
1

1. The Burkholder inequality

Let {(Xi , Fi ) : i = 1, . . . , n} be a martingale. Define martingale indcrements
ξ1 = X1 and ξi = Xi − Xi−1 for i = 2, . . . , n. The quadratic variation process
is defined as

Qi = ξ 2
1 + . . . ξ 2

i for i = 1, . . . , n.

The Burkholder inequality shows that, as far as Lp norms are concerned,
√

Qn

and Xn increase at the same rate: for each p > 1 there exist positive constants
cp and Cp such that

<1> cp‖
√

Qn‖p ≤ ‖Xn‖p ≤ Cp‖
√

Qn‖p

In this note I will mostly follow the method presented by Burkholder (1973) to
establish these inequalities.

The argument for the lower bound to ‖Xn‖p is the more delicate. In fact,
once we have the lower bound the duality argument for the upper bound is
quite simple.

2. From tail bounds to norms

The method of proof for the first inequality in <1> relies on a handy result
that relates norm bounds to bounds for tail probabilities.

<2> Lemma. Suppose W and Z are nonnegative random variables for which
there exists a constants β > 0 and C for which

tP{W > βt} ≤ CPZ{W > t} for all t > 0.

Then for each p > 1 we have ‖W‖p ≤ Cqβ p‖Z‖p where q = p/(p − 1).

Proof. Note that 1/q +1/p = 1. Multiply both sides of the assumed inequality
by pt p−2, integrate with respect to t , then invoke Fubini.

‖W/β‖p
p =

∫ ∞

0
pt p−1

P{W/β > t}

≤ C
∫ ∞

0
pt p−2

PX{W > t}

= Cp

p − 1
PX W p−1

≤ Cp

p − 1
‖X‖p‖W p−1‖q by Hölder

= Cq‖X‖p‖W‖p/q
p because q(p − 1) = p.

Thus
‖W‖p = ‖W‖p−p/q

p ≤ Cqβ p‖X‖p.

�
Remark. If you are worried about the possiblity that ‖W‖p might be
infinite, which would make the division by ‖W‖p/q

p in the last step of the
proof illegal, see Problem [1].

<3> Corollary. (Doob’s inequality) Let Mn = maxi≤n Xi for a nonnegative
submartingale {Xi : i = 1, . . . , n}. Then ‖Mn‖p ≤ q‖Xn‖p for each p > 1.
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Proof. For a fixed t > 0, define τ = inf{i : Xi > t}. The set F := {τ ≤ n}
is Fτ∧n-measurable and {Mn > t} = F = {Xτ∧n > t}. By the Stopping Time
Lemma (as in Section 6.2 of Pollard 2001), we get

<4> tP{Mn > t} = tP{Xτ∧n > t}F ≤ PXτ∧n F ≤ PXn F = PXn{Mn > t}.
Invoke Lemma <2> with W = Mn and X = Xn and C = β = 1.�

3. The lower bound in Burkholder’s inequality

The first inequality in <1> also holds for nonnegative submartingales. In
fact, the result for nonnegative submartingales implies the analogous result for
martingales via the inequalities for the submartingales {X+

n : i = 1, . . . , n} and
{X−

n : i = 1, . . . , n}. See Problem [2]
There is no loss of generality, therefore, if I assume for the rest of

this Section that {(Xi , Fi ) : i = 1, . . . , n} is a nonnegative submartingale
with increments ξi and Mn = maxi≤n Xi For convenience of notation define
X0 = Q0 = 0 and ξi = 0 for i > n, so that Xi = Xn for i ≥ n.

The first step in the argument will show that

<5> tP{Qn > t2, Mn ≤ t} ≤ 2PXn,

which might seem to be a long way from the sort of inequality we need for
Lemma <2>. However, if we replace {Xi } by the submartingale Xi {σ ≤ i}, for
a suitable stopping time σ , then the analog of <5> for the new submartingale
will lead quickly to a stronger result: for each c0 ≥ 1,

<6> tP{Qn > (2 + c0)t
2, Mn ≤ t} ≤ 2PXn{Qn > c0t2} for each t > 0.

If we define W = max(Mn,
√

Qn/c0) and β =
√

1 + 2/c0 then it will
follow that

tP{W > βt}
≤ tP{Mn > t} + tP{W > βt, Mn ≤ t}
≤ PXn{Mn > t} + tP{Q2

n > c0β
2t2, Mn ≤ t} by <4> and W definition

≤ 3PXn{W > t} by <6>.

From Lemma <2> we will then get

‖
√

Qn‖p ≤
√

c0‖W‖p ≤
√

c03q(1 + 2/c0)
p/2‖Xn‖p

The choice c0 = 1 gives a value 1/cp = 3q3p/2 in inequality <1>.
Burkholder (1973, page 22) chose c0 = p to get 1/cp = 9q

√
p, which is

certainly sharper when p is large. I do not know whether the rate at which 1/cp

increases with p is important.
Thus the proof of the first inequality in <1> reduces to showing <5> and

then finding the stopping time σ that leads to <6>.

Proof of inequality <5>. Define Zk := ∑
i {1 ≤ i ≤ k}Xi−1ξi , so that

X2
k =

( ∑k

i=1
ξi

)2
= Qk + 2Zk for k = 0, 1, . . . , n.

Also define τ := inf{i ≤ n : Xi > t} with the usual convention that inf ∅ = +∞.
Note that {Mn ≤ t} = {τ = ∞}. Thus

(∗) := tP{Qn > t2, Mn ≤ t} ≤ PQn{Mn ≤ t}/t = P
(
X2

n − 2Zn
) {Mn ≤ t}/t.

