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Abstract—The binary symmetric stochastic block model deals
with a random graph of n vertices partitioned into two equal-
sized clusters, such that each pair of vertices is connected
independently with probability p within clusters and q across
clusters. In the asymptotic regime of p = a logn/n and
q = b logn/n for fixed a, b and n → ∞, we show that the
semidefinite programming relaxation of the maximum likelihood
estimator achieves the optimal threshold for exactly recovering
the partition from the graph with probability tending to one,
resolving a conjecture of Abbe et al. [1]. Furthermore, we show
that the semidefinite programming relaxation also achieves the
optimal recovery threshold in the planted dense subgraph model
containing a single cluster of size proportional to n.

I. INTRODUCTION

The community detection problem refers to finding the
underlying communities within a network using only knowl-
edge of the network topology [8]. This paper considers the
following probabilistic model for generating a network with
underlying community structures: Suppose that out of a total
of n vertices, rK of them are partitioned into r clusters of
size K, and the remaining n − rK vertices do not belong
to any clusters (called outlier vertices); a random graph G
is generated based on the cluster structure, where each pair
of vertices is connected independently with probability p if
they are in the same cluster or q otherwise. This random
graph ensemble is known as the planted cluster model [3]
with parameters n, r,K ∈ N and p, q ∈ [0, 1] such that
n ≥ rK. In particular, we call p and q the in-cluster and
cross-cluster edge density, respectively. In the special case
with no outlier vertices, i.e., n = rK, the planted cluster
model reduces to the classical stochastic block model [12],
also known as the planted partition model [4]. The planted
cluster model and its special cases have been widely used
for studying the community detection and graph partitioning
problem (see, e.g., [14], [5], [15], [2] and the references
therein). In this paper, we focus on the following particular
cases in the asymptotic regime n→∞:

• Binary symmetric stochastic block model (assuming n is
even):

r = 2, K =
n

2
, p =

a log n

n
, q =

b log n

n
, (1)
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• Planted dense subgraph model:

r = 1, K = bρnc, p =
a log n

n
, q =

b log n

n
, (2)

where a 6= b and 0 < ρ < 1 are fixed constants, and study the
problem of exactly recovering the clusters (up to a permutation
of cluster indices) from the observation of the graph G .

Exact cluster recovery under the binary symmetric stochas-
tic block model is studied in [1], [17] and a sharp recovery
threshold is found.

Theorem 1 ([1], [17]). Under the binary symmetric stochastic
block model (1), if (

√
a −

√
b)2 > 2, clusters can be

exactly recovered up to a permutation of cluster indices with
probability converging to 1; if (

√
a−
√
b)2 < 2, no algorithm

can exactly recover the clusters with probability converging to
1.

The optimal reconstruction threshold in Theorem 1 is
achieved by the maximum likelihood (ML) estimator, which
entails finding the minimum bisection of the graph, a problem
known to be NP-hard in the worst case [9, Theorem 1.3].
Nevertheless, it has been shown that the optimal recovery
threshold can be attained in polynomial time using a two-step
procedure [1], [17]: First, apply the partial recovery algorithms
in [16], [13] to correctly cluster all but o(n) vertices; Second,
flip the cluster memberships of those vertices who do not agree
with the majority of their neighbors. This two-step procedure
has two limitations: a) the partial recovery algorithms used in
the first step are sophisticated; b) the original graph needs to be
split to implement the two steps to ensure their independence.
It remains open to find a simple direct approach to achieve the
exact recovery threshold in polynomial time. It was proved in
[1] that a semidefinite programming (SDP) relaxation of the
ML estimator succeeds if (a − b)2 > 8(a + b) + 8/3(a − b).
Backed by compelling simulation results, it was further con-
jectured in [1] that the SDP relaxation can achieve the optimal
recovery threshold. In this paper, we resolve this conjecture in
the positive.

