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Abstract—Denote by Cm(snr) the Gaussian channel capacity
with signal-to-noise ratio snr and input cardinality m. We show
that as m grows, Cm(snr) approaches C(snr) = 1

2
log(1 + snr)

exponentially fast. Lower and upper bounds on the exponent
are given as functions of snr. We propose a family of input
constellations based on the roots of the Hermite polynomials
which achieves exponential convergence.

I. INTRODUCTION

We define Cm(snr) as the capacity of the additive-noise
Gaussian channel channel with average power and input
cardinality constraints:

Cm(snr) = sup
E[X2]≤1

|supp(PX)|≤m

I(X, snr) (1)

where
I(X, snr) , I(X;

√
snrX +N) (2)

with snr > 0 and N a standard normal random variable
independent of X . The operational meaning of Cm(snr) is
the maximal reliable communication rate over the Gaussian
channel using the best m-point constellation (modulation
scheme). It is practically relevant to investigate Cm(snr) since
the constellation size is usually a proxy for its complexity.

It is easy to show that as the constellation cardinality m
grows, the capacity tends the usual Gaussian channel capacity,
that is,

Cm(snr)↗ C(snr) ,
1
2

log(1 + snr) (3)

for any snr ≥ 0. The fundamental question of how fast we
can approach the Gaussian channel capacity at a given SNR
by increasing constellation size was raised in [1]. To address
this question, we define the capacity gap as

Dm(snr) = C(snr)− Cm(snr). (4)

Note that the difference in mutual information achieved by a
given input and its Gaussian counterpart can be expressed in
terms of relative entropy between outputs:

D(
√

snrX +N ||
√

snrΦX +N) = I(ΦX , snr)− I(X, snr)
(5)

where ΦX is a Gaussian random variable with the same mean
and variance as X . Then

Dm(snr) = inf
E[X2]=1

|supp(PX)|≤m

D(
√

snrX +N || N (0, 1 + snr)).

(6)

Observe that the density of
√

snrX + N is the mixture of
m translated standard normal density. The reference measure
in (6) is the Gaussian distribution with the same mean and
variance as the first distribution. This is known also as the non-
Gaussianness. Therefore, determining Dm(snr) boils down to
a non-linear approximation problem, whose goal is to approx-
imate the optimal output distribution N (0, 1 + snr), a flatter
Gaussian distribution, using an m-term standard Gaussian
location mixture, and the approximation error is gauged by
the relative entropy.

Using a simple MMSE bound, it is shown in [1, Section VI]
that Dm(snr) = O

(
logm
m

)
, achieved by uniformly quantizing

a truncated Gaussian. The goal of this paper is to study the
optimal construction and show that the optimal convergence
rate to the Gaussian capacity is in fact exponential. Lower and
upper bounds on the optimal exponent are given as follows:

Theorem 1.

2 log
(

1 +
1

snr

)
≤ lim inf

m→∞

1
m

log
1

Dm(snr)
(7)

≤ lim sup
m→∞

1
m

log
1

Dm(snr)
(8)

≤ 2 log
(

1 +
2

snr

)
(9)

To appreciate the implication of Theorem 1, let us suppose
the optimal exponent E(snr) , limm→∞

1
m log 1

Dm(snr) exists.
As snr grows, more points are needed to maintain the same
order of approximation. Therefore E(·) must be a strictly
decreasing function, such that E(0+) = ∞ and E(∞) = 0.
Both the lower and upper bounds in Theorem 1 satisfy these
intuitive requirements. Moreover, we have E(snr) = Θ

(
1

snr

)
in the high-SNR regime.

Approximation by location mixture dates back to Wiener’s
Tauberian theorem [2], which states that the linear subspace



spanned by translates of a given function is dense in L2(Rd)
if and only if the zeros of its Fourier transform have zero
Lebesgue measure. This result applies in particular to Gaus-
sian mixtures. The order of approximation and constructive
algorithms are studied in approximation theory, neural network
and statistics community, for example, [3], [4], [5], [6], [7],
etc. Barron [3] studied approximation by location and scale
mixture of sigmoidal functions and showed that the worst
case error of approximating a class of functions on Rd by
m-term mixtures is O

(
1√
m

)
, independent of the dimension.

Using moment matching, Ghosal and van der Vaart [6] showed
that Gaussian mixtures can approximate the convolution of
a Gaussian and a sub-Gaussian with exponentially small
error term. However, no explicit construction is given nor is
the achievable exponent analyzed. Moreover, it is unknown
whether exponential convergence is optimal.

Finding a good input distribution amounts to approximating
the standard Gaussian distribution by discrete distributions,
while the quality of approximation is measured by the non-
Gaussianness of the convolution of the discrete distribution
with a standard Gaussian. Convolution blurs the difference be-
tween distributions. It is because of the smoothing effect of the
Gaussian convolution that exponentially small approximation
error can be achieved. In contrast, directly approximating a
Gaussian distribution by discrete distributions is much harder,
in the sense that the relative entropy or total variation dis-
tance is always at extreme (infinity or two respectively). In
terms of other weaker distances (e.g., Kolmogorov distance
or Wasserstein distance), the approximation error also decays
much more slowly according to Θ

(
1
m

)
[8].

