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AGNOSTIC NOTES ON REGRESSION ADJUSTMENTS TO
EXPERIMENTAL DATA: REEXAMINING FREEDMAN’S CRITIQUE

BY WINSTON LIN

University of California, Berkeley

Freedman [Adv. in Appl. Math. 40 (2008) 180–193; Ann. Appl. Stat. 2
(2008) 176–196] critiqued ordinary least squares regression adjustment of es-
timated treatment effects in randomized experiments, using Neyman’s model
for randomization inference. Contrary to conventional wisdom, he argued that
adjustment can lead to worsened asymptotic precision, invalid measures of
precision, and small-sample bias. This paper shows that in sufficiently large
samples, those problems are either minor or easily fixed. OLS adjustment
cannot hurt asymptotic precision when a full set of treatment–covariate in-
teractions is included. Asymptotically valid confidence intervals can be con-
structed with the Huber–White sandwich standard error estimator. Checks on
the asymptotic approximations are illustrated with data from Angrist, Lang,
and Oreopoulos’s [Am. Econ. J.: Appl. Econ. 1:1 (2009) 136–163] evaluation
of strategies to improve college students’ achievement. The strongest reasons
to support Freedman’s preference for unadjusted estimates are transparency
and the dangers of specification search.

1. Introduction. One of the attractions of randomized experiments is that,
ideally, the strength of the design reduces the need for statistical modeling. Sim-
ple comparisons of means can be used to estimate the average effects of assigning
subjects to treatment. Nevertheless, many researchers use linear regression models
to adjust for random differences between the baseline characteristics of the treat-
ment groups. The usual rationale is that adjustment tends to improve precision if
the sample is large enough and the covariates are correlated with the outcome; this
argument, which assumes that the regression model is correct, stems from Fisher
(1932) and is taught to applied researchers in many fields. At research firms that
conduct randomized experiments to evaluate social programs, adjustment is stan-
dard practice.1

In an important and influential critique, Freedman (2008a, 2008b) analyzes the
behavior of ordinary least squares regression-adjusted estimates without assuming
a regression model. He uses Neyman’s (1923) model for randomization inference:
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1Cochran (1957), Cox and McCullagh (1982), Raudenbush (1997), and Klar and Darlington (2004)

discuss precision improvement. Greenberg and Shroder (2004) document the use of regression ad-
justment in many randomized social experiments.
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treatment effects can vary across subjects, linearity is not assumed, and random as-
signment is the source of variability in estimated average treatment effects. Freed-
man shows that (i) adjustment can actually worsen asymptotic precision, (ii) the
conventional OLS standard error estimator is inconsistent, and (iii) the adjusted
treatment effect estimator has a small-sample bias. He writes [Freedman (2008a)],
“The reason for the breakdown is not hard to find: randomization does not justify
the assumptions behind the OLS model.”

This paper offers an alternative perspective. Although I agree with Freedman’s
(2008b) general advice (“Regression estimates . . . should be deferred until rates
and averages have been presented”), I argue that in sufficiently large samples, the
statistical problems he raised are either minor or easily fixed. Under the Neyman
model with Freedman’s regularity conditions, I show that (i) OLS adjustment can-
not hurt asymptotic precision when a full set of treatment × covariate interactions
is included, and (ii) the Huber–White sandwich standard error estimator is con-
sistent or asymptotically conservative (regardless of whether the interactions are
included). I also briefly discuss the small-sample bias issue and the distinction
between unconditional and conditional unbiasedness.

Even the traditional OLS adjustment has benign large-sample properties when
subjects are randomly assigned to two groups of equal size. Freedman (2008a)
shows that in this case, adjustment (without interactions) improves or does not hurt
asymptotic precision, and the conventional standard error estimator is consistent
or asymptotically conservative. However, Freedman and many excellent applied
statisticians in the social sciences have summarized his papers in terms that omit
these results and emphasize the dangers of adjustment. For example, Berk et al.
(2010) write: “Random assignment does not justify any form of regression with
covariates. If regression adjustments are introduced nevertheless, there is likely to
be bias in any estimates of treatment effects and badly biased standard errors.”

One aim of this paper is to show that such a negative view is not always war-
ranted. A second aim is to help provide a more intuitive understanding of the prop-
erties of OLS adjustment when the regression model is incorrect. An “agnostic”
view of regression [Angrist and Imbens (2002), Angrist and Pischke (2009), Chap-
ter 3] is adopted here: without taking the regression model literally, we can still
make use of properties of OLS that do not depend on the model assumptions.

1.1. Precedents. Similar results on the asymptotic precision of OLS adjust-
ment with interactions are proved in interesting and useful papers by Yang and
Tsiatis (2001), Tsiatis et al. (2008), and Schochet (2010), under the assumption
that the subjects are a random sample from an infinite superpopulation.2 These re-
sults are not widely known, and Freedman was apparently unaware of them. He did

2Although Tsiatis et al. write that OLS adjustment without interactions “is generally more precise
than . . . the difference in sample means” (page 4661), Yang and Tsiatis’s asymptotic variance formula
correctly implies that this adjustment may help or hurt precision.
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not analyze adjustment with interactions, but conjectured, “Treatment by covariate
interactions can probably be accommodated too” [Freedman (2008b), page 186].

Like Freedman, I use the Neyman model, in which random assignment of a fi-
nite population is the sole source of randomness; for a thoughtful philosophical
discussion of finite- vs. infinite-population inference; see Reichardt and Gollob
[(1999), pp. 125–127]. My purpose is not to advocate finite-population inference,
but to show just how little needs to be changed to address Freedman’s major con-
cerns. The results may help researchers understand why and when OLS adjustment
can backfire. In large samples, the essential problem is omission of treatment ×
covariate interactions, not the linear model. With a balanced two-group design,
even that problem disappears asymptotically, because two wrongs make a right
(underadjustment of one group mean cancels out overadjustment of the other).

Neglected parallels between regression adjustment in experiments and regres-
sion estimators in survey sampling turn out to be very helpful for intuition.

