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Abstract—We pose the problem of energy-optimized lossless
compression and analyze a simple compression framework in
which energy consumption is given by a weighted sum of
two components, respectively proportional to the compression
rate and to the average number of bit flips that occur in
a certain hardware register. The latter component, which we
term variability, is meant to serve as a proxy for the energy
consumption of the computations underlying the compression
step. Our results include bounds on the rate-variability tradeoff
for symbol-wise compression of discrete memoryless sources
and a characterization of the asymptotically optimum tradeoff
between rate and variability for block-wise compression.

I. INTRODUCTION

In a wide range of data acquisition systems, the goal of
lossless compression is to reduce transmission or storage
energy. However, since better compression is obtained at the
expense of more complicated encoding operations, optimizing
for compression alone may degrade the overall energy effi-
ciency of the system. Indeed, in [1], [2] it is shown through
extensive experiments on an embedded processor that with
several typical compression tools (LZ77, LZW, BWT, PPM),
there is a net energy increase when compression is applied
before transmission relative to the transmission of uncom-
pressed data, as a result of computation. These works conclude
that optimizing compression efficiency alone is not necessarily
the best approach to minimizing total energy consumption.
This conclusion applies even more when the goal is to reduce
storage energy, since the relative weight of computation is
larger in this case. This motivates the problem of designing
efficient compressors to minimize total energy consumption.
Such energy-optimized compressors could prove useful for
embedded systems with severely limited resources, e.g., sensor
networks and cyber-physical systems.

As a first step toward a rigorous study of energy-optimized
lossless compression, we consider a simple framework for
lossless compression in which code dependent energy con-
sumption is predominantly comprised of two components. The
first component is proportional to the compression rate (e.g.,
storage, transmission, etc.), while the second is proportional
to the code variability, i.e., the average number of bit flips
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required to write a new codeword to a register. This energy
model corresponds to an encoder based on a lookup table
as it takes into account the switching activities in the digital
system induced by the dynamics of encoding operations. It is
motivated by the fact that the power consumption of CMOS
circuits consists of static and dynamic power dissipation,
where the latter dominates [3] and is proportional to the
transition frequency of the logical signal. Excessive switching
activity may cause larger peak and average power dissipation
[4]. This model has been studied in coding for low-power I/O
[5], where switching on the data bus is the main contributor
to the power dissipation. Note that our energy consumption
model does not include decompression and is, therefore, of
primary relevance to systems in which decompression occurs
infrequently or is carried out in a separate platform without
resource constraints. Clearly, there are scenarios in which
decompression energy consumption is important, but we leave
its study for future work.

In the above framework, we model the total average energy
expenditure of the compressor as a weighted sum of average
codeword length and code variability. To gain insight into
designing energy-optimized compressors, it is a fundamental
problem to determine the optimal tradeoff between com-
pression rate and variability. The main contribution of this
paper consists of non-asymptotic bounds on the achievable
rate-variability region that are asymptotically tight in the
memoryless case. The performance of practical codes is also
analyzed and compared to the optimal frontier. To simplify
the presentation, we focus on prefix codes. However, the same
conclusions hold for all uniquely decodable codes [6, p. 92]
that are not necessarily prefix-free, as well as for near-lossless
fixed-length codes.

In contrast to traditional lossless compression problems
which focus on codeword length assignment, code variability
depends on individual binary codewords. In fact, there can ex-
ist two prefix codes with the same pointwise codeword lengths
but different variability. Another difficulty of our problem
comes from the non-linear effect of code concatenation on
variability: the codeword length of the concatenation of two
codes is the sum of the constituent codeword lengths, while
variability does not follow this linear relationship.

A related problem, known as malleable coding, is proposed
in [7], which also concerns minimizing not only the average



codeword length, but also the cost when changing the rep-
resentation to match an updated message with respect to a
general edit cost. The solution of the malleable coding problem
is left open in [7]. Our result provides an explicit solution
under the restrictions of identical fixed-length component
codes, Hamming distance, and a decoupled (independent)
modification channel.

In our analysis of the optimal tradeoff between compression
rate and variability in Section IV, we will allow for the
possibility of compressing symbols in blocks of length n. The
achievability result will require n to grow, which, in our simple
compression framework (as explained in more detail in the
next section), would translate into an exponentially growing
lookup table. Thus, for sufficiently large n, the exponentially
growing energy expended on table lookups, as dictated by,
e.g., growing wire lengths, which is not included in our model,
may dominate the energy consumption corresponding to rate
and variability. In view of this observation, the achievability
analysis is relevant primarily as a contribution to the malleable
coding setting of [7], where variability may also model other
costs of data storage such as device wear, of significance to
flash-based and emerging non-volatile storage technologies.
The converse result, on the other hand, which holds for all
block lengths n, is very much relevant also to the energy
optimization problem as well.