In addition, we prove that the SDP relaxation achieves the
optimal recovery threshold for the planted dense subgraph
model (2) where the cluster size K scales linearly in n. This
conclusion is in sharp contrast to the following computational
barrier established in [11]: If K grows and p, q decay sublin-
early in n, attaining the statistical optimal recovery threshold
is at least as hard as solving the planted clique problem (See
Section III for detailed discussions).



Notation: Let A denote the adjacency matrix of the
graph G, I denote the identity matrix, and J denote the all-
one matrix. We write X � 0 if X is positive semidefinite
and X ≥ 0 if all the entries of X are non-negative. Let
Sn denote the set of all n × n symmetric matrices. For
X ∈ Sn, let λ2(X) denote its second smallest eigenvalue.
For any matrix Y , let ‖Y ‖ denote its spectral norm. For any
positive integer n, let [n] = {1, . . . , n}. For any set T ⊂ [n],
let |T | denote its cardinality and T c denote its complement.
We use standard big O notations, e.g., for any sequences
{an} and {bn}, an = Θ(bn) or an � bn if there is an
absolute constant c > 0 such that 1/c ≤ an/bn ≤ c. Let
Bern(p) denote the Bernoulli distribution with mean p and
Binom(N, p) denote the binomial distribution with N trials
and success probability p. All logarithms are natural and we
use the convention 0 log 0 = 0.

II. STOCHASTIC BLOCK MODEL

The cluster structure under the binary symmetric stochastic
block model can be represented by a vector σ ∈ {±1}n such
that σi = 1 if vertex i is in the first cluster and σi = −1
otherwise. Let σ∗ correspond to the true clusters. Then the
ML estimator of σ∗ for the case a > b can be simply stated
as

max
σ

∑
i,j

Aijσiσj

s.t. σi ∈ {±1}, i ∈ [n]

σ>1 = 0, (3)

which maximizes the number of in-cluster edges minus the
number of out-cluster edges. This is equivalent to solving the
NP-hard minimum graph bisection problem. Instead, let us
consider its convex relaxation similar to the SDP relaxation
studied in [1]. Let Y = σσ>. Then Yii = 1 is equivalent to
σi = ±1 and σ>1 = 0 if and only if 〈Y,J〉 = 0. Therefore,
(3) can be recast as

max
Y,σ
〈A, Y 〉

s.t. Y = σσ>

Yii = 1, i ∈ [n]

〈J, Y 〉 = 0. (4)

Notice that the matrix Y = σσ> is a rank-one positive
semidefinite matrix. If we relax this condition by dropping the
rank-one restriction, we obtain the following convex relaxation
of (4), which is a semidefinite program:

ŶSDP = arg max
Y

〈A, Y 〉

s.t. Y � 0

Yii = 1, i ∈ [n]

〈J, Y 〉 = 0. (5)

We remark that (5) does not rely on any knowledge of the
model parameters except that a > b; for the case a < b, we
replace arg max in (5) by arg min.

Let Y ∗ = σ∗(σ∗)> and Yn , {σσ> : σ ∈
{−1, 1}n, σ>1 = 0}. The following result establishes the
optimality of the SDP procedure:

Theorem 2. If (
√
a −
√
b)2 > 2, then minY ∗∈Yn P{ŶSDP =

Y ∗} → 1 as n→∞.

III. PLANTED DENSE SUBGRAPH MODEL

In this section we turn to the planted dense subgraph model
in the asymptotic regime (2), where there exists a single cluster
of size bρNc. To specify the optimal reconstruction threshold,
define the following function: For a, b ≥ 0, let

f(a, b) =


a− τ∗ log ea

τ∗ if a, b > 0, a 6= b
a if b = 0
b if a = 0
0 if a = b

, (6)

where τ∗ , a−b
log a−log b if a, b > 0 and a 6= b. We show that if

ρf(a, b) > 1, exact recovery is achievable in polynomial-time
via SDP with probability tending to one; if ρf(a, b) < 1, any
estimator fails to recover the cluster with probability tending to
one regardless of the computational costs. The sharp threshold
ρf(a, b) = 1 is plotted in Fig. 1 for various values of ρ.
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Fig. 1: The recovery threshold: ρf(a, b) = 1 (solid curves)
for the planted dense subgraph model (2); (

√
a −
√
b)2 = 2

(dashed curve) for the stochastic block model (1).