2. Basic framework. For simplicity, the main results in this paper assume
a completely randomized experiment with two treatment groups (or a treatment
group and a control group), as in Freedman (2008a). Results for designs with more
than two groups are discussed informally.

2.1. The Neyman model with covariates. The notation is adapted from
Freedman (2008b). There are n subjects, indexed by i = 1, . . . , n. We assign a
simple random sample of fixed size nA to treatment A and the remaining n − nA

subjects to treatment B . For each subject, we observe an outcome Yi and a row
vector of covariates zi = (zi1, . . . , ziK), where 1 ≤ K < min(nA,n − nA) − 1.
Treatment does not affect the covariates.

Assume that each subject has two potential outcomes [Neyman (1923), Rubin
(1974, 2005), Holland (1986)], ai and bi , which would be observed under treat-
ments A and B , respectively.3 Thus, the observed outcome is Yi = aiTi + bi(1 −
Ti), where Ti is a dummy variable for treatment A.

Random assignment is the sole source of randomness in this model. The n sub-
jects are the population of interest; they are not assumed to be randomly drawn
from a superpopulation. For each subject, ai , bi , and zi are fixed, but Ti and thus Yi

are random.
Let a, aA, and aB denote the means of ai over the population, treatment

group A, and treatment group B:

a = 1

n

n∑
i=1

ai, aA = 1

nA

∑
i∈A

ai, aB = 1

n − nA

∑
i∈B

ai.

3Most authors use notation such as Yi(1) and Yi(0), or Y1i and Y0i , for potential outcomes. Freed-
man’s (2008b) choice of ai and bi helps make the finite-population asymptotics more readable.
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Use similar notation for the means of bi , Yi , zi , and other variables.
Our goal is to estimate the average treatment effect of A relative to B:

ATE = a − b.

2.2. Estimators of average treatment effect. The unadjusted or difference-in-
means estimator of ATE is

ÂTEunadj = YA − YB = aA − bB.

The usual OLS-adjusted estimator of ATE is the estimated coefficient on Ti in
the OLS regression of Yi on Ti and zi . (All regressions described in this paper
include intercepts.) Let ÂTEadj denote this estimator.

A third estimator, ÂTEinteract, can be computed as the estimated coefficient on
Ti in the OLS regression of Yi on Ti , zi , and Ti(zi − z). Section 3 motivates this
estimator by analogy with regression estimators in survey sampling. In the context
of observational studies, Imbens and Wooldridge [(2009), pp. 28–30] give a theo-
retical analysis of ÂTEinteract, and a related method is known as the Peters–Belson
or Oaxaca–Blinder estimator.4 When zi is a set of indicators for the values of a cat-
egorical variable, ÂTEinteract is equivalent to subclassification or poststratification
[Miratrix, Sekhon and Yu (2012)].

3. Connections with sampling. Cochran [(1977), Chapter 7] gives a very
readable discussion of regression estimators in sampling.5 In one example [Watson
(1937)], the goal was to estimate y, the average surface area of the leaves on a
plant. Measuring a leaf’s area is time-consuming, but its weight can be found
quickly. So the researcher weighed all the leaves, but measured area for only a
small sample. In simple random sampling, the sample mean area yS is an unbiased
estimator of y. But yS ignores the auxiliary data on leaf weights. The sample and
population mean weights (zS and z) are both known, and if z > zS , then we expect
that y > yS . This motivates a “linear regression estimator”

ŷreg = yS + q(z − zS),(3.1)

where q is an adjustment factor. One way to choose q is to regress leaf area on leaf
weight in the sample.

Regression adjustment in randomized experiments can be motivated analo-
gously under the Neyman model. The potential outcome ai is measured for only a
simple random sample (treatment group A), but the covariates zi are measured for

4See Cochran (1969), Rubin (1984), and Kline (2011). Hansen and Bowers (2009) analyze a ran-
domized experiment with a variant of the Peters–Belson estimator derived from logistic regression.

5See also Fuller (2002, 2009).
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the whole population (the n subjects). The sample mean aA is an unbiased estima-
tor of a, but it ignores the auxiliary data on zi . If the covariates are of some help
in predicting ai , then another estimator to consider is

âreg = aA + (z − zA)qa,(3.2)

where qa is a K × 1 vector of adjustment factors. Similarly, we can consider using

b̂reg = bB + (z − zB)qb(3.3)

to estimate b and then âreg − b̂reg to estimate ATE = a − b.
The analogy suggests deriving qa and qb from OLS regressions of ai on zi in

treatment group A and bi on zi in treatment group B—in other words, separate

regressions of Yi on zi in the two treatment groups. The estimator âreg − b̂reg is
then just ÂTEinteract. If, instead, we use a pooled regression of Yi on Ti and zi to
derive a single vector qa = qb, then we get ÂTEadj.

Connections between regression adjustment in experiments and regression es-
timators in sampling have been noted but remain underexplored.6 All three of the
issues that Freedman raised have parallels in the sampling literature. Under sim-
ple random sampling, when the regression model is incorrect, OLS adjustment of
the estimated mean still improves or does not hurt asymptotic precision [Cochran
(1977)], consistent standard error estimators are available [Fuller (1975)], and the
adjusted estimator of the mean has a small-sample bias [Cochran (1942)].

4. Asymptotic precision.

4.1. Precision improvement in sampling. This subsection gives an informal
argument, adapted from Cochran (1977), to show that in simple random sampling,
OLS adjustment of the sample mean improves or does not hurt asymptotic preci-
sion, even when the regression model is incorrect. Regularity conditions and other
technical details are omitted; the purpose is to motivate the results on completely
randomized experiments in Section 4.2.

First imagine using a “fixed-slope” regression estimator, where q in equa-
tion (3.1) is fixed at some value q0 before sampling:

ŷf = yS + q0(z − zS).

