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Abstract—Robustness of optimization models for networking
problems has been an under-explored area. Yet most existing
algorithms for solving robust optimization problems are central-
ized, thus not suitable for many communication networking prob-
lems that demand distributed solutions. This paper represents the
first step towards building a framework for designing distributed
robust optimization algorithms. We first discuss several models
for describing parameter uncertainty sets that can lead to
decomposable problem structures. These models include general
polyhedron, D-norm, and ellipsoid. We then apply these models
to solve robust power control in wireless networks and robust
rate control in wireline networks. In both applications, we pro-
pose distributed algorithms that converge to the optimal robust
solution. Various tradeoffs among performance, robustness, and
distributiveness are illustrated both analytically and through
simulations.

I. INTRODUCTION

Despite the importance and success of using optimization
theory to study communication and networking problems,
most work in this area makes the important assumption that
the data defining the constraints and objective function of the
optimization problem can be obtained precisely. We call the
corresponding problems “nominal”. However, in many practi-
cal problems, these data are typically inaccurate, time-varying,
or uncertain. Solving the nominal optimization problems may
lead to poor or even infeasible solutions of the real problems.

Over the last ten years, robust optimization has emerged in
operations research community as a field that tackle optimiza-
tion problems under data uncertainty (e.g., [1]–[5]). The basic
idea of the robust optimization is to seek a solution which
remains feasible and near-optimal under the perturbation of
parameters in the nominal optimization problem. Each robust
optimization is defined by three-tuple: a nominal formulation,
a definition of robustness, and an uncertainty set. The process
of making an optimization formulation robust can be viewed
as a mapping that maps from one optimization problem to
another. A central question here is when properties such
as convexity and decomposability are preserved under such
mapping.

So far, most of the work on robust optimization focuses on
how to find a proper set to characterize the data uncertainty,
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which leads to a tractable robust counter part of the nominal
problem. For example, it has been shown that under the
assumption of ellipsoid set of data uncertainty, a robust linear
optimization problem can be converted into a second-order
cone problem; and a robust second-order cone problem can
be reformulated as a semi-definite optimization problem [6].
In general, the previous focus in this area is to formulate the
robust optimization problem such that it preserves the con-
vexity of the original nominal problem, such that we can use
effective centralized algorithms (e.g., interior point method) to
solve it. Here we will focus instead on the distributiveness-
preserving formulation of the robust optimization, which is
desirable for many practical problems in communications and
networking.

In this paper, we first show how to properly define a uncer-
tainty set, which not only captures the data uncertainty in the
model but also leads to a distributively solvable optimization
problem. Second, in the case where full distributed algorithm
is not obtainable, we focus on the investigation of the tradeoff
between robustness and distributiveness. While distributed
computation has long been studied [7], unlike convexity of
a problem, distributiveness of an algorithm does not have a
widely-agreed definition. It is often quantified by the amount
and frequency of communication overhead required, whose
tradeoff with the degree of robustness is interesting to study.

In Section II, we review some background of robust opti-
mization, with focus on the characterization of uncertainty sets
that are useful for designing distributed algorithms. Applica-
tions on robust power control and robust rate control are given
in Sections III and IV, where we discuss various tradeoffs
between robustness, distributiveness, and performance through
both analysis and numerical studies. Conclusions are given in
Section V. All proofs can be found in the online technical
report [8].

II. ROBUST OPTIMIZATION WITH LINEAR CONSTRAINTS

To make our discussions concrete, we will focus on a class
of optimization problems with the following nominal form:
maximization of a concave objective function over a given
data set characterized by linear constraints,

maximize f0 (x) (1)

subject to Ax � b

variables x,
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where A is an M × N matrix, x is an N × 1 vector, and b
is an M × 1 vector. This class of problems can model a wide
range of engineering systems (e.g., [9]–[12]).

The uncertainty of Problem (1) may exist in the objective
function f0, matrix parameter A, and vector parameter b.
In many cases, the uncertainty in objective function f0 can
be converted into uncertainty of the parameters defining con-
straints [13]. And later in Section IV we show that it is also
possible to convert the uncertainty in b into uncertainty in A
(although this could be difficult in general). Therefore, in the
rest of the paper, we will focus on studying the uncertainty in
A.

In the robust counterpart of Problem (1), we require the
constraints Ax � b to be valid for any A ∈ A, where
A denotes the uncertainty set of A, and the definition of
robustness is in the worst-case sense [14]. If we allow arbitrary
uncertainty set A, then the robust optimization problem is
difficult to solve even in a centralized manner [15]. In this
paper, we will focus on the study of constraint-wise (i.e.
row-wise) uncertainty set, where the uncertainties between
different rows in matrix A are decoupled. This restricted class
of uncertainty set characterizes the data uncertainty in many
practical problems, and it also allows us to convert the robust
optimization problem into a formulation that are distributively
solvable.