We first introduce the maximum likelihood estimator and
its convex relaxation. For ease of notation, in this section we
use a vector ξ ∈ {0, 1}n, as opposed to σ ∈ {±1}n used
in Section II for the SBM, as the indicator function of the
cluster, such that ξi = 1 if vertex i is in the cluster and ξi = 0
otherwise. Let ξ∗ be the indicator of the true cluster. Assuming
a > b, i.e., the nodes in the cluster are more densely connected,
the ML estimation of ξ∗ is simply

max
ξ

∑
i,j

Aijξiξj

s.t. ξ ∈ {0, 1}n

ξ>1 = K, (7)

which maximizes the number of in-cluster edges. Due to the
integrality constraints, it is computationally difficult to solve



(7), which prompts us to consider its convex relaxation. Note
that (7) can be equivalently1 formulated as

max
Z,ξ
〈A,Z〉

s.t. Z = ξξ>

Zii ≤ 1, ∀i ∈ [n]

Zij ≥ 0, ∀i, j ∈ [n]

〈I, Z〉 = K

〈J, Z〉 = K2, (8)

where the matrix Z = ξξ> is positive semidefinite and rank-
one. Removing the rank-one restriction leads to the following
convex relaxation of (8), which is a semidefinite program.

ẐSDP = arg max
Z

〈A,Z〉

s.t. Z � 0

Zii ≤ 1, ∀i ∈ [n]

Zij ≥ 0, ∀i, j ∈ [n]

〈I, Z〉 = K

〈J, Z〉 = K2. (9)

We note that, apart from the assumption that a > b, the only
model parameter needed by the estimator (9) is the cluster size
K; for the case a < b, we replace arg max in (9) by arg min.

Let Z∗ = ξ∗(ξ∗)> correspond to the true cluster and define
Zn =

{
ξξ> : ξ ∈ {0, 1}n, ξ>1 = K

}
. The recovery threshold

for the SDP (9) is given as follows.

Theorem 3. Under the planted dense subgraph model (2), if

ρf(a, b) > 1, (10)

then minZ∗∈Zn P{ẐSDP = Z∗} → 1 as n→∞.

Next we prove a converse for Theorem 3 which shows that
the recovery threshold achieved by the SDP relaxation is in
fact optimal.

Theorem 4. Under the planted dense subgraph model (2), if

ρf(a, b) < 1, (11)

and the true cluster is uniformly chosen among all K-subsets
of [n], then for any sequence of estimators Ẑn, P{Ẑn =
Z∗} → 0 as n→∞.

Under the planted dense subgraph model, our investigation
of the exact cluster recovery problem thus far in this paper has
been focused on the regime where the cluster size K grows
linearly with n and p, q = Θ( logn

n ), where the statistically
optimal threshold can be attained by SDP in polynomial time.
However, this need not be the case if K grows sublinearly in
n. In fact, the exact cluster recovery problem has been studied
in [3], [11] in the following asymptotic regime:

K = Θ(nβ), p = cq = Θ(n−α), n→∞, (12)

1Here (7) and (8) are equivalent in the following sense: for any feasible ξ
for (7), Z = ξξ> is feasible for (8); for any feasible Z, ξ for (8), either ξ or
−ξ is feasible for (7).

where c > 1 and α, β ∈ (0, 1) are fixed constants. The sta-
tistical and computational complexities of the cluster recovery
problem depend crucially on the value of α and β (see [11,
Figure 2] for an illustration):
• β > 1

2 + α
2 : the planted cluster can be perfectly recovered

in polynomial-time with high probability via the SDP
relaxation (9).2

• 1
2 + α

4 < β < 1
2 + α

2 : the planted cluster can be detected
in linear time with high probability by thresholding
the total number of edges, but it is conjectured to be
computationally intractable to exactly recover the planted
cluster.