6Connections are noted by Fienberg and Tanur (1987), Hansen and Bowers (2009), and Middleton
and Aronow (2012) but are not mentioned by Cochran despite his important contributions to both lit-
eratures. He takes a design-based (agnostic) approach in much of his work on sampling, but assumes
a regression model in his classic overview of regression adjustment in experiments and observational
studies [Cochran (1957)].
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If q0 = 0, ŷf is just yS . More generally, ŷf is the sample mean of yi − q0(zi − z),
so its variance follows the usual formula with a finite-population correction:

var(ŷf ) = N − n

N − 1

1

n

1

N

N∑
i=1

[
(yi − y) − q0(zi − z)

]2
,

where N is the population size and n is the sample size.
Thus, choosing q0 to minimize the variance of ŷf is equivalent to running an

OLS regression of yi on zi in the population. The solution is the “population least
squares” slope,

qPLS =
∑N

i=1(zi − z)(yi − y)∑N
i=1(zi − z)2

,

and the minimum-variance fixed-slope regression estimator is

ŷPLS = yS + qPLS(z − zS).

Since the sample mean yS is a fixed-slope regression estimator, it follows that
ŷPLS has lower variance than the sample mean, unless qPLS = 0 (in which case
ŷPLS = yS ).

The actual OLS regression estimator is almost as precise as ŷPLS in sufficiently
large samples. The difference between the two estimators is

ŷOLS − ŷPLS = (q̂OLS − qPLS)(z − zS),

where q̂OLS is the estimated slope from a regression of yi on zi in the sample.
The estimation errors q̂OLS − qPLS, zS − z, and ŷPLS − y are of order 1/

√
n in

probability. Thus, the difference ŷOLS − ŷPLS is of order 1/n, which is negligible
compared to the estimation error in ŷPLS when n is large enough.

In sum, in large enough samples,

var(ŷOLS) ≈ var(ŷPLS) ≤ var(yS)

and the inequality is strict unless yi and zi are uncorrelated in the population.

4.2. Precision improvement in experiments. The sampling result naturally
leads to the conjecture that in a completely randomized experiment, OLS adjust-
ment with a full set of treatment × covariate interactions improves or does not hurt
asymptotic precision, even when the regression model is incorrect. The adjusted
estimator ÂTEinteract is just the difference between two OLS regression estimators
from sampling theory, while ÂTEunadj is the difference between two sample means.

The conjecture is confirmed below. To summarize the results:

(1) ÂTEinteract is consistent and asymptotically normal (as are ÂTEunadj and
ÂTEadj, from Freedman’s results).
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(2) Asymptotically, ÂTEinteract is at least as efficient as ÂTEunadj, and more
efficient unless the covariates are uncorrelated with the weighted average

n − nA

n
ai + nA

n
bi.

(3) Asymptotically, ÂTEinteract is at least as efficient as ÂTEadj, and more effi-
cient unless (a) the two treatment groups have equal size or (b) the covariates are
uncorrelated with the treatment effect ai − bi .

4.2.1. Assumptions for asymptotics. Finite-population asymptotic results are
statements about randomized experiments on (or random samples from) an imagi-
nary infinite sequence of finite populations, with increasing n. The regularity con-
ditions (assumptions on the limiting behavior of the sequence) may seem vacu-
ous, since one can always construct a sequence that contains the actual population
and still satisfies the conditions. But it may be useful to ask whether a sequence
that preserves any relevant “irregularities” (such as the influence of gross outliers)
would violate the regularity conditions. See also Lumley [(2010), pp. 217–218].

The asymptotic results in this paper assume Freedman’s (2008b) regularity con-
ditions, generalized to allow multiple covariates; the number of covariates K is
constant as n grows. One practical interpretation of these conditions is that in or-
der for the results to be applicable, the size of each treatment group should be
sufficiently large (and much larger than the number of covariates), the influence of
outliers should be small, and near-collinearity in the covariates should be avoided.

As Freedman (2008a) notes, in principle, there should be an extra subscript to
index the sequence of populations: for example, in the population with n subjects,
the ith subject has potential outcomes ai,n and bi,n, and the average treatment
effect is ATEn. Like Freedman, I drop the extra subscripts.

CONDITION 1. There is a bound L < ∞ such that for all n = 1,2, . . . and
k = 1, . . . ,K ,

1

n

n∑
i=1

a4
i < L,

1

n

n∑
i=1

b4
i < L,

1

n

n∑
i=1

z4
ik < L.

CONDITION 2. Let Z be the n × (K + 1) matrix whose ith row is (1, zi).
Then n−1Z′Z converges to a finite, invertible matrix. Also, the population means
of ai , bi , a2

i , b2
i , aibi , aizi , and bizi converge to finite limits. For example,

limn→∞ n−1 ∑n
i=1 aizi exists and is a finite vector.

CONDITION 3. The proportion nA/n converges to a limit pA, with 0 <

pA < 1.
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4.2.2. Asymptotic results. Let Qa denote the limit of the vector of slope coef-
ficients in the population least squares regression of ai on zi , that is,

Qa = lim
n→∞

[(
n∑

i=1

(zi − z)′(zi − z)

)−1 n∑
i=1

(zi − z)′(ai − a)

]
.

Define Qb analogously.
Now define the prediction errors

a∗
i = (ai − a) − (zi − z)Qa, b∗

i = (bi − b) − (zi − z)Qb

for i = 1, . . . , n.
For any variables xi and yi , let σ 2

x and σx,y denote the population variance of xi

and the population covariance of xi and yi . For example,

σa∗,b∗ = 1

n

n∑
i=1

(
a∗
i − a∗)(

b∗
i − b∗) = 1

n

n∑
i=1

a∗
i b∗

i .

Theorem 1 and its corollaries are proved in the supplementary material [Lin
(2013)].

THEOREM 1. Assume Conditions 1–3. Then
√

n(ÂTEinteract −ATE) converges
in distribution to a Gaussian random variable with mean 0 and variance

1 − pA

pA

lim
n→∞σ 2

a∗ + pA

1 − pA

lim
n→∞σ 2

b∗ + 2 lim
n→∞σa∗,b∗ .