Denote the jth row of A be aT
j , which lies in a compact

uncertainty set Aj . Then the robust optimization problem that
we focus on in this paper can be written in the following form:

maximize f0 (x) , (2)

subject to aT
j x ≤ bj , ∀aj ∈ Aj , ∀1 ≤ j ≤ M.

variables x.

We can show that the robust optimization problem (2) can
be equivalently written in a form represented by protection
functions instead of uncertainty sets.

Denote the nominal counterpart of problem (2) with a coef-
ficient matrix Ā (i.e., the values when there is no uncertainty),
with the jth row’s coefficient āj ∈ Aj . Then

Proposition 1. Assume the uncertainty sets Aj is compact for
all j. Problem (2) is equivalent to

maximize f0 (x) , (3)

subject to āT
j x + gj(x) ≤ bj , ∀1 ≤ j ≤ M.

variables x,

where
gj(x) = max

aj∈Aj

(aj − āj)T x

is the protection function for the jth constraint, which depends
on the uncertainty set Aj and the nominal row āj .

Different forms of Aj will lead to different protection
function gj(x), which results in different robustness and
performance tradeoff of the formulation. Next we consider
several different approaches in terms of modeling Aj and the
corresponding protection function gj(x).

A. Robust Formulation Defined By General Polyhedron

In this case, the uncertainty set Aj is a polyhedron charac-
terized by a set of linear inequalities, i.e., Aj � {aj : Djaj �
cj}. The protection function is

gj(x) = max
aj :Djaj�cj

(aj − āj)T x, (4)

which involves solving a linear programming (LP). We next
show that the uncertainty set (or protection function) can be
translated into a set of linear constraints. In the jth constraint
in (2), if we fix x = x̂, we can characterize the set ∀aj ∈ Aj

by solving the following LP:

v∗
j = max

aj :Djaj�cj

aT
j x̂. (5)

If v∗
j ≤ bj , then x̂ is feasible for (2). However, this approach

is not very useful since it requires solving one LP in (5) for
each possible x̂. Alternatively, we can take the dual of (5),

v∗
j = min

pj :D
T
j pj�x̂,pj�0

cT
j pj . (6)

If we can find a feasible solution p̂j to (6), and cT
j p̂j ≤ bj ,

then we must have v∗
j ≤ cT

j p̂j ≤ bj . We can thus replace
constraint in (2) by the following constraints:

cT
j pj ≤ bj , DT

j pj � x, pj � 0, ∀1 ≤ j ≤ M, (7)

and we now have an equivalent and deterministic formulation
for Problem (2), where all the constraints are linear.

B. Robust Formulation Defined by D-norm

D-norm approach [13] is another method to model the
uncertainty set, and has advantages such as guarantee of fea-
sibility independent of uncertainty distributions and flexibility
in terms of tradeoff between robustness and performance.

Consider the jth constraint aT
j x ≤ bj . Denote the set of

all uncertain coefficients in aj as Ej . The size of Ej is |Ej |,
which might be smaller than the total number of coefficients
N (i.e., aij for some i might not have uncertainty). For each
aij ∈ Ej , assume the actual value falls into the range of
[āij − âij , āij + âij ], in which âij is a given error bound.
Also choose a nonnegative integer Γi ≤ |Ej |. The definition
of robustness associated with the D-norm formulation is to
maintain feasibility if at most Γi out of all possible |Ej |
parameters are perturbed. Let’s denote Si as the set of Γi

uncertain coefficients. The above robustness definition can be
characterized by the following protection function,

gj(Γj ,x) = max
Sj :Sj⊆Ej ,|Sj |=Γj

∑
i∈Sj

âij |xi|. (8)

Notice that if Γj = 0, then gj(Γj ,x) = 0 and the
jth constraint is reduced to the nominal constraint, i.e., no
protection against uncertainty. If Γj = |Ej |, then gj(Γj ,x) =∑

i∈Ej
âij |xi| and the jth constraint becomes Soyster’s worst-

case formulation [13]. The tradeoff between robustness and
performance can be obtained by adjusting Γj .

Note that the nonlinearity of γj(Γj ,x) is difficult to deal
with in the constraint. Alternatively, we can reformulate it into
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the following LP problem,

max
{0≤sij≤1}∀i∈Ej

∑
i∈Ej

âij |xi|sij , s.t.
∑
i∈Ej

sij ≤ Γj . (9)

Taking the dual of Problem (9), we have

min
{pij≥0}∀i∈Ej

,qj≥0
qjΓj+

∑
i∈Ej

pij , s.t. qj+pij ≥ âij |xi|,∀i ∈ Ej .

(10)
Similar to Section II-A, we can substitute (10) into the

robust Problem (2) to obtain an equivalent formulation:

maximize f0(x) (11)

subject to
∑

i

aijxi + qjΓj +
∑
i∈Ek

pij ≤ bj ,∀j,

qj + pij ≥ âijyi, ∀i ∈ Ek,∀j,

− yi ≤ xi ≤ yi,∀i,

variables x, y � 0, p � 0, q � 0.

The new problem only has linear constraints. We provide such
an example in Section IV.