II. OPTIMAL QUADRATURE

In this section we give a brief introduction to optimal
quadrature in a probabilistic setup. This construction plays a
key role in finite-constellation problems. Let Xm be a simple
random variable with m atoms, whose distribution is given by

PXm =
m∑
i=1

wimδxim , (10)

specified by the support xm = (x1m, . . . , xmm) ∈ Rm
and weights wm = (w1m, . . . , wmm) ∈ Rm+ such that∑m
i=1 wim = 1.
Given m ∈ N and a real-valued random variable X with

probability density w, we want to find an Xm of the form
(10) to match as many moments of X as possible. Formally,
let ΠN denote the collection of all polynomials of degree no
more than N . Define N∗(m) to be the maximal N such that
there exists some Xm such that

E [f(X)] = E [f(Xm)] (11)

holds for all f ∈ ΠN . In the language of numerical analysis,
the distribution of Xm gives a quadrature rule, an approximate
way to compute integration with respect to w∫

R
f(x)w(x)dx =

m∑
i=1

wimf(xim) (12)

m Hm(x) xm wm

1 x 1 1
2 x2 − 1 (−1, 1) (1/2, 1/2)

3 x3 − 3x (−
√

3, 0,
√

3)
(

1
6
, 2
3
, 1
6

)
TABLE I

THE HERMITE POLYNOMIALS AND GAUSS QUADRATURE.

that is exact for polynomials of degree no more than N .
In one-dimensional space, this problem was solved by

Gauss, who showed that

N∗(m) = 2m− 1 (13)

and the optimal quadrature is constructed by placing the atoms
at the roots of the mth orthogonal polynomial with respect to
weight w, known as the Gauss quadrature [9, Section 3.6].
The optimality of (13) can be understood by matching the
number of equations to the degrees of freedom in Xm.

Next we focus on the case where X is standard Gaussian
with density ϕ(x) , 1√

2π
e−

x2
2 . Let Hm denote the mth

Hermite polynomial1 [10, Section 5.5]:

Hm(x) =
(−1)m

ϕ(x)
dmϕ(x)

dxm
(14)

=
[m2 ]∑
k=0

(−1)k(2k − 1)!!
(
m

2k

)
xm−2k. (15)

The sequence {Hm} forms an orthogonal basis for
L2(R, ϕ(x)dx), with∫

R
Hm(x)Hn(x)ϕ(x)dx = m! δm,n. (16)

For each even (odd resp.) m, Hm is an even (odd resp.)
function, with m real simple roots [9, Theorem 3.6.10].

The Gauss quadrature with respect to ϕ is uniquely given
as follows [9, Theorem 3.6.12], [10, (15.3.6)]:

Theorem 2. Let XQ
m be distributed according to (10), where

x1m, . . . , xmm denote the roots of Hm and

wim =
(m− 1)!

mH2
m−1(xim)

. (17)

Then (11) holds for all f ∈ Π2m−1.

Due to the symmetry of the Hermite polynomials, XQ
m is

also symmetric, with a bell-shaped distribution [11]. For each
odd m, there is an atom at zero. The distribution of XQ

m

for m ≤ 3 are given in Table I. Fig. 1 shows the seven-
point quadrature. For higher-order quadrature formulae, see
[12, Table 25.10].

Remark 1. Some asymptotic properties of the Gauss quadra-
ture XQ

m is summarized as follows:

1The sequence {Hm} are called the probabilists’ Hermite polynomials, to
avoid confusion with the orthogonal polynomials weighted by e−x2

, known
as the physicists’ Hermite polynomials [10].
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Fig. 1. The seven-point Gauss quadrature and scaled version of H7.

• The peak amplitude
∥∥XQ

m

∥∥
∞ is given by the largest root

of Hm, which satisfies 2
√
m + o

(
1√
m

)
[10, Theorem

6.32, p. 131].
• Because XQ

m can be understood as an m-point fine
quantization of a Gaussian random variable, its entropy
grows according to H(XQ

m) = 1
2 logm(1 + o (1)) [13].

III. PROPERTIES OF FINITE-CONSTELLATION CAPACITY

A. Existence of capacity-achieving input distribution

Denote by M be the collection of all probability measures
on (R,B). Let

Mm = {P ∈M : E [X] = 0,E
[
X2
]
≤ 1, |supp(PX)| ≤ m}.

(18)
It can be shown that Mm is weakly compact. Since

sup
PX∈Mm

E
[
X2
]
≤ 1, (19)

by [1, Theorem 9], PX 7→ I(X, snr) is weakly continuous
restricted on Mm, hence achieving its maximum. Therefore,
we have

Theorem 3. For each m and each snr > 0, Cm(snr) =
maxPX∈Mm

I(X, snr).