COROLLARY 1.1. Assume Conditions 1–3. Then ÂTEunadj has at least as
much asymptotic variance as ÂTEinteract. The difference is

1

npA(1 − pA)
lim

n→∞σ 2
E,

where Ei = (zi − z)QE and QE = (1 − pA)Qa + pAQb. Therefore, adjustment
with ÂTEinteract helps asymptotic precision if QE 
= 0 and is neutral if QE = 0.

REMARKS. (i) QE can be thought of as a weighted average of Qa and Qb,
or as the limit of the vector of slope coefficients in the population least squares
regression of (1 − pA)ai + pAbi on zi .

(ii) The weights may seem counterintuitive at first, but the sampling analogy
and equations (3.2) and (3.3) can help. Other things being equal, adjustment has a
larger effect on the estimated mean from the smaller treatment group, because its
mean covariate values are further away from the population mean. The adjustment
added to aA is

(z − zA)Q̂a = n − nA

n
(zB − zA)Q̂a,
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while the adjustment added to bB is

(z − zB)Q̂b = −nA

n
(zB − zA)Q̂b,

where Q̂a and Q̂b are OLS estimates that converge to Qa and Qb.
(iii) If the covariates’ associations with ai and bi go in opposite directions, it is

possible for adjustment with ÂTEinteract to have no effect on asymptotic precision.
Specifically, if (1−pA)Qa = −pAQb, the adjustments to aA and bB tend to cancel
each other out.

(iv) In designs with more than two treatment groups, estimators analogous to
ÂTEinteract can be derived from a separate regression in each treatment group, or,
equivalently, a single regression with the appropriate treatment dummies, covari-
ates, and interactions. The resulting estimator of (e.g.) a − b is at least as efficient
as YA −YB , and more efficient unless the covariates are uncorrelated with both ai

and bi . The supplementary material [Lin (2013)] gives a proof.

COROLLARY 1.2. Assume Conditions 1–3. Then ÂTEadj has at least as much
asymptotic variance as ÂTEinteract. The difference is

(2pA − 1)2

npA(1 − pA)
lim

n→∞σ 2
D,

where Di = (zi − z)(Qa − Qb). Therefore, the two estimators have equal asymp-
totic precision if pA = 1/2 or Qa = Qb. Otherwise, ÂTEinteract is asymptotically
more efficient.

REMARKS. (i) Qa − Qb is the limit of the vector of slope coefficients in the
population least squares regression of the treatment effect ai − bi on zi .

(ii) For intuition about the behavior of ÂTEadj, suppose there is a single covari-
ate, zi , and the population least squares slopes are Qa = 10 and Qb = 2. Let Q̂

denote the estimated coefficient on zi from a pooled OLS regression of Yi on Ti

and zi . In sufficiently large samples, Q̂ tends to fall close to pAQa + (1 −pA)Qb.
Consider two cases:

• If the two treatment groups have equal size, then z − zB = −(z − zA), so when
z − zA = 1, the ideal linear adjustment would add 10 to aA and subtract 2 from
bB . Instead, ÂTEadj uses the pooled slope estimate Q̂ ≈ 6, so it tends to under-
adjust aA (adding about 6) and overadjust bB (subtracting about 6). Two wrongs
make a right: the adjustment adds about 12 to aA − bB , just as ÂTEinteract would
have done.

• If group A is 9 times larger than group B , then z − zB = −9(z − zA), so when
z − zA = 1, the ideal linear adjustment adds 10 to aA and subtracts 9 · 2 =
18 from bB , thus adding 28 to the estimate of ATE. In contrast, the pooled
adjustment adds Q̂ ≈ 9.2 to aA and subtracts 9Q̂ ≈ 82.8 from bB , thus adding
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about 92 to the estimate of ATE. The problem is that the pooled regression has
more observations of ai than of bi , but the adjustment has a larger effect on the
estimate of b than on that of a, since group B’s mean covariate value is further
away from the population mean.

(iii) The example above suggests an alternative regression adjustment: when
group A has nine-tenths of the subjects, give group B nine-tenths of the weight.
More generally, let p̃A = nA/n. Run a weighted least squares regression of Yi

on Ti and zi , with weights of (1 − p̃A)/p̃A on each observation from group A and
p̃A/(1 − p̃A) on each observation from group B . This “tyranny of the minority”
estimator is asymptotically equivalent to ÂTEinteract (the supplementary material
[Lin (2013)] outlines a proof). It is equal to ÂTEadj when p̃A = 1/2.

(iv) The tyranny estimator can also be seen as a one-step variant of Rubin and
van der Laan’s (2011) two-step “targeted ANCOVA.” Their estimator is equivalent
to the difference in means of the residuals from a weighted least squares regression
of Yi on zi , with the same weights as in remark (iii).

(v) When is the usual adjustment worse than no adjustment? Equation (23)
in Freedman (2008a) implies that with a single covariate zi , for ÂTEadj to have
higher asymptotic variance than ÂTEunadj, a necessary (but not sufficient) condi-
tion is that either the design must be so imbalanced that more than three-quarters
of the subjects are assigned to one group, or zi must have a larger covariance with
the treatment effect ai − bi than with the expected outcome pAai + (1 − pA)bi .
With multiple covariates, a similar condition can be derived from equation (14) in
Schochet (2010).

(vi) With more than two treatment groups, the usual adjustment can be worse
than no adjustment even when the design is balanced [Freedman (2008b)]. All the
groups are pooled in a single regression without treatment × covariate interactions,
so group B’s data can affect the contrast between A and C.

4.2.3. Example. This simulation illustrates some of the key ideas.

(1) For n = 1000 subjects, a covariate zi was drawn from the uniform distribu-
tion on [−4,4]. The potential outcomes were then generated as

ai = exp(zi) + exp(zi/2)

4
+ νi,

bi = − exp(zi) + exp(zi/2)

4
+ εi,

with νi and εi drawn independently from the standard normal distribution.
(2) A completely randomized experiment was simulated 40,000 times, assign-

ing nA = 750 subjects to treatment A and the remainder to treatment B .
(3) Step 2 was repeated for four other values of nA (600, 500, 400, and 250).