• α < β < 1
2 + α

4 : the planted cluster can be exactly recov-
ered with high probability via ML estimation; however,
no randomized polynomial-time solver exists conditioned
on the planted clique hardness hypothesis.3

• β < α: regardless of the computational costs, no al-
gorithm can exactly recover the planted cluster with
vanishing probability of error.

Consequently, assuming the planted clique hardness hypoth-
esis, in the asymptotic regime of (12) when α ∈ (0, 23 )
(and, quite possibly, the entire range (0, 1)), there exists
a significant gap between the information limit (recovery
threshold of the optimal procedure) and the computational
limit (recovery threshold for polynomial-time algorithms). In
contrast, in the asymptotic regime of (2), the computational
constraint imposes no penalty on the statistical performance,
in that the optimal threshold can be attained by SDP relaxation
in view of Theorem 3.

IV. PROOFS

The proofs of our main theorems are sketched. The excluded
proofs can be found in the full paper [10]. Our analysis
of the SDP relies on two key ingredients: the spectrum of
Erdős-Rényi random graphs and tail bounds for the binomial
distributions, which we first present.

A. Spectrum of Erdős-Rényi random graph

Let A denote the adjacency matrix of an Erdős-Rényi
random graph G, where nodes i and j are connected in-
dependently with probability pij . Then E [Aij ] = pij . Let
p = maxij pij and assume p ≥ c0

logn
n for any constant

c0 > 0. We aim to show that ‖A− E [A]‖2 ≤ c′
√
np with

high probability for some constant c′ > 0. To this end, we
establish the following more general result where the entries
need not be binary-valued.

2In fact, an even looser SDP relaxation than (9) has been shown to exactly
recover the planted cluster with high probability for β > 1

2
+ α

2
. See [3,

Theorem 2.3].
3Here the planted clique hardness hypothesis refers to the statement that for

any fixed constants γ > 0 and δ > 0, there exist no randomized polynomial-
time tests to distinguish an Erdős-Rényi random graph G(n, γ) and a planted
clique model which is obtained by adding edges to k = n1/2−δ vertices
chosen uniformly from G(n, γ) to form a clique. For various hardness results
of problems reducible from the planted clique problem, see [11] and the
references within.



Theorem 5. Let A denote a symmetric and zero-diagonal
random matrix, where the entries {Aij : i < j} are inde-
pendent and [0, 1]-valued. Assume that E [Aij ] ≤ p, where
c0 log n/n ≤ p ≤ 1 − c1 for arbitrary constants c0 > 0 and
c1 > 0. Then for any c > 0, there exists c′ > 0 such that for
any n ≥ 1, P{‖A− E [A]‖2 ≤ c′

√
np} ≥ 1− n−c.

Let G(n, p) denote the Erdős-Rényi random graph model
with the edge probability pij = p for all i, j. Results similar
to Theorem 5 have been obtained in [7] for the special case of
G(n, c0 logn

n ) for some sufficiently large c0. In fact, Theorem 5
can be proved by strengthening the combinatorial arguments in
[7, Section 2.2]. We provide an alternative proof using results
from random matrices and concentration of measures and a
seconder-order stochastic comparison argument from [18].

Furthermore, we note that the condition p = Ω(log n/n) in
Theorem 5 is in fact necessary to ensure that ‖A− E [A]‖2 =
ΩP(
√
np) (see [11, Appendix A] for a proof). The condition

p ≤ 1− c1 can be dropped in the special case of G(n, p).

B. Tail of the Binomial Distribution

Let X ∼ Binom
(
m, a logn

n

)
and R ∼ Binom

(
m, b lognn

)
for m ∈ N and a, b > 0, where m = ρn + o(n) for some
ρ > 0 as n→∞. We need the following tail bounds.

