
i=1

z′izi.

(The second limit exists since it is a submatrix of limn→∞ n−1Z′Z.)
Condition 4 (centering) will sometimes be assumed for convenience. The proofs

will explain why this can be done without loss of generality.

CONDITION 4. The population means of the potential outcomes and the co-
variates are zero: a = b = 0 and z = 0.

Some transformations of the regressors will be useful in the proofs. Define the
pooled-slopes regression estimator of mean potential outcomes, β̂adj, as the 2× 1
vector containing the estimated coefficients on Ti and 1−Ti from the no-intercept
OLS regression of Yi on Ti, 1−Ti, and zi− z. Let Q̂ denote the vector of estimated
coefficients on zi− z from the same regression.
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The vector β̂adj is an estimate of β = (a,b)′. By well-known invariance proper-
ties of least squares, ÂTEadj is the difference between the two elements of β̂adj.

Similarly, define the separate-slopes regression estimator of mean potential out-
comes, β̂interact, as the 2×1 vector containing the estimated coefficients on Ti and
1−Ti from the no-intercept OLS regression of Yi on Ti, 1−Ti, zi−z, and Ti(zi−z).
Then ÂTEinteract is the difference between the two elements of β̂interact.

Let Q̂a and Q̂b denote the vectors of estimated coefficients on zi in the OLS
regressions of Yi on zi in groups A and B, respectively.

Conditions 1–3 do not rule out the possibility that under some realizations of
random assignment, the regressors are perfectly collinear. The probability of this
event converges to zero by Conditions 2 and 3, so it is irrelevant to the asymp-
totic results. For concreteness, whenever ÂTEadj cannot be computed because of
collinearity, let ÂTEadj =Y A−Y B, Q̂= 0, and β̂adj =(Y A,Y B)

′; whenever ÂTEinteract

cannot be computed, let ÂTEinteract = Y A−Y B, Q̂a = 0, Q̂b = 0, and β̂interact =
(Y A,Y B)

′. Other arbitrary values could be used.

2. Lemmas. Lemma 1 is a finite-population version of the Weak Law of Large
Numbers.

LEMMA 1. Assume Conditions 1–3. The means over group A or group B of
ai, bi, zi, a2

i , b2
i , z′izi, aibi, aizi, and bizi converge in probability to the limits of the

population means. For example:

aA
p−→ 〈a〉,

a2
A ≡

1
nA

∑
i∈A

a2
i

p−→ 〈a2〉,

abA
p−→ 〈ab〉,

azA
p−→ 〈az〉,

z′zA
p−→ 〈z′z〉.

PROOF. From basic results on simple random sampling [e.g., Freedman’s (2008b)
Proposition 1], E(aA) = a and

var(aA) =
1

n−1
1− p̃A

p̃A
σ

2
a.

As n→ ∞, p̃A→ pA > 0 and σ2
a→ 〈a2〉− 〈a〉2, so var(aA)→ 0. By Chebyshev’s

inequality, aA−a
p−→ 0. Therefore,

aA
p−→ lim

n→∞
a = 〈a〉.
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The proofs that a2
A

p−→ 〈a2〉 and abA
p−→ 〈ab〉 are similar but rely on Condition 1

to show that var(a2
A)→ 0 and var(abA)→ 0. First note that

var(a2
A) =

1
n−1

1− p̃A

p̃A
σ

2
(a2)

and

var(abA) =
1

n−1
1− p̃A

p̃A
σ

2
(ab).

By Condition 1, σ2
(a2)

is bounded:

σ
2
(a2) ≤ a4 < L.

Therefore, var(a2
A)→ 0. Next note that σ2

(ab) is bounded, using the Cauchy–Schwarz
inequality:

σ
2
(ab) ≤

1
n

n

∑
i=1

a2
i b2

i ≤

(
1
n

n

∑
i=1

a4
i

)1/2(
1
n

n

∑
i=1

b4
i

)1/2

< L.

Therefore, var(abA)→ 0.
The same logic can be used to show the remaining results. Those involving zi

can be proved element by element.

LEMMA 2. The pooled-slopes estimator of mean potential outcomes is

β̂adj =
[
Y A− (zA− z)Q̂,Y B− (zB− z)Q̂

]′
.

PROOF. The residuals from the regression defining β̂adj are uncorrelated with Ti

and 1−Ti. Therefore, the regression line passes through the points of means within
groups A and B, and the result follows.