REGRESSION ADJUSTMENT 305

TABLE 1
Simulation (1000 subjects; 40,000 replications)

Proportion assigned to treatment A

Estimator 0.75 0.6 0.5 0.4 0.25

SD (asymptotic) × 1000
Unadjusted 93 49 52 78 143
Usual OLS-adjusted 171 72 46 79 180
OLS with interaction 80 49 46 58 98
Tyranny of the minority 80 49 46 58 98

SD (empirical) × 1000
Unadjusted 93 49 53 78 142
Usual OLS-adjusted 171 73 47 80 180
OLS with interaction 81 50 47 59 99
Tyranny of the minority 81 50 47 59 99

Bias (estimated) × 1000
Unadjusted 0 0 0 0 −2
Usual OLS-adjusted −3 −3 −3 −3 −5
OLS with interaction −5 −3 −3 −4 −6
Tyranny of the minority −5 −3 −3 −4 −6

These are adverse conditions for regression adjustment: zi covaries much more
with the treatment effect ai − bi than with the potential outcomes, and the popula-
tion least squares slopes Qa = 1.06 and Qb = −0.73 are of opposite signs.

Table 1 compares ÂTEunadj, ÂTEadj, ÂTEinteract, and the “tyranny of the mi-
nority” estimator from remark (iii) after Corollary 1.2. The first panel shows the
asymptotic standard errors derived from Freedman’s (2008b) Theorems 1 and 2
and this paper’s Theorem 1 (with limits replaced by actual population values). The
second and third panels show the empirical standard deviations and bias estimates
from the Monte Carlo simulation.

The empirical standard deviations are very close to the asymptotic predictions,
and the estimated biases are small in comparison. The usual adjustment hurts preci-
sion except when nA/n = 0.5. In contrast, ÂTEinteract and the tyranny estimator im-
prove precision except when nA/n = 0.6. [This is approximately the value of pA

where ÂTEinteract and ÂTEunadj have equal asymptotic variance; see remark (iii)
after Corollary 1.1.]

Randomization does not “justify” the regression model of ÂTEinteract, and the
linearity assumption is far from accurate in this example, but the estimator solves
Freedman’s asymptotic precision problem.

5. Variance estimation. Eicker (1967) and White (1980a, 1980b) proposed a
covariance matrix estimator for OLS that is consistent under simple random sam-
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pling from an infinite population. The regression model assumptions, such as lin-
earity and homoskedasticity, are not needed for this result.7 The estimator is(

X′X
)−1X′diag

(
ε̂2

1, . . . , ε̂
2
n

)
X

(
X′X

)−1
,

where X is the matrix of regressors and ε̂i is the ith OLS residual. It is known as the
sandwich estimator because of its form, or as the Huber–White estimator because
it is the sample analog of Huber’s (1967) formula for the asymptotic variance of a
maximum likelihood estimator when the model is incorrect.

Theorem 2 shows that under the Neyman model, the sandwich variance esti-
mators for ÂTEadj and ÂTEinteract are consistent or asymptotically conservative.
Together, Theorems 1 and 2 in this paper and Theorem 2 in Freedman (2008b)
imply that asymptotically valid confidence intervals for ATE can be constructed
from either ÂTEadj or ÂTEinteract and the sandwich standard error estimator.

The vectors Qa and Qb were defined in Section 4.2.2. Let Q denote the weighted
average pAQa + (1 −pA)Qb. As shown in Freedman (2008b) and the supplemen-
tary material [Lin (2013)], Q is the probability limit of the vector of estimated
coefficients on zi in the OLS regression of Yi on Ti and zi .

Mimicking Section 4.2.2, define the prediction errors

a∗∗
i = (ai − a) − (zi − z)Q, b∗∗

i = (bi − b) − (zi − z)Q

for i = 1, . . . , n.
Theorem 2 is proved in the supplementary material [Lin (2013)].

THEOREM 2. Assume Conditions 1–3. Let v̂adj and v̂interact denote the sand-
wich variance estimators for ÂTEadj and ÂTEinteract. Then nv̂adj converges in prob-
ability to

1

pA

lim
n→∞σ 2

a∗∗ + 1

1 − pA

lim
n→∞σ 2

b∗∗,

which is greater than or equal to the true asymptotic variance of
√

n(ÂTEadj −
ATE). The difference is

lim
n→∞σ 2

(a−b) = lim
n→∞

1

n

n∑
i=1

[
(ai − bi) − ATE

]2
.

Similarly, nv̂interact converges in probability to

1

pA

lim
n→∞σ 2

a∗ + 1

1 − pA

lim
n→∞σ 2

b∗,

7See, for example, Chamberlain [(1982), pp. 17–19] or Angrist and Pischke [(2009), pp. 40–48].
Fuller (1975) proves a finite-population version of the result.
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which is greater than or equal to the true asymptotic variance of
√

n(ÂTEinteract −
ATE). The difference is

lim
n→∞σ 2

(a∗−b∗) = lim
n→∞

1

n

n∑
i=1

[
(ai − bi) − ATE−(zi − z)(Qa − Qb)

]2
.

REMARKS. (i) Theorem 2 generalizes to designs with more than two treat-
ment groups.

(ii) With two treatment groups of equal size, the conventional OLS variance
estimator for ÂTEadj is also consistent or asymptotically conservative [Freedman
(2008a)].

(iii) Freedman (2008a) shows analogous results for variance estimators for the
difference in means; the issue there is whether to assume σ 2

a = σ 2
b . Reichardt and

Gollob (1999) and Freedman, Pisani, and Purves [(2007), pp. 508–511] give help-
ful expositions of basic results under the Neyman model. Related issues appear in
discussions of the two-sample problem [Miller (1986), pp. 56–62, Stonehouse and
Forrester (1998)] and randomization tests [Gail et al. (1996), Chung and Romano
(2011a, 2011b)].