C. Robust Formulation Defined by Ellipsoid

Ellipsoid is commonly used to approximate complicated un-
certainty sets based on statistical reasons [15] and to succinctly
describe a set of discrete points in Euclidean geometry [14].
Here we consider the case where coefficient aj falls in an
ellipsoid centered at the nominal āj . Specifically,

Aj = {āj + ∆aj :
∑

i

|∆aij |2 ≤ ε2j}. (12)

The protection function is given by

gj(x) = max
aT

j ∈Aj

(
aT

j − āT
j

)
x = εj

√∑
i

x2
i , (13)

which can be derived through Cauchy-Schwartz inequality.
Although the resulting constraint in Problem (2) is not readily
decomposable using standard decomposition techniques, we
will see in Section III that this leads to tractable formulation
in some important applications (e.g., power control) where
users can obtain most network information through local
measurement without global message passing.

III. APPLICATION: DISTRIBUTED ROBUST POWER

CONTROL

A. The Nominal Problem

Consider the following system model as in the seminal
work by Foschini and Miljanic [9]. There exists a set of
L = {1, ..., L} users in the network. Each user consists a
transmitter node and a receiver node. If all users are distinct,
this could model a wireless ad hoc network. If all users share
the same transmitter node (or receiver node), then this models
the downlink (or uplink) transmission in a single cellular
network. The signal to interference ratio (SIR) on the link
of user i is

SIRi =
Giipi∑

j �=l Gijpj + ni
(14)

where Gij is the channel gains from user j’s transmitter to
user i’ receiver, and ni is the AWGN noise power for user i’s
receiver. We want to optimize the users’ transmission power
p = [p1, . . . , pL] to achieve a target SNR γ = [γ1, . . . , γL],
such that the total transmission power is minimized:

minimize
∑
i∈L

pi

subject to SIRi(p) ≥ γi,∀i ∈ L
variables pi ≥ 0,∀i ∈ L

(15)

The constraints of Problem (15) can be equivalently repre-
sented as:

(I − F )p � v (16)

where vector v =
[

γ1n1
G11

, . . . , γLnL

GLL

]
, I is the L × L identity

matrix, and F = [Fij ] with

Fij =

{
0 i = j
Gijγi

Gii
i �= j

. (17)

It has been proved in [9] that if the spectral radius ‖F ‖ < 1,
the unique global optimal solution of Problem (15) is

p∗ = (I − F )−1v. (18)

Furthermore, if each user i locally measures its SIR value
SIRi(k) at each time slot k, and updates its transmission power
by

pi(k + 1) =
γi

SIRi(k)
,∀i ∈ L, (19)

the system will globally converge to the optimal solution in
(18). We refer to this fully distributed power control algorithm
in (19) as the FM algorithm. In the rest of the section, we
will consider the robust optimization problems under either
uncertainties in channel coefficients F = [Fij ] or randomness
in terms of users entering and leaving the system.

B. Robust Formulation under Ellipsoid Uncertainty Set

In this section we consider the uncertainty in channel matrix
F due to fluctuation of the channels. Let Fi denotes the
uncertainty set of the ith row of matrix F , which captures
the variations of interfering channel gains relative to the main
channel gain of user i. The specific shape of the uncertainty
set depends on the underlying channel model and the sources
of uncertainty. In this section we use ellipsoid to characterize
set Fi for all i, as considered in Section II-C.

Assume the actual normalized channel gain between user
j’s transmitter and user i’s receiver as Fij + ∆Fij , where Fij

is the nominal value (e.g., long term average value). Further
denote the ith row of F as F i and the corresponding uncer-
tainty as ∆F i. Then the uncertainty set Fi under ellipsoid
approximation can be represented by

Fi = {F i + ∆F i :
∑
j �=i

|∆Fij |2 ≤ ε2i .} (20)

Notice that we always have Fii = 0. The robust counterpart
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of the nominal Problem (15) is

minimize
∑
i∈L

pi

subject to pi −
∑
j �=i

(Fij + ∆Fij)pj ≤ vi ∀i ∈ L
∑
j �=i

|∆Fij |2 ≤ ε2i ,∀i ∈ L

variables pi ≥ 0, i ∈ L

(21)

By (13), we can transform the constraints in (21) into

pi −
∑
j �=i

Fijpj − εi

√∑
j �=i

p2
j ≥ vi,∀i ∈ L (22)

If we further define matrix A = I − F , then Problem (21)
can be written equivalently as

minimize
∑
i∈L

pi

subject to εi

√∑
j �=i

p2
j ≤ AT

i p − vi, i ∈ L

variables pi ≥ 0,∀i ∈ L

(23)

This is the problem that we will solve in this subsection.
1) Distributed Algorithm with Delayed Feedback: Let us

first consider the following power update of each user i at
time slot k,

pi(k + 1) =
γi

SIRi
pi(k) + εi

√
Q2(k) − p2

i (k) (24)

where

Q(k) =
√∑

j∈L
p2

j (k). (25)

Note that (24) is a modified version of the FM algorithm in
(19) with a protection function εi

√
Q2(k) − p2

i (k) for each
user i. Similar as (19), it involves no diminishing step size
or dual variables. The only coupled parameter is Q(k), which
needs to be updated at every time slot k.