LEMMA 3. The separate-slopes estimator of mean potential outcomes is

β̂interact =
[
Y A− (zA− z)Q̂a,Y B− (zB− z)Q̂b

]′
.

PROOF. In the regression defining β̂interact, the coefficient on zi− z is Q̂b and
the coefficient on Ti(zi− z) is Q̂a− Q̂b. (This can be shown from the equivalence
of the minimization problems.) The rest of the proof is similar to that of Lemma
2.
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LEMMA 4. Assume Conditions 1–3. Then Q̂ p−→Q.

PROOF. We can assume Condition 4 without loss of generality: Let γ̂ be the
estimated coefficient vector from a no-intercept OLS regression of Yi on Ti, 1−Ti,
and zi−z. Let ãi = ai−a and b̃i = bi−b, so that Condition 4 holds for ãi and b̃i. Let
Ỹi = ãiTi+ b̃i(1−Ti). By a well-known property of OLS [e.g., Freedman’s (2008b)
Lemma A.1], the estimated coefficient vector from a no-intercept OLS regression
of Ỹi on Ti, 1−Ti, and zi− z is γ̂− (a,b,0)′, so Q̂ is unchanged. Similarly, Q is
unchanged. Finally, centering zi has no effect on the slope vectors Q̂ and Q.

By the Frisch–Waugh–Lovell theorem, Q̂ can be computed from auxiliary re-
gressions: Let

ei = Yi−Y ATi−Y B(1−Ti),

fi = zi− zATi− zB(1−Ti).

Then

Q̂ =

(
1
n

n

∑
i=1

f′ifi

)−1(
1
n

n

∑
i=1

f′iei

)
.

Some algebra yields

1
n

n

∑
i=1

f′ifi = z′z− p̃Az′AzA− (1− p̃A)z′BzB.

By Condition 4 and Lemma 1, zA
p−→ 0 and zB

p−→ 0. Therefore,

1
n

n

∑
i=1

f′ifi
p−→ 〈z′z〉.

Now note that

ei = (ai−aA)Ti +(bi−bB)(1−Ti),

fi = (zi− zA)Ti +(zi− zB)(1−Ti).

Therefore,

1
n

n

∑
i=1

f′iei =
1
n ∑

i∈A
(zi− zA)

′(ai−aA)+
1
n ∑

i∈B
(zi− zB)

′(bi−bB)

= p̃A(azA−aAzA)
′+(1− p̃A)(bzB−bBzB)

′

p−→ pA〈az〉′+(1− pA)〈bz〉′.
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(Convergence to the last expression follows from Lemma 1 and Conditions 3–4.)
It follows that

Q̂ p−→ 〈z′z〉−1 [pA〈az〉′+(1− pA)〈bz〉′
]

= pA lim
n→∞

( n

∑
i=1

z′izi

)−1 n

∑
i=1

z′iai

+(1− pA) lim
n→∞

( n

∑
i=1

z′izi

)−1 n

∑
i=1

z′ibi


= pAQa +(1− pA)Qb = Q.

LEMMA 5. Assume Conditions 1–3. Then Q̂a
p−→Qa and Q̂b

p−→Qb.

PROOF. The proof is similar to that of Lemma 4 but simpler. Again, we can
assume Condition 4 without loss of generality. By the Frisch–Waugh–Lovell theo-
rem,

Q̂a =

[
1
nA

∑
i∈A

(zi− zA)
′(zi− zA)

]−1[
1
nA

∑
i∈A

(zi− zA)
′(ai−aA)

]
.

Some algebra, Lemma 1, and Condition 4 yield

1
nA

∑
i∈A

(zi− zA)
′(zi− zA) = z′zA− z′AzA

p−→ 〈z′z〉

and

1
nA

∑
i∈A

(zi− zA)
′(ai−aA) = (azA−aAzA)

′ p−→ 〈az〉′

so

Q̂a
p−→ 〈z′z〉−1〈az〉′

= lim
n→∞

( n

∑
i=1

z′izi

)−1 n

∑
i=1

z′iai

= Qa.

The proof that Q̂b
p−→Qb is similar.