(iv) With a small sample or points of high leverage, the sandwich estima-
tor can have substantial downward bias and high variability. MacKinnon (2013)
discusses bias-corrected sandwich estimators and improved confidence intervals
based on the wild bootstrap. See also Wu (1986), Tibshirani (1986), Angrist and
Pischke [(2009), Chapter 8], and Kline and Santos (2012).

(v) When ÂTEunadj is computed by regressing Yi on Ti , the HC2 bias-
corrected sandwich estimator [MacKinnon and White (1985), Royall and Cumber-
land (1978), Wu (1986), page 1274] gives exactly the variance estimate preferred
by Neyman (1923) and Freedman (2008a): σ̂ 2

a /nA + σ̂ 2
b /(n − nA), where σ̂ 2

a and
σ̂ 2

b are the sample variances of Yi in the two groups.8

(vi) When the n subjects are randomly drawn from a superpopulation, v̂interact

does not take into account the variability in z [Imbens and Wooldridge (2009),
pp. 28–30]. In the Neyman model, z is fixed.

(vii) Freedman’s (2006) critique of the sandwich estimator does not apply
here, as ÂTEadj and ÂTEinteract are consistent even when their regression models
are incorrect.

(viii) Freedman (2008a) associates the difference in means and regression with
heteroskedasticity-robust and conventional variance estimators, respectively. His
rationale for these pairings is unclear. The pooled-variance two-sample t-test and
the conventional F -test for equality of means are often used in difference-in-means

8For details, see Hinkley and Wang (1991), Angrist and Pischke [(2009), pp. 294–304], or Samii
and Aronow (2012).
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analyses. Conversely, the sandwich estimator has become the usual variance esti-
mator for regression in economics [Stock (2010)]. The question of whether to ad-
just for covariates should be disentangled from the question of whether to assume
homoskedasticity.

6. Bias. The bias of OLS adjustment diminishes rapidly with the number of
randomly assigned units: ÂTEadj and ÂTEinteract have biases of order 1/n, while
their standard errors are of order 1/

√
n. Brief remarks follow; see also Deaton

[(2010), pp. 443–444], Imbens [(2010), pp. 410–411], and Green and Aronow
(2011).

(i) If the actual random assignment yields substantial covariate imbalance, it
is hardly reassuring to be told that the difference in means is unbiased over all
possible random assignments. Senn (1989) and Cox and Reid [(2000), pp. 29–32]
argue that inference should be conditional on a measure of covariate imbalance,
and that the conditional bias of ÂTEunadj justifies adjustment. Tukey (1991) sug-
gests adjustment “perhaps as a supplemental analysis” for “protection against ei-
ther the consequences of inadequate randomization or the (random) occurrence of
an unusual randomization.”

(ii) As noted in Section 2.2, poststratification is a special case of ÂTEinteract.
The poststratified estimator is a population-weighted average of subgroup-specific
differences in means. Conditional on the numbers of subgroup members assigned
to each treatment, the poststratified estimator is unbiased, but ÂTEunadj can be
biased. Miratrix, Sekhon and Yu (2012) give finite-sample and asymptotic analyses
of poststratification and blocking; see also Holt and Smith (1979) in the sampling
context.

(iii) Cochran (1977) analyzes the bias of ŷreg in equation (3.1). If the adjust-
ment factor q is fixed, ŷreg is unbiased, but if q varies with the sample, ŷreg has a
bias of − cov(q, zS). The leading term in the bias of ŷOLS is

− 1

σ 2
z

(
1

n
− 1

N

)
lim

N→∞
1

N

N∑
i=1

ei(zi − z)2,

where n is the sample size, N is the population size, and ei is the prediction error
in the population least squares regression of yi on zi .

(iv) By analogy, the leading term in the bias of ÂTEinteract (with a single co-
variate zi) is

− 1

σ 2
z

[(
1

nA

− 1

n

)
lim

n→∞
1

n

n∑
i=1

a∗
i (zi −z)2 −

(
1

n − nA

− 1

n

)
lim

n→∞
1

n

n∑
i=1

b∗
i (zi −z)2

]
.

Thus, the bias tends to depend largely on n, nA/n, and the importance of omitted
quadratic terms in the regressions of ai and bi on zi . With multiple covariates, it
would also depend on the importance of omitted first-order interactions between
the covariates.
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(v) Remark (iii) also implies that if the adjustment factors qa and qb in equa-
tions (3.2) and (3.3) do not vary with random assignment, the resulting estimator
of ATE is unbiased. Middleton and Aronow’s (2012) insightful paper uses out-
of-sample data to determine qa = qb. In-sample data can be used when multiple
pretests (pre-randomization outcome measures) are available: if the only covari-
ate zi is the most recent pretest, a common adjustment factor qa = qb can be de-
termined by regressing zi on an earlier pretest.

7. Empirical example. This section suggests empirical checks on the asymp-
totic approximations. I will focus on the validity of confidence intervals, using data
from a social experiment for an illustrative example.

7.1. Background. Angrist, Lang, and Oreopoulos [(2009); henceforth ALO]
conducted an experiment to estimate the effects of support services and financial
incentives on college students’ academic achievement. At a Canadian university
campus, all first-year undergraduates entering in September 2005, except those
with a high-school grade point average (GPA) in the top quartile, were randomly
assigned to four groups. One treatment group was offered support services (peer
advising and supplemental instruction). Another group was offered financial in-
centives (awards of $1000 to $5000 for meeting a target GPA). A third group
was offered both services and incentives. The control group was eligible only for
standard university support services (which included supplemental instruction for
some courses).

ALO report that for women, the combination of services and incentives had siz-
able estimated effects on both first- and second-year academic achievement, even
though the programs were only offered during the first year. In contrast, there was
no evidence that services alone or incentives alone had lasting effects for women
or that any of the treatments improved achievement for men (who were much less
likely to contact peer advisors).