Lemma 1 ([1]). Assume that a > b and kn ∈ N such that
kn = (1 + o(1)) logn

log logn . Then

P {X −R ≤ kn} ≤ n−ρ(
√
a−
√
b)

2
+o(1).

Lemma 2. Let kn, k′n ∈ [m] be such that kn = τρ log n +
o(log n) and k′n = τ ′ρ log n + o(log n) for some 0 ≤ τ ≤ a
and τ ′ ≥ b. Then

P {X ≤ kn} = n−ρ(a−τ log ea
τ +o(1)) (13)

P {R ≥ k′n} = n−ρ(b−τ
′ log eb

τ′+o(1)). (14)

C. Proof of Theorem 2

The following lemma provides a deterministic sufficient
condition for the success of SDP (5) in the case a > b.

Lemma 3. Suppose there exist D∗ = diag {d∗i } and λ∗ ∈ R
such that S∗ , D∗ − A + λ∗J satisfies S∗ � 0, λ2(S∗) > 0
and

S∗σ∗ = 0. (15)

Then ŶSDP = Y ∗ is the unique solution to (5).

Proof: The Lagrangian function is given by

L(Y, S,D, λ) = 〈A, Y 〉+ 〈S, Y 〉 − 〈D,Y − I〉 − λ〈J, Y 〉,

where the Lagrangian multipliers are denoted by S � 0,
D = diag {di}, and λ ∈ R. Then for any Y satisfying the
constraints in (5),

〈A, Y 〉
(a)

≤ L(Y, S∗, D∗, λ∗) = 〈D∗, I〉 = 〈D∗, Y ∗〉

= 〈A+ S∗ − λ∗J, Y ∗〉 (b)= 〈A, Y ∗〉,

where (a) holds because 〈S∗, Y 〉 ≥ 0; (b) holds because
〈Y ∗, S∗〉 = (σ∗)>S∗σ∗ = 0 by (15). Hence, Y ∗ is an optimal
solution. It remains to establish its uniqueness. To this end,
suppose Ỹ is an optimal solution. Then,

〈S∗, Ỹ 〉 = 〈D∗ −A+ λ∗J, Ỹ 〉 (a)= 〈D∗ −A, Ỹ 〉
(b)
= 〈D∗ −A, Y ∗〉=〈S∗, Y ∗〉 = 0.

where (a) holds because 〈J, Ỹ 〉 = 0; (b) holds because
〈A, Ỹ 〉 = 〈A, Y ∗〉 and Ỹii = Y ∗ii = 1 for all i ∈ [n]. In
view of (15), since Ỹ � 0, S∗ � 0 with λ2(S∗) > 0, Ỹ
must be a multiple of Y ∗ = σ∗(σ∗)>. Because Ỹii = 1 for all
i ∈ [n], Ỹ = Y ∗.

Proof of Theorem 2: The theorem is proved first for
a > b. Let D∗ = diag {d∗i } with

d∗i =

n∑
j=1

Aijσ
∗
i σ
∗
j (16)

and choose any λ∗ ≥ p+q
2 . It suffices to show that S∗ =

D∗ −A+ λ∗J satisfies the conditions in Lemma 3 with high
probability.

By definition, d∗i σ
∗
i =

∑
j Aijσ

∗
j for all i, i.e., D∗σ∗ =

Aσ∗. Since Jσ∗ = 0, (15) holds, that is, S∗σ∗ = 0. It
remains to verify that S∗ � 0 and λ2(S∗) > 0 with probability
converging to one, which amounts to showing that

P
{

inf
x⊥σ∗,‖x‖2=1

x>S∗x > 0

}
→ 1. (17)