Lemma 6 is similar to part of Freedman’s (2008b) Theorem 2.
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LEMMA 6. Assume Conditions 1–3. Then
√

n(β̂adj−β)
d−→ N(0,V)

where

V =

[
1−pA

pA
limn→∞ σ2

a∗∗ − limn→∞ σa∗∗,b∗∗

− limn→∞ σa∗∗,b∗∗
pA

1−pA
limn→∞ σ2

b∗∗

]
.

PROOF. We can assume Condition 4 without loss of generality: Centering ai, bi,
and zi has no effect on Q̂ and Q, as shown in the proof of Lemma 4, so it subtracts
(a,b)′ from both β̂adj (see Lemma 2) and β, and it has no effect on the elements of
V.

Condition 4 and Lemma 2 imply that
√

n(β̂adj−β) =
√

n(Y A− zAQ̂,Y B− zBQ̂)′

=
√

n(aA− zAQ,bB− zBQ)′− [
√

nzA(Q̂−Q),
√

nzB(Q̂−Q)]′.

By a finite-population Central Limit Theorem [Freedman’s (2008b) Theorem 1],√
nzA and

√
nzB are Op(1), and by Lemma 4, Q̂−Q is op(1). Therefore,

[
√

nzA(Q̂−Q),
√

nzB(Q̂−Q)]′
p−→ 0.

The conclusion follows from Freedman’s (2008b) Theorem 1 with a and b re-
placed by a− zQ and b− zQ.

Lemma 7 is an application of the Weak Law of Large Numbers (Lemma 1).

LEMMA 7. Assume Conditions 1–3. Let θ be any K×1 vector that is constant
as n→ ∞. Then

1
nA

∑
i∈A

(ai + ziθ)
2 p−→ lim

n→∞

1
n

n

∑
i=1

(ai + ziθ)
2,

1
n−nA

∑
i∈B

(bi + ziθ)
2 p−→ lim

n→∞

1
n

n

∑
i=1

(bi + ziθ)
2.

PROOF. Using Lemma 1,

1
nA

∑
i∈A

(ai + ziθ)
2 = a2

A +2azAθ+θ′z′zAθ

p−→ 〈a2〉+2〈az〉θ+θ′〈z′z〉θ

= lim
n→∞

1
n

n

∑
i=1

(ai + ziθ)
2.

The proof of the other assertion is analogous.
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Lemma 8 shows that the sandwich variance estimator for ÂTEadj is invariant to
the transformation of the regressors that was used to define β̂adj.

LEMMA 8. Let

W = (X̃′X̃)−1

(
n

∑
i=1

ê2
i x̃′ix̃i

)
(X̃′X̃)−1

where X̃ is the n× (K + 2) matrix with row i equal to x̃i = (Ti,1−Ti,zi− z) and
êi is the residual from the no-intercept OLS regression of Yi on x̃i. Then v̂adj =
W11 +W22−2W12, where Wi j is the (i, j) element of W.

PROOF. By definition, v̂adj is the (2,2) element of

(X′X)−1X′diag(ε̂2
1, . . . , ε̂

2
n)X(X′X)−1 = (X′X)−1

(
n

∑
i=1

ε̂
2
i x′ixi

)
(X′X)−1

where X is the n× (K + 2) matrix whose ith row is xi = (1,Ti,zi) and ε̂i is the
residual from the OLS regression of Yi on xi.

The OLS residuals are invariant to the linear transformation of regressors, so
êi = ε̂i for i = 1,2, . . . ,n. Also, X = X̃RS where

R =

[
M 0
0 IK

]
, S =

[
I2 L
0 IK

]
,

and

M =

[
1 1
1 0

]
=

[
0 1
1 −1

]−1

, L =

[
z
0

]
.

Note that R is symmetric but S is not, and

S−1 =

[
I2 −L
0 IK

]
.

Therefore,

(X′X)−1X′diag(ε̂2
1, . . . , ε̂

2
n)X(X′X)−1 = S−1R−1WR−1(S−1)′.

The (2, 2) element is W11 +W22−2W12.

Lemma 9 is important for the proof of Theorem 2.
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LEMMA 9. Assume Conditions 1–4. Let êi denote the residual from the no-
intercept OLS regression of Yi on Ti, 1−Ti, and zi. Then

1
nA

∑
i∈A

ê2
i

p−→ lim
n→∞

σ
2
a∗∗ ,

1
n−nA

∑
i∈B

ê2
i

p−→ lim
n→∞

σ
2
b∗∗ ,

and n−1
∑i∈A ê2

i zi, n−1
∑i∈B ê2

i zi, and n−1
∑

n
i=1 ê2

i z′izi are all Op(1).