II. SETUP

Consider a lossless data compression framework that works
according to the following steps:

Compressor c Rt(1) Rt(2) Rt(3) Rt(4) . . .
Xt

1) The compressor fetches a data symbol from the incoming
data stream;

2) Using the binary representation of the symbol as the
address, a codeword is read from the codebook stored
in a lookup table;

3) The compressor writes the codeword to a binary register
from left to write, without overwriting bits beyond the
end of the codeword;

4) The content of the register, up through the end of the last
codeword, is stored to non-volatile memory or transmit-
ted.

The energy consumption of the first step is independent of
the coding method. The cost of the second and fourth step is
affine in the codeword length, with the addressing step being
largely independent of the code, while the cost of the third step
is proportional to the code variability, which is the average
number of bit flips required to update the register. Therefore,
we can model the expected code-dependent portion of the total
energy consumption as a weighted sum of code length and
variability.

To formulate the problem mathematically, let X be a
random variable taking values in a finite alphabet X . Let
c : X → {0, 1}∗ be a prefix code and C = c(X). Denote

by L = `(C) the codeword length and `max the maximal
length of codewords. Let C(i) be the ith bit of C if i ≤ L;
otherwise C(i) = Λ (empty symbol), so that C(i) can take on
three values. The average codeword length of c can be written
as

L = E [L] =
∑
i≥1

P {L ≥ i} (1)

=
∑
i≥1

(P {C(i) = 0}+ P {C(i) = 1}). (2)

Next, we define the code variability. Consider a discrete
memoryless source (DMS) {Xt} with marginal distribution
PX . Denote Ct = c(Xt). Let Rt(i) be the ith bit of the
register at time t, with R0(i) = 0 for each i. According to
our framework, for t > 0, the contents of the register satisfy
the following Markov dynamics:

Rt(i) =

{
Rt−1(i) `(Ct) < i

Ct(i) `(Ct) ≥ i,
(3)

with transition probability from 0 to 1 given by:

P {Rt(i) = 1|Rt−1(i) = 0}
= P {`(Ct) ≥ i, Ct(i) = 1|Rt−1(i) = 0} (4)
= P {`(Ct) ≥ i, Ct(i) = 1} (5)
= P {C(i) = 1} . (6)

Similarly, the transition probability from 1 to 0 is
P {C(i) = 0}. Therefore, assuming state probabilities are row
vectors, for each i, the Markov chain {Rt(i) : t ≥ 1} is time-
homogeneous with transition matrix(

P {C(i) 6= 1} P {C(i) = 1}
P {C(i) = 0} P {C(i) 6= 0}

)
. (7)

Hence, the stationary distribution π(i) = (π(i)0, π(i)1) exists,
and is given by

π(i)0 =
P {C(i) = 0}

P {C(i) = 0}+ P {C(i) = 1}
, (8)

π(i)1 =
P {C(i) = 1}

P {C(i) = 0}+ P {C(i) = 1}
. (9)

Letting R`t = [Rt(1), . . . , Rt(`)], the variability of code c
is defined as the number of bits we need to flip per encoding
operation in the steady state:

V = lim
t→∞

E
[
dH(R`(Ct+1)

t , Ct+1)
]

(10)

=
∑
i≥1

(π(i)0P {C(i) = 1}+ π(i)1P {C(i) = 0}) (11)

=
∑
i≥1

2 P {C(i) = 0}P {C(i) = 1}
P {C(i) = 0}+ P {C(i) = 1}

, (12)

where dH denotes the Hamming distance and the last equality
follows from (8) – (9). The memory of the rewrite process is
captured by the stationary distribution. From (2) and (12), it is
interesting to notice that V and L only depend on the marginal
distribution of the compressor output bits. In the special case
of fixed-length codes, the variability is simply the expected
Hamming distance between two independent codewords.



III. BOUNDS ON THE ACHIEVABLE (L,V)-REGION

For a given random variable X , the optimization of energy
consumption for our simple framework and energy model
will depend on the region of achievable (L,V)-pairs of all
prefix codes. The following upper bound follows directly from
applying the inequality

√
uv ≤ u+v

2 to (2) and (12).