When τ = ∞ we have Zn = Zτ∧n and X2
n = X2

τ∧n ≤ t Xτ∧n , which implies

(∗) ≤ P
(
t Xτ∧n − 2Zτ∧n

) {τ = ∞}/t ≤ 2P
(
Xτ∧n − Zτ∧n/t

) {τ = ∞}
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On the set where τ ∧ n = k we have

t Xk ≥ Xk−1 Xk = X2
k−1 + ξk Xk−1

= 1
2

(
Qk−1 + 2Zk

) + 1
2 X2

k−1 + ξk Xk−1

≥ Zk .

That is, t Xτ∧n − Zτ∧n ≥ 0 everywhere.
Moreover, an appeal to the Stopping Time Lemma (as in Problem 6.3

of Pollard 2001) shows that {(Xτ∧k, Fk) : k = 1, . . . , n} is a submartingale
with PXτ∧n ≤ PXn . Only slightly more subtle (see Problem [3]) is the fact
that the stopped process {Zτ∧k : k = 0, 1, . . . , n} is also a submartingale, with
PZτ∧n ≥ PZ0 = 0. We can therefore conclude that

(∗) ≤ 2P
(
Xτ∧n − Zτ∧n/t

) ≤ 2PXn,

as asserted by <5>.

Proof of inequality <6>. Define σ := inf{i ≤ n : Qi > c0t2}. First check
that Yi := Xi {σ ≤ i} is a nonnegative submartingale: If F ∈ Fi−1 then

PYi F ≥ PF Xi {σ ≤ i − 1} ≥ PFYi−1

because F{σ ≤ i −1} ∈ Fi−1 and Xi is a submartingale. The new submartingale
has increments

ηi := Yi − Yi−1 = Xi {σ = i} + (Xi − Xi−1){σ ≤ i − 1}
= Xσ {σ = i} + ξi {σ ≤ i − 1}

and quadratic variation

Q̃k := ∑
i {1 ≤ i ≤ k}η2

i = (
X2

σ + Qn − Qσ

) {σ ≤ k}
On the set D := {Qn > (2 + c0)t2, Mn ≤ t} we must have σ ≤ n

and maxi≤n Yi ≤ t . Also the inequality −Xi−1 ≤ ξi ≤ Xi implies that
maxi≤n |ξi | ≤ Mn ≤ t . It follows that, on D, we have

Q̃n ≥ Qn − (Qσ−1 + ξ 2
σ ) > (2 + c0)t

2 − (c0t2 + t2) = t2.

These facts give
tPD ≤ P{Q̃n > t2, maxi≤n Yi ≤ t}

which, by <5> applied to Yi instead of Xi , is less than

2PYn = 2PXn{σ ≤ n} = 2PXn{Qn > c0t2}.
Inequality <6> follows.�

4. The upper bound in Burkholder’s inequality

For a random variable � with ‖T ‖q ≤ 1, Hölder’s inequality gives
P(�Xn) ≤ ‖Xn‖p. If ‖Xn‖p �= 0, equality is achieved by the choice
� = |Xn|p−1sgn(Xn)/‖Xn‖p/q

p . Thus

<7> ‖Xn‖p = sup{P(�Xn) : ‖�‖q ≤ 1}.
This duality property will lead to the upper bound for ‖Xn‖p.
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The sequence P(� | Fi ) for i = 1, . . . , n, is a martingale. Write γ1, . . . , γn

for its increments and Gn for its quadratic variation
∑

i≤n γ 2
i . Then

P(�Xn) = P
( ∑

i≤n γi
) ( ∑

i≤n ξi
)

= P
∑

i≤n γiξi because Pγiξj = 0 = Pξiγj for i < j

≤ P

√
Gn Qn by Cauchy-Schwartz

≤ ‖
√

Gn‖q‖
√

Qn‖p by Hölder

≤ c−1
p ‖�‖q‖

√
Qn‖p by the lower bound from inequality <1>.

Take the supremum over � with ‖�‖q ≤ 1, or just choose � to achieve the
supremum in <7>, to get the Burkholder upper bound with Cp = 1/cp.

5. Problems

[1] Suppose ‖Z‖p in Lemma <2> is finite. Replace β by max(1, β). Explain why
the inequality for P{W > βt} still holds if W is replaced by W ∧ k, for any
positive integer k. Deduce that ‖W ∧ k‖p is bounded by a multiple of ‖Z‖p

that doesn’t depend on k. Let k tend to infinity to deduce that ‖W‖p < ∞.

[2] Let {Xn : i = 1, . . . , n} be a martingale.

(i) Show that ‖X‖p ≥ max(‖X+
n ‖p, ‖X−

n ‖p).

(ii) Show that Qn ≤ ∑
2

∑
i≤n

(
(X+

i − X+
i−1)

2 + (X+
i − X+

i−1)
2
)

(iii) Deduce the lower bound from <1> for the martingale from the analogous
lower bounds for the nonnegative submartingales {X+

i : i = 1, . . . , n}
and {X−

i : i = 1, . . . , n}.
[3] With Zk := ∑

i {1 ≤ i ≤ k}Xi−1ξi as in Section 3:

(i) Show that Zτ∧k = ∑k
i=1 Xi−1ξi {{i ≤ τ }. Deduce that the kth increment

of the stopped process is bounded in absolute value by t |ξk |, which is
integrable.

(ii) If F ∈ Fk−1, show that PF Xk−1ξi {{k ≤ τ } = 0. Deduce that the stopped
process is a submartinagle.
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