PROOF. Let β̂adj(1) and β̂adj(2) denote the estimated coefficients on Ti and 1−Ti,
respectively. Then

êi = Yi− β̂adj(1)Ti− β̂adj(2)(1−Ti)− ziQ̂

= Ti[(ai− ziQ̂)− β̂adj(1)]+ (1−Ti)[(bi− ziQ̂)− β̂adj(2)]

= Ti[a∗∗i − zi(Q̂−Q)− β̂adj(1)]+ (1−Ti)[b∗∗i − zi(Q̂−Q)− β̂adj(2)].

Therefore,

1
nA

∑
i∈A

ê2
i =

1
nA

∑
i∈A

[a∗∗i − zi(Q̂−Q)− β̂adj(1)]
2

= S1 +S2 +S3−2S4−2S5−2S6

where

S1 =
1
nA

∑
i∈A

(a∗∗i )2,

S2 = (Q̂−Q)′z′zA(Q̂−Q),

S3 = β̂
2
adj(1),

S4 =

(
1
nA

∑
i∈A

a∗∗i zi

)
(Q̂−Q),

S5 = β̂adj(1)a∗∗A,

S6 = β̂adj(1)zA(Q̂−Q).

S1
p−→ limn→∞ σ2

a∗∗ by Lemma 7 and Condition 4.
The other terms are all op(1):

• S2
p−→ 0 because Q̂ p−→Q (by Lemma 4) and z′zA

p−→ 〈z′z〉 (by Lemma 1).
• S3

p−→ 0 because β̂adj(1)
p−→ a = 0 (by Condition 4 and Lemma 6).
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• S4
p−→ 0 because

1
nA

∑
i∈A

a∗∗i zi =
1
nA

∑
i∈A

(ai−Q′z′i)zi

p−→ 〈az〉−Q′〈z′z〉

(by Lemma 1) and Q̂ p−→Q.
• S5

p−→ 0 because a∗∗A
p−→ 〈a〉−〈z〉Q = 0 (by Lemma 1 and Condition 4) and

β̂adj(1)
p−→ 0.

• S6
p−→ 0 because zA

p−→ 0 (by Lemma 1 and Condition 4), β̂adj(1)
p−→ 0, and

Q̂ p−→Q.

Therefore,

1
nA

∑
i∈A

ê2
i

p−→ lim
n→∞

σ
2
a∗∗ .

Similarly,

1
n−nA

∑
i∈B

ê2
i

p−→ lim
n→∞

σ
2
b∗∗ .

Now note that

n−1
∑
i∈A

ê2
i zi =

1
n ∑

i∈A
[ai− ziQ̂− β̂adj(1)]

2zi

= R1 +R2 +R3−2R4−2R5−2R6

where

R1 =
1
n ∑

i∈A
a2

i zi,

R2 =
1
n ∑

i∈A
(ziQ̂)2zi,

R3 = p̃Aβ̂
2
adj(1)zA,

R4 = Q̂′
1
n ∑

i∈A
aiz′izi,

R5 = p̃Aβ̂adj(1)azA,

R6 = p̃Aβ̂adj(1)Q̂′z′zA.

R3, R5, and R6 are op(1) because β̂adj(1)
p−→ 0, zA

p−→ 0, and p̃A, azA, z′zA, and Q̂
converge to finite limits (by Condition 3, Lemma 1, and Lemma 4).
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R1, R2, and R4 are Op(1), by Condition 1, Lemma 4, and repeated application
of the Cauchy–Schwarz inequality. For example, for k = 1, . . . ,K, the kth element
of R2 is

1
n ∑

i∈A

(
K

∑
j=1

zi jQ̂ j

)2

zik =
K

∑
j=1

K

∑
`=1

(
Q̂ jQ̂`

1
n ∑

i∈A
zi jzi`zik

)
.