Theorem 1. For any code,

V

L
≤ 1

2
, (13)

with equality if and only if, for each i,

P {C(i) = 1} = P {C(i) = 0}. (14)

To establish a lower bound on V we use the following
lemma.

Lemma 1.

H(P ) ≤
∑
i≥1

P {L ≥ i}h(P {Ci = 1|L ≥ i}). (15)

Proof: This result can be proved via induction on the
maximal codeword length. Instead, we give an operational
proof by constructing a lossless compression scheme for the
DMS P , whose average compression rate is the right-hand
side of (15), hence not exceeding H(P ). In this scheme,
we first apply the compressor c to X1, . . . , Xn independently
sampled from P , to obtain variable-length strings C1, . . . , Cn.
Then, for each i, 1 ≤ i ≤ `max, we form a binary word
Bi consisting of {Ct(i) : Lt ≥ i} ordered in increasing t,
and apply a Huffman code to Bi. Clearly, C1, . . . , Cn can
be reconstructed from {Bi, 1 ≤ i ≤ `max} since, due to
the prefix property of the underlying code c, the unspecified
locations i in which Ci = Λ are implicitly available. Since
the average code length is no more than H(Bi) + 1 bits,
and H(Bi) = nP {L ≥ i}h(P{C(i) = 1|L ≥ i}), the
expected normalized total code length is upper bounded by
`max/n +

∑
i P {L ≥ i}h(P{C(i) = 1|L ≥ i}), the right-

hand side of (15) plus an arbitrarily small term.
We also define the functions v : [0, 1] → [0, 1

2 ] and w :
[0, 1]→ [0, 1

2 ] by

v(p) = 2p(1− p), (16)

w(z) = v(h−1(z)), (17)

where h−1 : [0, 1]→ [0, 1
2 ] is the inverse of the binary entropy

function h on [0, 1
2 ]. Lemma 2 below, whose proof is omitted,

states properties of these functions.

Lemma 2. 1) w is a strictly increasing and strictly convex
function, with w(0) = 0 and w(1) = 1

2 .
2) For any a > 0, the function ua : [a,∞)→ (0, a2 ] defined

by ua(x) = x · w
(
a
x

)
is strictly decreasing and strictly

convex, with ua(a) = a
2 .

In view of (12), (16), and the equality between the addends
of (1) and (2), V takes the form

V =
∑
i≥1

P {L ≥ i}v(P {C(i) = 1|L ≥ i}). (18)

Theorem 2. For any prefix code,

V

L
≥ w

(
H(P )

L

)
, (19)

where L ≥ H(P ).

Proof: Using (18),

V

L
=
∑
i≥1

P {L ≥ i}
L

v(P {C(i) = 1|L ≥ i}) (20)

=
∑
i≥1

P {L ≥ i}
L

w(h(P {C(i) = 1|L ≥ i})) (21)

≥ w

(∑
i≥1 P {L ≥ i}h(P {C(i) = 1|L ≥ i})

L

)
(22)

≥ w

(
H(P )

L

)
, (23)

where (22) is due to the convexity of w and (1), while (23)
follows from the monotonicity of w and Lemma 1.

We note that Theorems 1 and 2 together imply that any
code that exactly attains the source entropy will necessarily
have variability equal to half of the entropy.

IV. ACHIEVABLE (L,V)-REGIONS FOR DMS
In this section, we allow for the possibility of compressing

symbols in blocks of length n and determine the optimal
asymptotic achievable tradeoff between L and V. We consider
the following two types of achievable regions. The first type
consists of operating points of all prefix codes.

Definition 1. Let Xn be independently sampled from P . The
collection of all operating points of prefix codes for Xn is
defined as

R(n)(P ) =
{(L(c)

n
,
V(c)
n

)
: c : Xn → {0, 1}∗

is a prefix code
}
. (24)

The collection of operating points of all prefix codes with
different blocklength is defined as

R∗(P ) = cl
⋃
n≥1

R(n)(P ). (25)

The second type involves the limit in the blocklength.

Definition 2. A pair (L̃, Ṽ) is said to be achievable for P if
there exists a sequence of prefix codes cn : Xn → {0, 1}∗,
such that

lim sup
n→∞

L(cn)
n

= L̃, lim sup
n→∞

V(cn)
n

= Ṽ. (26)

The achievable region R(P ) is the collection of all achievable
pairs for P .