It we allow Q to be updated at a slower pace, we can
increase the distributiveness of the updates. In particular, we
can choose a parameter M ≥ 1 such that Q is updated every
M time slots. As M increases, the amount of message passed
among users decreases. To facilitate the discussions, we can
also represent any time index k as (s, l), such that k = sM +l,
s = 0, 1, . . ., and 0 ≤ l ≤ M − 1. Then we can design the
following distributive algorithms:

Algorithm 1. For each time slot k = (s, l), each user i
updates its transmission power as

pi(k + 1) = F T
i p(k) + vi + εi

√
Q2(s, 0) − p2

i (k). (26)

In Algorithm 1, each user i broadcasts its power pi(k) and
computes Q(k) using (25) every M iterations. Between these
updates, users update their power based on the most recently
computed value of Q. For the downlink transmission in a
single cell network, Q could be simply broadcast by the base

0 100 200 300 400
0

0.5

1

1.5

2

Iter Number

U
se

r 
P

ow
er

User 1
User 2
User 3

(a) Without feedback delay (M = 1)

0 100 200 300 400
0

0.5

1

1.5

2

Iter Number

U
se

r 
P

ow
er

User 1
User 2
User 3
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Fig. 1. Convergence of Algorithm 1.

station.
Algorithm 1 globally converges to the optimal solution of

Problem (23) under proper technical conditions of matrix F
and uncertainty parameter εi. Furthermore, we can bound the
difference between the current power vector and the optimal
power vector during each step of the iteration. The algo-
rithm converges exponentially and the speed of convergence
increases as M decreases.

Theorem 1. Assume ‖ε‖ + ‖F ‖ < 1, where ‖ε‖2 =
∑

ε2i .
Algorithm 1 globally converges to the optimal solution of
Problem (23), denoted as p∗. Moreover,

‖p(k) − p∗‖ ≤ 1 − ‖F ‖M

1 − ‖F ‖
(CM )	k/M


1 − CM
‖p(1) − p(0)‖ (27)

where

CM = ‖F ‖M +
‖ε‖

1 − ‖F ‖ (1 − ‖F ‖M ), (28)

M ≥ 1 is the number of slots between two adjacent updates
of parameter Q, L is the total number of users, and 	·
 is the
floor function.

Notice that the condition of ‖F ‖ < 1 is needed for the
convergence of the original FM algorithm in (19), and the
maximal robustness the algorithm can guarantee is character-
ized by 1 − ‖F ‖.

2) Numerical Results and Performance Comparison: We
simulate the performance of Algorithm 1 for 3 users with
Rayleigh fading channel. The channel uncertainty parameter
ε = 5%, and the common target SIR γ = 5.0. Fig. 1 shows
the results without feedback delay (M = 1) and with feedback
delay (M = 40). In both cases, the algorithm converges
to the optimal solution (verified by the centralized MOSEK
toolbox [16]) exponentially fast.

We also compare the performance of Algorithm 1 and
the original FM algorithm in terms of the immunity against
channel fluctuation. The simulation setup is the same as in
Fig. 1, where the channel matrix changes randomly for twenty
times. We define a channel outage whenever a user’s received
SIR drops below the target SIR (5 in this case). As shown in
Fig. 2, Algorithm 1 avoids channel outage since it considers
the worst case of the uncertainty set, and the original FM
algorithm leads to frequent channel outages.

3) Robustness-Distributiveness Tradeoff: If we fix the total
number of iterations as N and the desired optimality gap
‖p(N) − p∗‖ = δ, then there exists an interesting tradeoff
between robustness and distributiveness. In particular, if more
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Fig. 2. User received SIRs under random channel fluctuation (only one
channel realization is shown here).

robustness is desired (i.e., a lager ε), we will have more mes-
sage passing and less distributiveness (i.e., a smaller number
of update interval M ).

To understand this tradeoff theoretically, we use (27), which
gives an upper bound on the convergence rate of Algorithm 1.
A sufficient condition to achieve the desired optimality gap δ
is

1 − ‖F ‖M

1 − ‖F ‖
C

N/M
M

1 − CM
‖p(1) − p(0)‖ ≤ δ. (29)

Let α = ‖ε‖
1−‖F ‖ , L(M) = 1

M log CM , and the equality hold
in (29), i.e.,

L(M) =
1
N

log
[
δ (1 − ‖F ‖) (1 − α)

‖p(1) − p(0)‖
]

. (30)

Since α < 1, ‖F ‖ < 1, and log CM decreases in M , thus
L(M) is a monotonically decreasing function and has an
inverse function. We can solve (30) and obtain a lower bound
on the largest allowed value of update interval M , i.e.,

M(ε) ≥ L−1

[
1
L

log
(

δ (1 − ‖F ‖) (1 − α)
‖p(1) − p(0)‖

)]
. (31)