Note that E [A] = p−q
2 Y ∗ + p+q

2 J − pI and Y ∗ = σ∗(σ∗)>.
Thus for any x such that x ⊥ σ∗ and ‖x‖2 = 1,

x>S∗x

= x>D∗x− x>E [A]x+ λ∗x>Jx− x> (A− E [A])x

= x>D∗x− p− q
2

x>Y ∗x+

(
λ∗ − p+ q

2

)
x>Jx+ p

− x> (A− E [A])x

(a)

≥ x>D∗x+ p− x> (A− E [A])x

≥ min
i∈[n]

d∗i + p− ‖A− E [A] ‖. (18)

where (a) holds since λ∗ ≥ p+q
2 and 〈x, σ∗〉 = 0. It follows

from Theorem 5 that ‖A − E [A] ‖ ≤ c′
√

log n with high
probability for a positive constant c′ depending only on a.
Moreover, note that each di is equal in distribution to X −R,
where X ∼ Binom(n2 −1, a logn

n ) and R ∼ Binom(n2 ,
b logn
n )

are independent. Hence, Lemma 1 implies that

P
{
X −R ≥ log n

log logn

}
≥ 1− n−(

√
a−
√
b)2/2+o(1).

Applying the union bound implies that mini∈[n] d
∗
i ≥

logn
log logn

holds with probability at least 1 − n1−(
√
a−
√
b)2/2+o(1). It

follows from the assumption (
√
a−
√
b)2 > 2 and (18) that the

desired (17) holds, completing the proof in the case a > b. For
the case a < b, we replace the arg max by arg min in the SDP



(5), which is equivalent to substituting−A for A in the original
maximization problem, as well as the sufficient condition in
Lemma 3. Set the dual variable d∗i according to (16) with −A
replacing A and choose any λ∗ ≥ −p+q2 . Then (15) still holds
and (18) changes to x>S∗x ≥ mini∈[n] d

∗
i −p−‖A−E [A] ‖,

where mini∈[n] d
∗
i ≥

logn
log logn holds with probability at least

1 − n1−(
√
a−
√
b)2/2+o(1) by Lemma 1 and the union bound.

Therefore, in view of Theorem 5 and the assumption (
√
a −√

b)2 > 2, the desired (17) still holds, completing the proof
for the case a < b.

D. Proof of Theorem 3

Lemma 4. Suppose there exist D∗ = diag {d∗i } ≥ 0, B∗ ∈ Sn
with B∗ ≥ 0, λ∗ ∈ R, and η∗ ∈ R such that S∗ , D∗−B∗−
A+ η∗I + λ∗J satisfies S∗ � 0, λ2(S∗) > 0, and

S∗ξ∗ = 0,

d∗i (Z
∗
ii − 1) = 0, ∀i,
B∗ijZ

∗
ij = 0, ∀i, j. (19)

Then ẐSDP = Z∗ is the unique solution to (9).

The theorem is proved first for a > b. Recall τ∗ =
a−b

log a−log b if a, b > 0 and a 6= b. Let τ∗ = 0 if a = 0 or b = 0.
Choose λ∗ = τ∗ log n/n, η∗ = ‖A−E [A] ‖, D∗ = diag {d∗i }
with

d∗i =

{ ∑
j∈C∗ Aij − η∗ − λ∗K if i ∈ C∗

0 otherwise
.

Define b∗i , λ∗ − 1
K

∑
j∈C∗ Aij for i /∈ C∗. Let B∗ ∈ Sn be

given by

B∗ij = b∗i 1{i/∈C∗,j∈C∗} + b∗j1{i∈C∗,j /∈C∗}.

The following claims show that (S∗, D∗, B∗) satisfies the
conditions in Lemma 4 with probability tending to one, and
hence the theorem follows in the case a > b in view of
Lemma 4.

Claim 1. (S∗, D∗, B∗) satisfies (19).

Claim 2. With probability converging to 1, D∗ ≥ 0, B∗ ≥ 0.

Claim 3. With probability converging to 1, S∗ � 0 with
λ2(S∗) > 0.

For the case a < b, the proof is similar and can be bound
in [10].

