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The Gaussian-Noise Case
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Abstract—Assuming additive Gaussian noise, a general suffi-
cient condition on the input distribution is established to guarantee
that the ratio of mutual information to signal-to-noise ratio (SNR)
goes to one half nat as SNR vanishes. The result allows SNR-de-
pendent input distribution and side information.

Index Terms—Gaussian noise, low-power regime, minimum
mean-square error (MMSE), mutual information, signal-to-noise
ratio (SNR).

I. INTRODUCTION

T HE asymptotics of input-output mutual information of a
class of channels with weak input has been investigated in

the past (see [1] and references therein). This paper studies the
mutual information between a random variable and its obser-
vation in Gaussian noise with low signal-to-noise ratio (SNR).
The fundamental role of the derivative of mutual information at
zero SNR was recognized by Shannon, who observed in [2] that
a binary antipodal input is first-order optimal for the Gaussian
channel in the low-SNR regime in the sense that it achieves the
derivative of the capacity at zero SNR. In [3] and [4] it is shown
that the zero-SNR derivative of mutual information determines
the minimum energy per information bit required for reliable
communication in the wideband regime. In the Gaussian noise
case, this derivative1 is equal to one half nat2 [6], [7]. This re-
sult has proven to be useful in the treatment of capacity and
spectral efficiency of fading channels (see, e.g., [6], [8]). It has
also been used to obtain the derivative of the mutual informa-
tion of a Gaussian model with respect to its SNR by translating
the problem at any positive SNR to that of zero SNR with side
information [7].

The asymptotic expansion of mutual information of additive
Gaussian noise models with weak input has been addressed in
the literature under various assumptions. The proof due to Lapi-
doth and Shamai [6, Lemma 5.2.1] makes use of a truncation
argument and then applies [1, Theorem 1] to the peak-limited
input signal. The peak-limited result is in turn a special case
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1A finer Taylor series expansion is found in [5].
2Throughout the paper, natural logarithms are adopted and information units

are nats.

of Prelov’s work [9, Lemma 2.2], which requires existence of
input moments of th order for some . Furthermore, a
simplified argument was given in [7] without delving into the
technicalities required to justify the interchange of expectation
and limit.

The goal of this paper is to present a rigorous, self-contained
proof of the asymptotic result allowing a more general setup
than those considered before, in which the input distribution can
depend on the SNR, and an SNR-dependent side information
may be available to the receiver. Unlike the proof in [10] for
[7, Lemma 1 ], the proof here uses basic inequalities in lieu of
convergence theorems of integrals, and in fact yields nonasymp-
totic bounds on the first-order expansion of the mutual informa-
tion. The generalized result is also useful in the context of the
SNR-incremental channel [7], where the side information is de-
pendent on the SNR, so that the conditional input distribution is
also SNR-dependent.

II. MAIN RESULT

Theorem 1: Let be a collection of random variables
which satisfy

(1)

Suppose also that is uniformly integrable, i.e.

(2)

Then, as

(3)

where is independent of .

Remark 1: The first-order approximation of the mutual infor-
mation in (3) depends only on the SNR, and is independent of
the input distribution otherwise.

Remark 2: For Gaussian noise, all the first-order expansions
shown in the literature, in particular, [9], [6], [7], [11]–[13], [4]
are special cases of Theorem 1. For instance:

• In [7, Lemma 1], there is a special case where the input
is independent of the gain . In this case, the

uniform integrability reduces to .
• In [9, Theorem 2.2] requires for some

while Theorem 1 implies that is sufficient.
• The first-order expansion in [12, Theorem 1] assumes that

the input distribution has a density that is differentiable at
zero.
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• Reference [14, Lemma III-1] deals with more general
transformations subject to certain regularity conditions,
which includes Gaussian channel as a particular case; how-
ever, it only applies to input distributions with bounded
support. In this special case, our derivation reveals the
stronger result that the term in (3) is in fact .

Higher-order expansion of mutual information are obtained in
[15] for Gaussian noise, [16] for non-Gaussian noise, and [17]
for general models under various technical conditions.

Remark 3: The uniform integrability condition in Theorem 1
is not superfluous. For example, consider the following input:

, (4)

whose square is not uniformly integrable. Then
as . However, as shown in Appendix A, 3

(5)

hence (3) does not hold for this sequence of input distributions.
Theorem 1 can be generalized to Gaussian models when side

information about the input is available to the receiver. Denote
by the conditional variance of given the random
variable , which is a function of . Its expectation is the
MMSE of estimating from the side information

(6)

(7)

The following result generalizes Theorem 1.

Theorem 2: Let be a collection of jointly dis-
tributed random variables satisfying:

(8)

Suppose that the uniform integrability condition (2) is satisfied.
Let be independent of . Then, as

(9)

The remainder of this paper is devoted to a simple, rigorous
proof of Theorem 2, which also establishes Theorem 1 and [7,
Lemma 1] as special case. Peak-limited inputs are first treated
in Section III. In Section IV, we extend the result to arbitrarily
distributed inputs by sending the peak limit to infinity.

III. PEAK-LIMITED INPUT

Lemma 1: Fix . Let be any jointly dis-
tributed random variables where takes values on an arbitrary
alphabet and the essential supremum of is finite

(10)

3We use the standard asymptotic notations: ���� � ������� if
��� ��	 � �, ���� � 
������ if ���� � � ������, ���� �

������� if ���� � � ������ and ���� � 
������, ���� � ������� if
��� � �.

Then

(11)

where with independent of
.