Then an upper bound on the total number of message passing
for reaching an optimality gap of δ with an uncertainty
ellipsoid of radius ε and a total of N iterations is

N

L−1
{

1
N log

[
δ(1−‖F‖)

‖p(1)−p(0)‖
(
1 − ‖ε‖

1−‖F‖
)]} . (32)

Here one message passing corresponds to each user announc-
ing his power level once, or the base station evaluating the
current Q in (25) and broadcasting it to the users. This upper
bound is also plotted in Fig. 3, together with the simulated
result. The bound is quite tight when ε is small. We also see a
clear tradeoff between the robustness and the distributiveness.
As the power allocation becomes more robust, more message
passing among users is necessary. For example, for an error
threshold of δ = 1%, only 6 global message passing is needed
for ε = 5%, while 25 messages must be passed in order to
achieve robustness of ε = 15%. The 3-dimensional tradeoff
among robustness ε, optimality gap δ, and the number of
message passing is given in Fig. 4.

C. Robust Formulation Under Polyhedron Uncertainty Set

Instead of modeling channel uncertainty using ellipsoid as
in the last subsection, we can also model it using polyhedron
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as discussed in Section III-B. In particular, we consider a row-
wise uncertainty set

Fi = {F i + ∆F i :
∑
j �=i

|∆Fij |/tij ≤ 1}, (33)

where tij > 0 are weight coefficients, corresponding to the
maximal deviation of Fij from its nominal value. This uncer-
tainty setup will be very useful in modeling the uncertainty
in the SIR measurement [8]. Note that (33) is similar to (20)
with quadratic terms replaced by linear terms. Since∑

j �=i

∆Fijpj =
∑
j �=i

(|∆Fij |/tij)tijpj ≤ max
j �=i

tijpj ,

we can derive the robust formulation similar to Problem (23):

minimize
∑
i∈L

pi

subject to pi ≥
∑
j �=i

Fijpj + max
j �=i

tijpj + vi,∀i ∈ L

variables pi ≥ 0,∀i ∈ L

(34)

A distributed algorithm with limited message passing is
derived similar to Algorithm 1.

Algorithm 2. User i updates its power at time k accordingly
to

pi(k + 1) =
γi

SIRi
pi(k) + max

j �=i
tijpj(k). (35)

In this algorithm, the largest two of user’s weighted power
need to be communicated globally, through broadcasting of
the users. Convergence and performance bounds can be proved
similar to Theorem 1.
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D. Modeling users’ entering and leaving the system with D-
norm

It is also possible to use D-norm to model the uncertainty
due to both channel fluctuation and users randomly entering
the system. Let N and U be the total number of active and
possible virtual users (i.e., users who are not active but might
turn active) in the system, respectively. Let hiv ∈ [0, ĥiv]
denote the relative channel gain (normalized by Gii) of
virtual user v’s transmitter to active user i’s receiver. Also
let p � [p1, p2, ..., pN ]T , p̄ � [p̄1, p̄2, ..., p̄V ]T , p̄min

v and p̄max
v

as the lower and upper bound of the transmit power from vth

virtual user.
Consider the following protection function for the ith con-

straint with uncertainty parameter Γi :

gi(Γi,p
∗) = max

(α,β)∈H

∑
j �=i

|∆Fij |αijp
∗
j +

∑
v

ĥivβiv p̄max
v ,

with H = {(α,β)|∑j �=i αij +
∑

v βiv ≤ Γi, αij , βiv ∈
{0, 1}}. Note that the above maximization can be easily solved
due to its special structure. For any given p∗, we only need
to sort pj |∆Fij | and ĥivβiv p̄max

v for all j �= i and v in the
descending order, and choose the Γi largest elements as the
solution. Notice this can be done at the base station and send to
each mobile station. The robust power control problem under
both channel fluctuation and user entering uncertainty is

minimize
N∑

j=1

pj

subject to pi −
∑
j �=i

Fijpj − gi(Γi,p) ≥ vi, ∀i,

variable p � 0. (36)

which can be solved by the following distributed algorithm.

Algorithm 3. Each user i updates its transmission power in
time slot k as

pi(k + 1) =
γi

SIRi
pi(k) + gi(Γi,p(k)). (37)

where gi(Γi,p) is computed by the base station and broadcast
to each user in the downlink channel.

Optimality, convergence and performance bound of Al-
gorithm 3 can be similarly proved as in the previous two
subsections.

E. Related work on robust power control

Reference [18] initiated the study on how to reduce the
impact of new users entering the system to the SIR of the
existing links, by gradual power-up of incoming links and
adding a protection margin to the target SIR of existing links.
Here we address the issue from the alternative perspective
of D-norm robust optimization, against a range of uncer-
tainties: channel fluctuation, SIR measurement errors, and
users entering and leaving the systems. In [17] the tradeoff
between the robustness and the extra power consumed is
studied with penalty-defined formulation, while the key focus

of this paper is to study the tradeoff between robustness and
distributiveness. Moreover, the algorithm in [17] is primal-dual
based and involves centralized computation by the base station,
while Algorithm 1 we proposed has less complexity and only
requires global message passing of a single parameter.