By Definitions 1 and 2, we have

R(P ) = cl lim sup
n→∞

R(n)(P ) (27)

= cl
⋂
N≥1

⋃
n≥N

R(n)(P ) ⊆ R∗(P ). (28)

Notice that even though a code on blocks of length i defines
a code on blocks of length 2i by concatenation, the sequence
of regions R(n)(P ) is not necessarily nested, due to the
complicated dynamics of code concatenation and its non-linear
effect on the variability. Indeed, while the codeword length
of the concatenation of two codes is the sum of individual
code lengths, the variability is in general strictly larger than
the sum of individual code variabilities. This property follows
from the fact that the dynamics of two constituent codes are
intertwined when concatenated. Thus, it is surprising that, as
the next theorem shows, R∗(P ) and R(P ) are in fact equal.

Theorem 3.

R∗(P ) = R(P ) (29)

=
{

(l, v) : l ≥ H(P ), w

(
H(P )
l

)
≤ v

l
≤ 1

2

}
, (30)

where w is defined in (17).

If we normalize both L and V by the source entropy H(P ),
denoting the normalized pair by (L̄, V̄), the achievable region
is independent of the source statistics (see Fig. 1):

R̄ =
{

(l̄, v̄) : l̄ ≥ 1, w

(
1
l̄

)
≤ v̄

l̄
≤ 1

2

}
. (31)

Therefore, changing the source distribution only scales the
achievable region in Fig. 1 but does not alter its shape. Note
that the vertex (1, 1

2 ) corresponds to optimal compression.
In (31) the “efficient frontier”, corresponding to the lower
boundary, is of primary interest for optimal codes, although the
upper bound can help assess how much better a particular code
is relative to the worst possible tradeoff. Notice that the shape
of this boundary follows from the second part of Lemma 2.

1 2 3 4
L

0.5

1.0

1.5

2.0

V

Fig. 1. Normalized achievable region R̄.

Proof of Theorem 3: The converse part of the proof
follows from Theorems 1 and 2.

We shall prove the achievability of the lower boundary. For
any ε > 0, let

T εn , {xn : |Ĥ(xn)−H(P )| ≤ ε}, (32)

where Ĥ(xn) denotes the empirical entropy of xn. Let M ε
n de-

note the collection of types P of sequences in T εn and TP the set
of sequences xn with type P. Thus, T εn =

⋃
P∈Mε

n
TP and |M ε

n|
is upper bounded by (n+1)|X |. Moreover, P {Xn ∈ T εn} → 1
and, by [8, Chapter 1, Lemma 2.3] and (32), for any P ∈M ε

n

and sufficiently large n,

n(H(P )− 2ε) ≤ log |TP| ≤ n(H(P ) + ε) (33)

where logarithms are taken to base 2. Clearly, the lower
boundary can be parametrized as{(

H(P )
h(α)

,
H(P )v(α)
h(α)

)
: 0 < α ≤ 1

2

}
. (34)

For any 0 < α ≤ 1
2 , let

L′(α) =
(
H(P ) + 2ε
h(α)

)
n. (35)

We prove the existence of a prefix code cα : Xn → {0, 1}∗
such that

L(cα) = L′(α) + o(n) (36)
V(cα) ≤ v(o(1) + α)L′(α) + o(n). (37)

To this end, we encode T εn as follows, so that the marginal
distribution of codeword bits is close to α:1

Step 1: If xn /∈ T εn, encode it with ‘0’ followed by an
uncompressed representation of xn using n log |X | bits.

Step 2: If xn ∈ TP with P ∈ M ε
n, encode it with a ’1’

followed by xn encoded according to the following constant
weight code. Let

`(α) = h−1((1− δ)h(α))L′(α) (38)

where δ=ε(1 − ε)/(H(P ) + 2ε). Clearly, `(α)/L′(α) < α,
and it is easy to see, by (33) and (35), that the set L′ of
L′(α)-bit binary vectors with Hamming weight `(α) is, for
sufficiently large n, larger than |TP|. The constant weight code
of interest is then obtained by injectively mapping TP into
L′ in such a way that all vectors in L′ that are cyclic shifts
of a mapped vector are included in the image before other
vectors. The resulting code is thus nearly a cyclic code, in the
sense that with the exception of an exponentially negligible
fraction of at most L′(α)− 1 codewords, all cyclic shifts of a
codeword are also codewords. Following the constant weight
encoding, encode the type of xn using a fixed-length code of
|X | log(n + 1) = o(n) bits. Then append it to the codeword
obtained above.