Q̂ j and Q̂` are Op(1), and n−1
∑i∈A zi jzi`zik is O(1):∣∣∣∣∣1n ∑

i∈A
zi jzi`zik

∣∣∣∣∣ ≤ 1
n

n

∑
i=1
|zi j||zi`zik| ≤

(
1
n

n

∑
i=1

z2
i j

)1/2(
1
n

n

∑
i=1

z2
i`z

2
ik

)1/2

≤

(
1
n

n

∑
i=1

z4
i j

)1/4(
1
n

n

∑
i=1

1

)1/4(
1
n

n

∑
i=1

z4
i`

)1/4(
1
n

n

∑
i=1

z4
ik

)1/4

< L3/4.

Therefore, R2 is Op(1).
Thus, n−1

∑i∈A ê2
i zi is Op(1). The proofs for n−1

∑i∈B ê2
i zi and n−1

∑
n
i=1 ê2

i z′izi are
similar.

3. Proof of Theorem 1. We can assume Condition 4 without loss of general-
ity, by an argument similar to that given in the proof of Lemma 6. Then ATE = 0,
and by Lemma 3 and Condition 4,

√
n(ÂTEinteract−ATE) =

√
n[(aA− zAQ̂a)− (bB− zBQ̂b)]

=
√

n[(aA− zAQa)− (bB− zBQb)]−√
nzA(Q̂a−Qa)+

√
nzB(Q̂b−Qb).

By a finite-population Central Limit Theorem [Freedman’s (2008b) Theorem
1],
√

nzA and
√

nzB are Op(1), and by Lemma 5, Q̂a−Qa and Q̂b−Qb are op(1).
Therefore,

√
nzA(Q̂a−Qa) and

√
nzB(Q̂b−Qb) are op(1).

The conclusion follows from Freedman’s (2008b) Theorem 1 with a and b re-
placed by a− zQa and b− zQb.

4. Proof of Corollary 1.1. We can assume Condition 4 without loss of gen-
erality: Centering ai, bi, and zi has no effect on ÂTEinteract−ATE, ÂTEunadj−ATE,
Qa, Qb, or σ2

E .
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Note that:

lim
n→∞

σ
2
a∗ = lim

n→∞

1
n

n

∑
i=1

(ai− ziQa)
2

= 〈a2〉−〈az〉〈z′z〉−1〈az〉′,
lim
n→∞

σ
2
b∗ = 〈b2〉−〈bz〉〈z′z〉−1〈bz〉′,

lim
n→∞

σa∗,b∗ = lim
n→∞

1
n

n

∑
i=1

(ai− ziQa)(bi− ziQb)

= 〈ab〉−〈az〉Qb−〈bz〉Qa +Q′a〈z′z〉Qb

= 〈ab〉−〈az〉〈z′z〉−1〈bz〉′.

By Freedman’s (2008b) Theorem 1,

avar(
√

n[ÂTEunadj−ATE]) = avar(
√

n[aA−bB])

=
1− pA

pA
〈a2〉+ pA

1− pA
〈b2〉+2〈ab〉.

Let

∆ = avar(
√

n[ÂTEunadj−ATE])− avar(
√

n[ÂTEinteract−ATE]).

Then

∆ =
1− pA

pA
〈az〉〈z′z〉−1〈az〉′+ pA

1− pA
〈bz〉〈z′z〉−1〈bz〉′+2〈az〉〈z′z〉−1〈bz〉′

=
1

pA(1− pA)
Q′E〈z′z〉QE =

1
pA(1− pA)

lim
n→∞

σ
2
E ≥ 0.

The matrix 〈z′z〉 is positive definite, so ∆/n = 0 if and only if QE = 0.

5. Proof of remark (iv) after Corollary 1.1. Suppose there are three treat-
ment groups, A, B, and C, with associated dummy variables Ui, Vi, and Wi and
potential outcomes ai, bi, and ci. Let ATE = a− b, and let ÂTEinteract be the dif-
ference between the estimated coefficients on Ui and Vi in the no-intercept OLS
regression of Yi on Ui, Vi, Wi, zi− z, Ui(zi− z), and Wi(zi− z).

Assume the three groups are of fixed sizes nA, nB, and n− nA− nB. Assume
regularity conditions analogous to Conditions 1–3: for example, nA/n→ pA and
nB/n→ pB, where pA > 0, pB > 0, and pA + pB < 1. Without loss of generality,
assume Condition 4.