IV. APPLICATION: DISTRIBUTED ROBUST RATE CONTROL

A. Nominal and Robust Formulations

Consider a wireline network where some links might fail
due to reasons such as human mistakes, software bugs, hard-
ware defects, or natural hazard. Network operators typically
reserve some bandwidth for backup paths. When the primary
paths fail, some or all of the traffic will be re-routed to the cor-
responding disjoint backup paths. Thus fast system recovery
schemes are required to guarantee service availability in the
presence of link failure. There are three key components for
fast system recovery [19]: identifying a backup path disjoint
from the primary path, computing network resource (such
as bandwidth) in reservation prior to link failure, detecting
the link failure in real-time and re-route the traffic. The first
component has been investigated extensively in graph theory.
The third component has been extensively studied in system
research community. Here we consider the robust rate control
and bandwidth reservation in the face of possible failure of
primary path, which is related to the second component.

First consider the nominal problem with no link failures.
Following similar notations as in Kelly’s seminal work [12],
we consider a network with S users, L links and T paths,
indexed by s, l and t, respectively. Each user is a unique flow
from one source node to one destination node. There could be
multiple users between the same source-destination node pair.
The network is characterized by the L × T path-availability
0 − 1 matrix

[D]lt =
{

dlt = 1, if link l is on path t,
0, otherwise.

and T × S primary-path-choice nonnegative matrix

[W ]ts =
{

wts, if user s uses path t as the primary path,
0, otherwise.

where wts indicates the percentage that user s allocates its rate
to primary path t, and satisfies wts > 0 and

∑
t wts = 1. Let

x, c, and y denote source rates, link capacities, and aggregated
path rates, respectively. The nominal multi-path rate control
problem is

maximize
∑

s

fs(xs) (38)

subject to Dy � c, Wx � y,

variables x � 0,y � 0,

where fs(xs) is the utility of user s, which is increasing and
strictly concave in xs.

In order to guarantee the data transmission is robust against
the link failure, each user also determines a backup path when
it joins the network. The nonnegative backup path choice
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matrix is

[B]ts =
{

bts, if user s uses path t as the backup path,
0, otherwise.

where bts indicates the maximum percentage that user s
allocates its rate to path t and satisfies bts > 0. The actual
rate allocation will be a random variable between 0 and
bts, depending on whether the primary paths fail. We further
assume that a path can only be used as either a primary path
or a backup path for the same user. The corresponding robust
multi-path routing rate allocation problem is given by

maximize
∑

s

fs(xs) (39)

subject to Dy � c,∑
s

wtsxs + gt(bt,x) ≤ yt, ∀t.

variables x � 0,y � 0 .

Here
∑

s wtsxs denotes the aggregate rate from users who
utilize path t as their primary path, and gt(bt,x) corresponds
to the protection function for the traffic from users who use
path t as their backup path, and bt is the tth row of matrix B.
There are many ways of characterizing the protection function.
Here we consider the choice of D-norm.

Let Et = {s : bts > 0,∀s} denote the set of users who
utilize path t as the backup path, and Ft,Γt

denote a subset
of Et with size Γt, where 0 ≤ Γt ≤ |Et| and controls
the tradeoff between robustness and performance. Then the
protection function is

gt(bt,x) = max
Ft,Γt⊆Et

∑
s∈Ft,Γt

btsxs,∀t. (40)

B. Distributed Algorithms

Following the approach in Section II-B, we can convert the
robust optimization problem into an equivalent problem with
only linear constraints and solve it distributively by dual-based
decompositions.

This approach, however, leads to a large amount of extra
message passing (due to the new auxiliary variables and
constraints) and is computationally expensive to calculate local
projections. In this section, we propose a fast distributed algo-
rithm based on a combination of column generation method
[20] and dual-based decomposition method.

We first show that the nonlinear constraints in Problem (39)
can be replaced by a set of linear constraints:

Proposition 2. For any path t, the constraint∑
s

wtsxs + gt(bt,x) ≤ yt, (41)

is equivalent to the following set of constraints∑
s

wtsxs +
∑

s∈Ft,Γt

btsxs ≤ yt, ∀Ft,Γt
∈ Et. (42)

Based on Proposition 2, we can convert robust optimization
problem (39) into a problem with only linear constraints.
However, the number of new linear constraints grows approx-
imately in the order of MΓt, where M is the number of

linear constraints in the nominal problem. More importantly,
we found the resultant new optimization problem is difficult
to solve by the dual decomposition method in a distributed
fashion. This motivates us to design an alternative sequential
optimization algorithm.