Note that for xn ∈ T εn, the codeword length is fixed at
L′(α) + o(n). Since P {Xn /∈ T εn} → 0, the above code
cα encodes Xn losslessly with average length (36). Next,

1For simplicity, we loosely avoid truncating various quantities to integer
values. The derivations can be made completely rigorous with respect to this
issue.



we analyze its normalized variability. First, we bound the
conditional marginal distribution of the codeword bits C(i),
2≤i≤L′(α)+1. Since P {L ≥ i} ≥ P {Xn ∈ T εn} = 1− o(1),

P {C(i) = 1|L ≥ i} =
P {C(i) = 1}

P {L ≥ i}
(39)

= P {C(i) = 1}+ o(1) (40)

and

P {C(i) = 1}
= P {C(i) = 1, Xn /∈ T εn}+ P {C(i) = 1, Xn ∈ T εn} (41)

≤
∑

P∈Mε
n

P {C(i) = 1|Xn ∈ TP}P {Xn ∈ TP}+ o(1) (42)

=
∑

P∈Mε
n

(
`(α)
L′(α)

+ o(1)
)

P {Xn ∈ TP}+ o(1) (43)

≤ αP {Xn ∈ T εn}+ o(1) ≤ α+ o(1) (44)

where (43) follows from the fact that all sequences of a given
type have the same probability and are thus conditionally
uniformly distributed among each cyclic shift of each code-
word with constant weight `(α) (with the small exceptional
set noted above contributing the new o(1) term, which is
independent of i), and (44) follows from the fact noted above
that `(α)/L′(α) < α.

Note that for i>L′(α)+1+|X | log(n+1), P {L ≥ i} =
o(1) and for i>max{L′(α)+1+|X | log(n+1), 1+n log |X |},
P {L ≥ i} = 0. Since v is increasing in [0, 1

2 ], by (18) and the
preceding considerations, we obtain (37), which implies the
achievability of

(
H(P )+2ε
h(α) +o(1), (H(P )+2ε)v(o(1)+α)

h(α) +o(1)
)

.
By the arbitrariness of ε > 0, the continuity of v(·), the
parametrization (34), and α ∈ (0, 1

2 ], the lower boundary is
achievable.

V. MINIMIZING THE TOTAL ENERGY CONSUMPTION

Minimizing the total energy consumption over all possible
prefix codes, we define

E(λ) , min {λv + l : (l, v) ∈ R∗(P )} (45)

where λ is the cost of bit flipping relative to the average cost
of codeword length. Therefore, E(λ) is simply the Fenchel-
Legendre transform of the (strictly convex) lower boundary of
region R∗(P ) in (30), namely

E(λ) = H(P ) min
l̄≥1

λ l̄ w

(
1
l̄

)
+ l̄. (46)

Interestingly, there is a critical slope at l̄ = 1:

d
[
l̄ · w

(
1
l̄

)]
dl̄

∣∣∣∣∣
l̄=1

=
1
2
− loge 2 ≈ −0.193, (47)

which is the most negative slope on the lower boundary. This
implies that the minimizer of (45) is the vertex (1, 1/2) for all
λ ≤ 2

2 loge 2−1 ≈ 5.17. Therefore, E(λ) =
(
λ
2 + 1

)
H(P ) for

all λ ≤ 5.17, that is, if the cost of variability is sufficiently
cheap (i.e., cheaper than 5.17 times the cost of codeword
length), the best strategy is to minimize compression rate.

VI. PERFORMANCE OF PRACTICAL CODES

We apply the family of Golomb codes [9] with parameter
M ranging from 1 to 256 to truncated geometric distributions
and plot its rate-variability tradeoff in Fig. 2. Numerical results
suggest that Golomb codes operate close to the boundary.
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(a) p = 0.15
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(b) p = 0.3

Fig. 2. Operating points of Golomb codes (M = 1, . . . , 256) with
respect to truncated geometric distribution P = [1 − p, (1 − p)p, . . . , (1 −
p)pN−2, pN−1] and N = 256.

The unary code is a special case of Golomb codes (M = 1).
As a sanity check of Theorem 3, Fig. 3 plots the operating
points of the unary code of length 8 for randomly generated
sources. Of course, all points lie in the region given by
Theorem 3. From numerical results, we see that the unary
code operates fairly close to the optimal boundary if the
source alphabet is sorted according to decreasing probabilities;
otherwise, the gap to optimal performance is substantial.
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Fig. 3. Operating points of unary code of length 8 for 500 instances of
randomly generated sources.
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