Then
√

n(ÂTEinteract−ATE) converges in distribution to a Gaussian random vari-
able with mean 0 and variance

1− pA

pA
lim
n→∞

σ
2
a∗+

1− pB

pB
lim
n→∞

σ
2
b∗+2 lim

n→∞
σa∗,b∗ .
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The proof is essentially the same as that of Theorem 1.
Let ÂTEunadj = Y A−Y B. By Freedman’s (2008b) Theorem 1, the asymptotic

variance of
√

n(ÂTEunadj−ATE) is

1− pA

pA
〈a2〉+ 1− pB

pB
〈b2〉+2〈ab〉.

Let

∆ = avar(
√

n[ÂTEunadj−ATE])− avar(
√

n[ÂTEinteract−ATE]).

Then

∆ =
1− pA

pA
〈az〉〈z′z〉−1〈az〉′+ 1− pB

pB
〈bz〉〈z′z〉−1〈bz〉′+2〈az〉〈z′z〉−1〈bz〉′

=
1− pA

pA
〈az〉〈z′z〉−1〈az〉′+ pA

1− pA
〈bz〉〈z′z〉−1〈bz〉′+2〈az〉〈z′z〉−1〈bz〉′+(

1− pB

pB
− pA

1− pA

)
〈bz〉〈z′z〉−1〈bz〉′

=
1

pA(1− pA)
lim
n→∞

σ
2
E +

(
1− pB

pB
− pA

1− pA

)
Q′b〈z′z〉Qb,

where Ei = (zi− z)QE and QE = (1− pA)Qa + pAQb.
Similarly,

∆ =
1

pB(1− pB)
lim
n→∞

σ
2
F +

(
1− pA

pA
− pB

1− pB

)
Q′a〈z′z〉Qa,

where Fi = (zi− z)QF and QF = pBQa +(1− pB)Qb.
The condition pA + pB < 1 implies

1− pB

pB
− pA

1− pA
> 0,

1− pA

pA
− pB

1− pB
> 0.

Also, 〈z′z〉 is positive definite. Therefore, ∆≥ 0, and the inequality is strict unless
Qa = 0 and Qb = 0.

The proof extends to designs with more than three treatment groups.



REGRESSION ADJUSTMENT 13

6. Proof of Corollary 1.2. Again, we can assume Condition 4 without loss of
generality. By Lemma 6,

avar(
√

n[ÂTEadj−ATE]) =
1− pA

pA
lim
n→∞

σ
2
a∗∗+

pA

1− pA
lim
n→∞

σ
2
b∗∗+2 lim

n→∞
σa∗∗,b∗∗

=
1− pA

pA
[〈a2〉+Q′〈z′z〉Q−2Q′〈az〉′]+
pA

1− pA
[〈b2〉+Q′〈z′z〉Q−2Q′〈bz〉′]+

2[〈ab〉+Q′〈z′z〉Q−Q′〈az〉′−Q′〈bz〉′]

=
1− pA

pA
〈a2〉+ pA

1− pA
〈b2〉+2〈ab〉+

1
pA(1− pA)

Q′〈z′z〉Q− 2
pA

Q′〈az〉′− 2
1− pA

Q′〈bz〉′.

Let

∆ = avar(
√

n[ÂTEadj−ATE])− avar(
√

n[ÂTEinteract−ATE]).

Then

∆ =
1

pA(1− pA)
Q′〈z′z〉Q− 2

pA
Q′〈az〉′− 2

1− pA
Q′〈bz〉′+

1− pA

pA
〈az〉〈z′z〉−1〈az〉′+ pA

1− pA
〈bz〉〈z′z〉−1〈bz〉′+2〈az〉〈z′z〉−1〈bz〉′

=

(
pA

1− pA
−2+

1− pA

pA

)(
〈az〉〈z′z〉−1〈az〉′+ 〈bz〉〈z′z〉−1〈bz〉′−2〈az〉〈z′z〉−1〈bz〉′

)
=

(2pA−1)2

pA(1− pA)
(Qa−Qb)

′〈z′z〉(Qa−Qb)

=
(2pA−1)2

pA(1− pA)
lim
n→∞

σ
2
D ≥ 0.

7. Outline of proof of remark (iii) after Corollary 1.2. Without loss of gen-
erality, assume Condition 4. From the proof of Theorem 1,

√
nÂTEinteract =

√
n[(aA− zAQa)− (bB− zBQb)]+op(1).