Let Ht = {Ft,Γt
|Ft,Γt

⊆ Et} denote the set of all subsets
of Et with size Γt. The basic idea is to iteratively generate
a set H̄t ⊆ Ht, and use the following set of constraints to
approximate (42):∑

s

wtsxs +
∑

s∈Ft,Γt

btsxs ≤ yt, ∀Ft,Γt
∈ H̄t. (43)

This leads to a relaxed approximation of Problem (39):

maximize
∑

s

fs(xs) (44)

subject to Dy � c,∑
s

wtsxs +
∑

s∈Ft,Γt

btsxs ≤ yt, ∀Ft,Γt
∈ H̄t, ∀t.,

variables x � 0,y � 0 .

Let (x∗,y∗) denote an optimal solution of (44) and (x̄, ȳ)
denote an optimal solution of (39). If H̄t = Ht, then we have∑

s fs(x∗
s) =

∑
s fs(x̄s). Even if H̄t ⊂ Ht, the two optimal

objective values can still be the same as shown in the following
theorem:

Theorem 2.
∑

s fs(x∗
s) =

∑
s fs(x̄s) if the following condi-

tion holds

gt(bt,x
∗) = max

Ft,Γt∈H̄t

∑
s∈Ft,Γt

btsx
∗
s,∀t. (45)

Next we develop a distributed algorithm (Algorithm 4) to
solve Problem (44) for a fixed H̄t for each t, which is sub-
optimal for solving Problem (39). We then design an optimal
distributed algorithm (Algorithm 5) that achieves the optimal
solution of Problem (39) by iteratively using Algorithm 4.

We first give an equivalent representation of Problem (44)
to facilitate the presentation of our distributed algorithms. For
each path t, we let Ft,Γt

(i) represent the ith element in set H̄t,
and define a group of auxiliary variables {yti, 1 ≤ i ≤ |H̄t|}.
It can be shown that

Proposition 3. Consider the case where link l is on path t,
i.e., dlt = 1. Then, given l and t, the set of constraints,∑

j:j �=t

dljyj + dltyt ≤ cl,

∑
s

wtsxs +
∑

s∈Ft,Γt

btsxs ≤ yt, ∀Ft,Γt
∈ H̄t, (46)

are equivalent to the following set of constraints∑
j:j �=t

dljyj + dltyti ≤ clti, clti = cl, 1 ≤ i ≤ |H̄t|,
∑

s

wtsxs +
∑

s∈Ft,Γt

btsxs ≤ yti, 1 ≤ i ≤ |H̄t|. (47)

With the auxiliary variables {yti} and {clti}, we can convert
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(44) into the following form,

maximize
∑

s

fs(xs) (48)

subject to D̄ȳ � c̄,∑
s

wtsxs +
∑

s∈Ft,Γt (i)

btsxs ≤ yti, 1 ≤ i ≤ |H̄t|, ,

variables x � 0,y � 0,

where ȳ = {{yti}
¯|Ht|

i=1 }T
t=1, and c̄ and D̄ are defined similarly

from c and D, respectively.
By relaxing the constraints in Problem (48) using dual

variables λ = {{{λlti}
¯|Ht|

i=1 }T
t=1}L

l=1, µ = {{µti}
¯|Ht|

i=1 }T
t=1, we

obtain the following Lagrangian,

Z(λ,µ,x, ȳ) =
∑

s

fs(xs) + λT (c̄ − D̄ȳ)+

∑
t

µti

|H̄t|∑
i=1


yti −

∑
s

wtsxs −
∑

s∈Ft,Γt (i)

btsxs


 ,

and the dual function is

Z(λ,µ) = max
x�0,ȳ�0

Z(λ,µ,x, ȳ). (49)

The optimization over x in (49) can be decomposed into
one problem for each user s:

max
xs≥0


fs(xs) −

∑
t


|H̄t|∑

i=1

utiwts +
∑

i

∑
s:s∈Ft(i)

utibts


 xs


 .

(50)

Due to the problem reformulation in Proposition 3, link l is
now associated with a group of dual variables λlti. Likewise,
path t is associated with a group of dual variables µti. Each
user s determines it transmission rate xs by considering prices
from both its primary path and backup path.

The optimization over ȳ in (49) leads to the following
relationship between dual variables,

µ = D̄
T
λ,

otherwise the dual function is unbounded.
The master dual problem that we want to solve is

max
λ�0,µ�0

Z(λ,µ) (51)

which can be solved by the subgradient method. For each dual
variable λlti, its subgradient can be calculated as

ζlti(λlti) = cl −
∑

s

wtsxs −
∑

s∈Ft(i)

btsxs, (52)

and µ = D̄
T
λ. The value of λlti will be updated using

the subgradient information correspondingly. The complete
algorithm is given as in Algorithm 4.

Algorithm 4. (Suboptimal Distributed Algorithm)

1) Set time k = 0, λ(0) = 0, and µ(0) = 0.
2) Let k = k + 1.
3) Each user s determines xs(k) by solving Problem (50).

4) Each user passes its tentative rate xs(k) to each link
associated with this user.

5) Each link l calculates the subgradients ζl(λl(k)) =
{ζlti(λlti(k)),∀t, i} as in (52).