To simplify the example and focus on the accuracy of large-sample approxi-
mations in samples that are not huge, I use only the data for men (43 percent of
the students) in the services-and-incentives and services-only groups (9 percent
and 15 percent of the men). First-year GPA data are available for 58 men in the
services-and-incentives group and 99 in the services-only group.

Table 2 shows alternative estimates of ATE (the average treatment effect of the
financial incentives, given that the support services were available). The services-
and-incentives and services-only groups had average first-year GPAs of 1.82 and
1.86 (on a scale of 0 to 4), so the unadjusted estimate of ATE is close to zero.
OLS adjustment for high-school GPA hardly makes a practical difference to either
the point estimate of ATE or the sandwich standard error estimate, regardless of
whether the treatment × covariate interaction is included.9 The two groups had

9ALO adjust for a larger set of covariates, including first language, parents’ education, and self-
reported procrastination tendencies. These also have little effect on the estimated standard errors.
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TABLE 2
Estimates of average treatment effect on men’s first-year GPA

Point estimate Sandwich SE

Unadjusted −0.036 0.158
Usual OLS-adjusted −0.083 0.146
OLS with interaction −0.081 0.146

similar average high-school GPAs, and high-school GPA was not a strong predictor
of first-year college GPA.

The finding that adjustment appears to have little effect on precision is not un-
usual in social experiments, because the covariates are often only weakly corre-
lated with the outcome [Meyer (1995), pp. 100, 116, Lin et al. (1998), pp. 129–
133]. Examining eight social experiments with a wide range of outcome variables,
Schochet (2010) finds R2 values above 0.3 only when the outcome is a standard-
ized achievement test score or Medicaid costs and the covariates include a lagged
outcome.

Researchers may prefer not to adjust when the expected precision improvement
is meager. Either way, confidence intervals for treatment effects typically rely on
either strong parametric assumptions (such as a constant treatment effect or a nor-
mally distributed outcome) or asymptotic approximations. When a sandwich stan-
dard error estimate is multiplied by 1.96 to form a margin of error for a 95 percent
confidence interval, the calculation assumes the sample is large enough that (i) the
estimator of ATE is approximately normally distributed, (ii) the bias and variabil-
ity of the sandwich standard error estimator are small relative to the true standard
error (or else the bias is conservative and the variability is small), and (iii) the bias
of adjustment (if used) is small relative to the true standard error.

Below I discuss a simulation to check for confidence interval undercoverage
due to violations of (i) or (ii), and a bias estimate to check for violations of (iii).
These checks are not foolproof, but may provide a useful sniff test.

7.2. Simulation. For technical reasons, the most revealing initial check is a
simulation with a constant treatment effect. When treatment effects are hetero-
geneous, the sandwich standard error estimators for ÂTEunadj and ÂTEadj are
asymptotically conservative,10 so nominal 95 percent confidence intervals for ATE
achieve greater than 95 percent coverage in large enough samples. A simulation
that overstates treatment effect heterogeneity may overestimate coverage.

Table 3 reports a simulation that assumes treatment had no effect on any of
the men. Keeping the GPA data at their actual values, I replicated the experiment

10By Theorem 2, the sandwich standard error estimator for ÂTEinteract is also asymptotically con-
servative unless the treatment effect is a linear function of the covariates.
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TABLE 3
Simulation with zero treatment effect (250,000 replications). The fourth panel shows the empirical
coverage rates of nominal 95 percent confidence intervals. All other estimates are on the four-point

GPA scale

ATE estimator

Unadjusted Usual OLS-adjusted OLS with interaction

Bias & SD of ATE estimator
Mean (estimated bias) 0.000 0.000 0.000
SD 0.158 0.147 0.147

Bias of SE estimator
Classic sandwich −0.001 −0.002 −0.002
HC1 0.000 0.000 0.000
HC2 0.000 0.000 0.000
HC3 0.001 0.002 0.002

SD of SE estimator
Classic sandwich 0.004 0.004 0.004
HC1 0.004 0.004 0.004
HC2 0.004 0.004 0.004
HC3 0.004 0.004 0.005

CI coverage (percent)
Classic sandwich 94.6 94.5 94.4
HC1 94.8 94.7 94.7
HC2 (normal) 94.8 94.8 94.8
HC2 (Welch t) 95.1
HC3 95.0 95.0 95.1

CI width (average)
Classic sandwich 0.618 0.570 0.568
HC1 0.622 0.576 0.575
HC2 (normal) 0.622 0.576 0.577
HC2 (Welch t) 0.629
HC3 0.627 0.583 0.586

250,000 times, each time randomly assigning 58 men to services-and-incentives
and 99 to services-only. The first panel shows the means and standard deviations
of ÂTEunadj, ÂTEadj, and ÂTEinteract. All three estimators are approximately un-
biased, but adjustment slightly improves precision. Since the simulation assumes
a constant treatment effect (zero), including the treatment × covariate interaction
does not improve precision relative to the usual adjustment.

The second and third panels show the estimated biases and standard deviations
of the sandwich standard error estimator and the three variants discussed in An-
grist and Pischke [(2009), pp. 294–308]. ALO’s paper uses HC1 [Hinkley (1977)],
which simply multiplies the sandwich variance estimator by n/(n − k), where k is
the number of regressors. HC2 [see remark (v) after Theorem 2] and the approx-
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imate jackknife HC3 [Davidson and MacKinnon (1993), pages 553–554, Tibshi-
rani (1986)] inflate the squared residuals in the sandwich formula by the factors
(1−hii)

−1 and (1−hii)
−2, where hii is the ith diagonal element of the hat matrix

X(X′X)−1X′. All the standard error estimators appear to be approximately unbi-
ased with low variability.