By Condition 4, p̃AzA + (1− p̃A)zB = 0. Therefore, zA = (1− p̃A)(zA− zB) and
zB =−p̃A(zA− zB). It follows that

√
nÂTEinteract =

√
n{aA−bB− (zA− zB)[(1− pA)Qa + pAQb]}+op(1).
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Now let ÂTEtyranny and Q̂tyranny be the estimated coefficients on Ti and zi from a
weighted least squares regression of Yi on Ti and zi, with weights

wi =
1− p̃A

p̃A
Ti +

p̃A

1− p̃A
(1−Ti).

It can be shown that Q̂tyranny
p−→ (1− pA)Qa + pAQb. The proof is similar to that

of Lemma 4, after noting that weighted least squares is equivalent to OLS with all
data values (including the constant) multiplied by

√
wi.

It follows that
√

nÂTEtyranny =
√

n{aA−bB− (zA− zB)[(1− pA)Qa + pAQb]}+op(1).

The proof is similar to arguments in the proofs of Lemmas 2 and 6.
Therefore,

√
n(ÂTEtyranny− ÂTEinteract)

p−→ 0.

8. Proof of Theorem 2. We can assume Condition 4 without loss of general-
ity, by arguments similar to those given in the proofs of Lemmas 4, 6, and 8.

By Lemma 8, nv̂adj = M11 +M22−2M12, where

M = (n−1X̃′X̃)−1

(
n−1

n

∑
i=1

ê2
i x̃′ix̃i

)
(n−1X̃′X̃)−1.

Using Condition 4,

n−1X̃′X̃ =

[
C D
D′ z′z

]
,

where

C =

[
p̃A 0
0 1− p̃A

]
, D =

[
p̃AzA

(1− p̃A)zB

]
.

By Conditions 2–4 and Lemma 1, p̃A→ pA, zA
p−→ 0, zB

p−→ 0, and 〈z′z〉 is invertible.
Therefore,

(n−1X̃′X̃)−1 p−→
[

F 0
0 〈z′z〉−1

]
where

F =

[
1/pA 0

0 1/(1− pA)

]
.
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Also,

x̃′ix̃i =

[
G H
H′ z′izi

]
,

where

G =

[
Ti 0
0 1−Ti

]
, H =

[
Tizi

(1−Ti)zi

]
.

So

n−1
n

∑
i=1

ê2
i x̃′ix̃i =

[
K L
L′ n−1

∑
n
i=1 ê2

i z′izi

]
,

where

K =

[
n−1

∑i∈A ê2
i 0

0 n−1
∑i∈B ê2

i

]
=

[
p̃An−1

A ∑i∈A ê2
i 0

0 (1− p̃A)(n−nA)
−1

∑i∈B ê2
i

]
,

L =

[
n−1

∑i∈A ê2
i zi

n−1
∑i∈B ê2

i zi

]
.

By Lemma 9 and Condition 3, L and n−1
∑

n
i=1 ê2

i z′izi are Op(1), and

K p−→
[

pA limn→∞ σ2
a∗∗ 0

0 (1− pA) limn→∞ σ2
b∗∗

]
.

The above results imply that the upper-left 2×2 block of M converges in prob-
ability to[

1/pA 0
0 1/(1− pA)

][
pA limn→∞ σ2

a∗∗ 0
0 (1− pA) limn→∞ σ2

b∗∗

][
1/pA 0

0 1/(1− pA)

]
=

[
p−1

A limn→∞ σ2
a∗∗ 0

0 (1− pA)
−1 limn→∞ σ2

b∗∗

]
.

Thus,

nv̂adj
p−→ 1

pA
lim
n→∞

σ
2
a∗∗+

1
1− pA

lim
n→∞

σ
2
b∗∗ .

Lemma 6 implies

avar(
√

n[ÂTEadj−ATE]) =
1− pA

pA
lim
n→∞

σ
2
a∗∗+

pA

1− pA
lim
n→∞

σ
2
b∗∗+2 lim

n→∞
σa∗∗,b∗∗ .
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Let ∆ = plim nv̂adj− avar(
√

n[ÂTEadj−ATE]). Then

∆ = lim
n→∞

σ
2
a∗∗+ lim

n→∞
σ

2
b∗∗−2 lim

n→∞
σa∗∗,b∗∗

= lim
n→∞

σ
2
(a∗∗−b∗∗) = lim

n→∞
σ

2
(a−b) ≥ 0.

The proof for nv̂interact is similar.
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