E. Proof of Theorem 4

If a = b, then the cluster is unidentifiable from the graph.
Next, we prove the theorem first for the case a > b. If b = 0,
then perfect recovery is possible if and only if the subgraph
formed by the nodes in cluster, which is G(K, a log n/n),
contains no isolated node.4 This occurs with high probability
if ρa < 1 [6]. Next we consider a > b > 0.

4To be more precise, if there is an isolated node in the cluster C∗, then
the likelihood has at least n−K maximizers, which, in turn, implies that the
probability of exact recovery for any estimator is at most 1

n−K .

Since the prior distribution of the true cluster C∗ is uniform,
the ML estimator minimizes the error probability among all
estimators and thus we only need to find when the ML
estimator fails. Let e(i, S) ,

∑
j∈S Aij denote the number

of edges between node i and nodes in S ⊂ [n]. Let F denote
the event that mini∈C∗ e(i, C

∗) < maxj /∈C∗ e(j, C
∗), which

implies the existence of i ∈ C∗ and j /∈ C∗, such that the set
C∗\{i} ∪ {j} achieves a strictly higher likelihood than C∗.
Hence P {ML fails} ≥ P {F}. Next we bound P {F} from
below.

By symmetry, we can condition on C∗ being the first K
nodes. Let T denote the set of first b ρn

log2 n
c nodes. Then

min
i∈C∗

e(i, C∗) ≤ min
i∈T

e(i, C∗) ≤ min
i∈T

e(i, C∗\T )+max
i∈T

e(i, T ).

(20)
Let E1, E2, E3 denote the event that maxi∈T e(i, T ) <

logn
log logn , mini∈T e(i, C

∗\T ) + logn
log logn ≤ τ∗ρ log n and

maxj /∈C∗ e(j, C
∗) ≥ τ∗ρ log n, respectively. In view of (20),

we have F ⊃ E1∩E2∩E3. Then, P {F} → 1 due to Claim 4,
completing the proof in the case a > b > 0.

Claim 4. P {Ei} → 1 for i = 1, 2, 3.

The proof of the theorem for the case a < b is similar and
can be found in [10].

REFERENCES

[1] E. Abbe, A. S. Bandeira, and G. Hall. Exact recovery in the stochastic
block model. arXiv:1405.3267, 2014.

[2] Y. Chen, S. Sanghavi, and H. Xu. Clustering sparse graphs.
arXiv:1210.3335, 2012.

[3] Y. Chen and J. Xu. Statistical-computational tradeoffs in planted
problems and submatrix localization with a growing number of clusters
and submatrices. 2014, available at http://arxiv.org/abs/1402.1267.

[4] A. Condon and R. M. Karp. Algorithms for graph partitioning on the
planted partition model. Random Struct. Algorithms, 18(2):116–140,
Mar 2001.

[5] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborova. Asymptotic
analysis of the stochastic block model for modular networks and its
algorithmic applications. Physics Review E, 84:066106, 2011.

[6] P. Erdös and A. Rényi. On random graphs, I. Publicationes Mathemat-
icae (Debrecen), 6:290–297, 1959.

[7] U. Feige and E. Ofek. Spectral techniques applied to sparse random
graphs. Random Struct. Algorithms, 27(2):251–275, Sept. 2005.

[8] S. Fortunato. Community detection in graphs. Physics Reports,
486(3):75–174, 2010.

[9] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-
complete graph problems. Theoret. Comput. Sci., 1(3):237–267, 1976.

[10] B. Hajek, Y. Wu, and J. Xu. Achieving exact cluster recovery threshold
via semidefinite programming. arXiv:1412.6156, Nov. 2014.

[11] B. Hajek, Y. Wu, and J. Xu. Computational lower bounds for community
detection on random graphs. arXiv:1406.6625, 2014.

[12] P. W. Holland, K. B. Laskey, and S. Leinhardt. Stochastic blockmodels:
First steps. Social Networks, 5(2):109–137, 1983.
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