The fourth and fifth panels evaluate thirteen ways of constructing a 95 per-
cent confidence interval. For each of the three estimators of ATE, each of the
four standard error estimators was multiplied by 1.96 to form the margin of er-
ror for a normal-approximation interval. Welch’s (1949) t-interval [Miller (1986),
pp. 60–62] was also constructed. Welch’s interval uses ÂTEunadj, the HC2 standard
error estimator, and the t-distribution with the Welch–Satterthwaite approximate
degrees of freedom.

The fourth panel shows that all thirteen confidence intervals cover the true value
of ATE (zero) with approximately 95 percent probability. The fifth panel shows the
average widths of the intervals. (The mean and median widths agree up to three
decimal places.) The regression-adjusted intervals are narrower on average than the
unadjusted intervals, but the improvement is meager. In sum, adjustment appears
to yield slightly more precise inference without sacrificing validity.

7.3. Bias estimates. One limitation of the simulation above is that the bias of
adjustment may be larger when treatment effects are heterogeneous. With a single
covariate zi , the leading term in the bias of ÂTEadj is11

−1

n

1

σ 2
z

lim
n→∞

1

n

n∑
i=1

[
(ai − bi) − ATE

]
(zi − z)2.

Thus, with a constant treatment effect, the leading term is zero (and the bias is of
order n−3/2 or smaller). Freedman (2008b) shows that with a balanced design and
a constant treatment effect, the bias is exactly zero.

We can estimate the leading term by rewriting it as

−1

n

1

σ 2
z

[
lim

n→∞
1

n

n∑
i=1

(ai − a)(zi − z)2 − lim
n→∞

1

n

n∑
i=1

(bi − b)(zi − z)2

]

and substituting the sample variance of high-school GPA for σ 2
z , and the sample

covariances of first-year college GPA with the square of centered high-school GPA
in the services-and-incentives and services-only groups for the bracketed limits.
The resulting estimate of the bias of ÂTEadj is −0.0002 on the four-point GPA
scale. Similarly, the leading term in the bias of ÂTEinteract [Section 6, remark (iv)]

11An equivalent expression appears in the version of Freedman (2008a) on his web page. It can
be derived from Freedman (2008b) after correcting a minor error in equations (17) and (18): the
potential outcomes should be centered.



REGRESSION ADJUSTMENT 313

can be estimated, and the result is also −0.0002. The biases would need to be or-
ders of magnitude larger to have noticeable effects on confidence interval coverage
(the estimated standard errors of ÂTEadj and ÂTEinteract in Table 2 are both 0.146).

7.4. Remarks. (i) This exercise does not prove that the bias of adjustment is
negligible, since it just replaces a first-order approximation (the bias is close to zero
in large enough samples) with a second-order approximation (the bias is close to
the leading term in large enough samples), and the estimate of the leading term has
sampling error.12 The checks suggested here cannot validate an analysis, but they
can reveal problems.

(ii) Another limitation is that the simulation assumes the potential outcome
distributions have the same shape. In Stonehouse and Forrester’s (1998) simula-
tions, Welch’s t-test was not robust to extreme skewness in the smaller group when
that group’s sample size was 30 or smaller. That does not appear to be a serious
issue in this example, however. The distribution of men’s first-year GPA in the
services-and-incentives group is roughly symmetric (e.g., see ALO, Figure 1A).

(iii) The simulation check may appear to resemble permutation inference
[Fisher (1935), Tukey (1993), Rosenbaum (2002)], but the goals differ. Here,
the constant treatment effect scenario just gives a benchmark to check the finite-
sample coverage of confidence intervals that are asymptotically valid under weaker
assumptions. Classical permutation methods achieve exact inference under strong
assumptions about treatment effects, but may give misleading results when the as-
sumptions fail. For example, the Fisher–Pitman permutation test is asymptotically
equivalent to a t-test using the conventional OLS standard error estimator. The test
can be inverted to give exact confidence intervals for a constant treatment effect,
but these intervals may undercover ATE when treatment effects are heterogeneous
and the design is imbalanced [Gail et al. (1996)].

(iv) Chung and Romano (2011a, 2011b) discuss and extend a literature on
permutation tests that do remain valid asymptotically when the null hypothe-
sis is weakened. One such test is based on the permutation distribution of a
heteroskedasticity-robust t-statistic. Exploration of this approach under the Ney-
man model (with and without covariate adjustment) would be valuable.

8. Further remarks. Freedman’s papers answer important questions about
the properties of OLS adjustment. He and others have summarized his results with
a “glass is half empty” view that highlights the dangers of adjustment. To the extent
that this view encourages researchers to present unadjusted estimates first, it is
probably a good influence. The difference in means is the “hands above the table”
estimate: it is clearly not the product of a specification search, and its transparency

12Finite-population bootstrap methods [Davison and Hinkley (1997), pp. 92–100, 125] may also be
useful for estimating the bias of ÂTEinteract, but similar caveats would apply.
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may encourage discussion of the strengths and weaknesses of the data and research
design.13

But it would be unwise to conclude that Freedman’s critique should always
override the arguments for adjustment, or that studies reporting only adjusted es-
timates should always be distrusted. Freedman’s own work shows that with large
enough samples and balanced two-group designs, randomization justifies the tra-
ditional adjustment. One does not need to believe in the classical linear model to
tolerate or even advocate OLS adjustment, just as one does not need to believe in
the Four Noble Truths of Buddhism to entertain the hypothesis that mindfulness
meditation has causal effects on mental health.

From an agnostic perspective, Freedman’s theorems are a major contribution.
Three-quarters of a century after Fisher discovered the analysis of covariance,
Freedman deepened our understanding of its properties by deriving the regression-
adjusted estimator’s asymptotic distribution without assuming a regression model,
a constant treatment effect, or an infinite superpopulation. His argument is con-
structed with unsurpassed clarity and rigor. It deserves to be studied in detail and
considered carefully.
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SUPPLEMENTARY MATERIAL

Proofs (DOI: 10.1214/12-AOAS583SUPP; .pdf). Proofs of theorems, corollar-
ies, and selected remarks.
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