Proof: To establish the upper bound (11), which depends
only on and the peak amplitude of the input , we need the
following basic inequalities proved in Appendix B:

1) For any

(12)

2) Let . Then for any

(13)

and
(14)

where .
3) For any

(15)

Without loss of generality, we assume that . Since
the right-hand side (RHS) of (11) does not depend on the side
information , it suffices to consider the case where the side
information is absent, i.e., is independent of .

Denote the standard normal density by

(16)

The input-output conditional distribution is Gaussian

(17)

whose average over is the output density

(18)

(19)

where

(20)

Clearly
(21)

Since

(22)

(23)

the mutual information can be expressed as

(24)

(25)
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where we have defined

(26)

to decouple the expectation over (or ) and the expectation
over .

The remainder of the proof is devoted to showing

(27)

which, in view of (25), implies the desired result

(28)

Upper Bound: In view of (10) and (20), we have

(29)

Using the fact that and then (14) with ,
we can write

(30)

(31)

where the last step uses the first inequality in (29). Plugging (20)
and (29) into (31), we obtain

(32)
Taking expectation of (32) yields the upper bound:4

(33)

(34)

where we have used (22)

(35)

and

(36)

Lower Bound: Applying (15) yields5

(37)

In view of (13) with and (29), we have

(38)

On the other hand

(39)

4Note that directly applying Hoeffding’s inequality [18, Lemma 1] to (26)
only gives an � ��� upper bound.

5Although the RHS of (37) is equal to � �
� �

, we prefer to use (37)

because, as we shall see in the remainder of Section III, a much looser bound
for the denominator will be enough.

Combining (20), (38), and (39) yields

(40)

(41)

In view of (20) and (10), we have , which
implies

(42)

Plugging (41) and (42) into (37) gives

(43)

(44)

where we have used (36) repeatedly. By (12) and (20)

(45)

(46)

Similar to (35), we have
. Substituting (46) into (44) and taking expectation yield

(47)

(48)

(49)

where we have used (22), (23), (10), and (36).

IV. PROOF OF THEOREM 2

To prove Theorem 2, we find upper and lower bounds on the
conditional mutual information and show
that they coincide. Conditioned on , the mutual informa-
tion cannot be greater than if the input were Gaussian with the
same conditional variance: for all

(50)

By Jensen’s inequality and (8)

(51)

(52)
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as . It remains to show the lower bound

(53)

By Lemma 1 and (8), (53) holds for peak-limited inputs, since

(54)

where . Next we prove that truncating
beyond a threshold has vanishing impact on the conditional
mutual information and the MMSE as .

To streamline notations, define

(55)

By the uniform integrability of , we have

(56)

Next define to be a random variable distributed according to
the distribution of conditioned on the event , i.e.,
define the joint distribution of according to

(57)

for all measurable subsets and . Note that the denominator
in (57) is positive for all sufficiently large . This can be seen
from (56) and Chebyshev’s inequality

(58)

We proceed by noting that

(59)

(60)

(61)

(62)

where (60) follows from the chain rule of mutual information
and (62) follows from the definition of . In view of Lemma 1

(63)

Next we show that and are close
when the threshold is large. Since

(64)

is a suboptimal estimator of , we have

(65)

(66)

(67)

(68)

where (67) is because, conditioned on the event ,
has the same distribution as , and (68) is due to (55). Substi-
tuting (63) and (68) into (62) yields

(69)

for all . In view of (8), we have

(70)

By the arbitrariness of and (56), we obtain the desired result
in (53). Hence the proof of Theorem 2 is complete.

V. CONCLUDING REMARKS

This paper uses elementary inequalities to establish rigor-
ously the first-order approximation of the input-output mutual
information of Gaussian channels with weak input. In the spe-
cial case of peak-limited inputs, the bounds are non-asymptotic
in the signal-to-noise ratio.

The original incremental-SNR channel described in [7] leads
directly to the right derivative with respect to nonzero SNR. To
treat the left derivative, we let the stronger channel have SNR
equal to and let the slightly degraded channel have SNR equal
to . If we consider the mutual information or estimation
error conditioned on the weaker observation, care has to be taken
because the weaker observation is made at an SNR dependent
on the small decrement . Nonetheless, the new theorems in this
paper address such derivatives rigorously.

The key results in this paper also apply to some other infor-
mation measures. Consider the same model and assumptions as
in Theorem 2 with an additional condition that has finite es-
sential supremum. In view of Lemma 1, we have

(71)

Let be Gaussian with the same mean and variance as .
Using the following decomposition of mutual information:

(72)

(73)
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we arrive at the following estimate of the conditional non-Gaus-
sianness of :

(74)

which slightly improves the result in [14, Lemma III-1].

APPENDIX A
PROOF OF (5)

Denote by the estimate of the binary input based on
with the smallest error probability

(75)

where and . Let denote
the binary entropy function. Then

(76)

(77)

(78)

(79)

(80)

(81)

(82)

where (82) follows from

(83)

Then (5) follows from the fact that and the
fraction in (82) vanishes.

APPENDIX B
PROOF OF (12)–(15)

By Taylor’s theorem with remainder of Lagrange form [19],
there exists between 0 and , such that

(84)

which implies (12). Similarly, we have the following:

(85)

(86)

In view of (85), it suffices to show (14) for . Let

(87)

Furthermore, by Taylor’s theorem with remainder of integral
form [19]

(88)

Therefore is increasing on . Then for all

(89)

which implies (14). Inequality (13) follows analogously as

(90)

is an increasing function in on .
To prove (15), define

(91)

which is increasing on because

(92)

Then

(93)

which implies (15).
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