6) If |ζ(λ)| ≤ ε, stop. Otherwise, each link l updates

λl(k + 1) = max{λl(k) + θ(k)ζl(λl(k)), 0}.
7) Each user calculates the associated dual prices µti(k +

1) =
∑

l dltλlti(k + 1) by passing messages over the tth

path from the destination to source.

Here θ(k) is the step-size at time k and ε is the stopping
criterion. At each iteration of the above algorithm, a link
only needs to send an aggregated price variable to each
user associated with this link, i.e., generating the price value
µti(k + 1) =

∑
l dltλlti(k + 1). Then each user use the

collected price variable to update its source rate. Then every
link will collect tentative decision rate x∗ from sources and
perform the subgradient projection as in (52). The number
of message passing required for the first step independent
of the parameter Γt, and the number of message passing for
the third step increases only linearly with |H̄t|. So the total
number of message passing during one iteration for one user
is O(1 + |H̄t|).

Building on Algorithm 4, we propose the optimal distributed
algorithm in Algorithm 5 to find the optimal solution of
Problem (39).

Algorithm 5. (Optimal Distributed Algorithm)

1) Each path randomly generates a set Ft,Γt
and let H̄t =

[Ft,Γt
].

2) Path t passes H̄t to every link associated with it.
3) Run Algorithm 4 to obtain a tentative result x∗.
4) The sth user passes the tentative date rate x∗

s to every
path associated with this user.

5) Rank {btsx
∗
s}s∈Et

in descending order for path t and take
the Γt biggest item to obtain a new set Ft,Γt

.
6) For the tth path, if every new generated set Ft,Γt

is
already contained in the corresponding set H̄t, then the
stopping criterion stated in Theorem 2 is satisfied, stop.

7) Otherwise, path t passes the new generated set Ft,Γt
to

every link associated with this path. Every link in the tth

path adds Ft,Γt
into H̄t, and go to step 3.

Algorithm 5 iteratively generates a group of relaxed prob-
lems to approximate the original problem (39), and eventually
converges to optimal solution. Note in the worst case we may
need to generate all Ft,Γt

∈ Ht. In practice, however, column
generation method typically converges to the optimal solution
very fast [20].

C. Numerical Results

Here we consider a simple network model with three nodes,
13 links and 13 paths, as shown in Fig. 5. Paths 1 − 12 are
single link paths, and use links 1 − 12, respectively. Path 13
consists of links 12 and 13. The first 11 paths are used as
primary paths by 11 users in the network. Path 12 is used
as the backup path by users 1 − 8, and path 13 is used as
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the backup path by user 9−11. Each user s has a logarithmic
utility function log (xs), where unit of xs is kbps. The capacity
of each link is fixed at 1Mbps.

Figure 6(a) shows the tradeoff between robustness and per-
formance. The performance is measured by the total network
utility

∑
s log (xs), and the robustness level is measured by

the number of failures that is guaranteed to be protected on
path 12, i.e., Γ12. The value of Γ13 is fixed at 3. As we see, the
performance decreases as the robustness (Γ13) increases. Also
the centralized algorithm and distributed optimal Algorithm 5
achieve the same performance.

Figure 6(b) shows the convergence behavior of the proposed
distributed suboptimal algorithm 4. Here Γ12 = Γ13 = 3. It
is seen the distributed method can quickly converge to the
optimal solution.

User 1    Primary path 

User 2    Primary path 

User 8     Primary path 

User 1 User 11 User  9 User 11

User 9     Primary path 

User 11   Primary path 

Backup path Backup path 

Fig. 5. Network Topology.

V. CONCLUSIONS

Making optimization models of communication network de-
sign robust is an important and under-explored area. This paper
initiates the study of robust formulations that preserve a large
degree of distributiveness of solution algorithms. We first de-
scribe several models for describing parameter uncertainty sets
that can lead to distributed solutions for linearly constrained
nominal problems. These models include general polyhedron,
D-norm, and ellipsoid. We then apply these models in two
representative applications. For robust power control with
channel fluctuations and user entering uncertainty, several dis-
tributive algorithms are proposed under different uncertainty
set modeling choices. The proposed algorithms globally and
geometrically converge to the optimal solution, with provable
error bounds during the transience. These algorithms can be
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Fig. 6. Convergence of the suboptimal algorithm 4

interpreted as extended versions of the nominal Foschini-
Miljanic algorithm [9]. We also characterize the tradeoff
between robustness (i.e., the size of uncertainty set) and
distributiveness (i.e., the amount of message passing needed)
both analytically and numerically. For robust rate control
under link failures, we design a fast sequential optimization
algorithm based on distributed column generation method and
dual decomposition. The algorithm can quickly converges to
the optimal solution. The tradeoff between robustness (i.e.,
the maximum of link failures allowed) and performance is
demonstrated through simulations.

The study of distributed robust optimization in general
remains wide open, with many challenging issues and possible
applications where robustness to uncertainty is as important as
optimality in the nominal model.
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