It should be noted that Theorem 3 does not state that the
optimal input distribution is unique. Had uniqueness been
established, it would follow that the optimal input distribution
is symmetric.

B. Monotonicity and convergence

The following properties are straightforward from defini-
tions and bounds on mutual information.

Theorem 4. (m, snr) 7→ Cm(snr) is increasing in each
argument when the other argument is fixed, upper bounded
by

Cm(snr) ≤ min
{

logm,
1
2

log(1 + snr)
}
. (20)

As a result of the I-MMSE relationship [14], the mono-
tonicity of snr 7→ Cm(snr) is strict, because for any non-
deterministic X ,

dI(X, snr)
dsnr

=
1
2
mmse(X|

√
snrX +N) > 0. (21)

We conjecture that m 7→ Cm(snr) is also strictly increasing.
The next result establishes the asymptotic normality of the

capacity-achieving input distribution as the constellation size
grows. The proof hinges on the weak lower semicontinuity of
relative entropy [15].

Theorem 5. For fixed snr > 0,

lim
m→∞

Cm(snr) =
1
2

log(1 + snr). (22)

Moreover, as m→∞, the optimal input distribution P ∗m,snr →
N (0, 1) weakly.

IV. LOW AND HIGH-SNR ASYMPTOTICS OF
FINITE-CONSTELLATION CAPACITY

In this section we consider the asymptotics of finite-
constellation capacity and optimal input distribution in both
low and high-SNR regimes when the constellation size is fixed.
The following result shows that the optimal constellation in the
high-SNR limit is the equilattice, proposed by Ungerboeck in
[16] and analyzed subsequently by Ozarow and Wyner [17]
in terms of mutual information. We establish its optimality
in the sense that it achieves the high-SNR finite-constellation
capacity.

Theorem 6. For fixed m ≥ 2, as snr→ 0,

logm− Cm(snr) = O
(√

snr · e−
3snr

4(m2−1)

)
. (23)

Moreover, as snr → ∞, P ∗m,snr converges weakly to the
equiprobable distribution Um on a uniformly spaced constel-
lation Em ⊂ R, given by

Em =

{{
2i∆m : i = 1−m

2 , . . . , 0, . . . , m−1
2

}
m odd{

(2i+ 1)∆m : i = −m2 , . . . , 0, . . . ,
m−2

2

}
m even,

(24)
where

∆m =

√
3

m2 − 1
. (25)

Proof sketch: Since I(X, snr) → H(X) as snr → ∞,
the optimal input must be equiprobable. Let X̂(Y ) denote the
optimal detector of X given Y . Then

P
{
X 6= X̂

}
= O

(
Q(−dmin

√
snr/2)

)
, (26)

where dmin denotes the minimum pairwise distance in the
constellation of X . Therefore X must be supported on the
m-point configuration that maximizes the minimum distance
subject to the average power constraint, which is the uniformly
spaced constellation Em. The rest of the proof follows from
applying Fano’s inequality.
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Next we show that the Gaussian quadrature is optimal in
the low-SNR regime and give an asymptotic expansion finite-
constellation capacity.

Theorem 7. For fixed m ≥ 2, as snr→∞,

C(snr)− Cm(snr) = Θ(snr2m). (27)

Moreover, as snr → ∞, P ∗m,snr converges weakly to the m-
point Gauss quadrature defined in Theorem 2.

Proof sketch:
Step 1. Using the I-MMSE relationship, it can be shown that

I(X, ·) defined in (2) is smooth on R+ if and only of
X has all moments [18], which, in particular, holds
for discrete random variable with finite support. This
allows us to write I(X, snr) as the Taylor expansion
at snr = 0 up to arbitrarily high order.

Step 2. Prove that the snrk coefficient is a polynomial of the
first k moments of X . This is the key argument of the
proof.

Step 3. Since X∗ ∼ N (0, 1) is the natural maximizer of
I(X, snr) for any snr > 0, it maximizes all coeffi-
cients simultaneously. To put it in other terms, the
distribution that maximizes the mth coefficient subject
to the first m − 1 coefficients being optimal is the
distribution that has the same mth moment as the
Gaussian.

Step 4. Now given m points, the optimal distribution maxi-
mizes the mutual information by matching as many
moments of Gaussian as possible. By Theorem 2, the
m-point Gauss quadrature XQ

m match the first 2m−1
moments. Therefore we have C(snr) − Cm(snr) =
O
(
snr2m

)
. Since it can be computed that

E
[
(X∗)2m

]
− E

[
(XQ

m)2m
]

= m!, (28)

we conclude that C(snr)− Cm(snr) = Ω(snr2m).

By integrating the Taylor expansion of MMSE in [18, (61)],
we obtain the Taylor expansion of I(X, snr) as follows: given
E [X] = 0 and E

[
X2
]

= 1,

I(X, snr) =
log e

2

[
snr − 1

2
snr2 + (2− (EX3)2)

snr3

6

−
(
15− 12(EX3)2 − 6 EX4 + (EX4)2

) snr4

24

]
+ O

(
snr5

)
(29)

For m = 2, it is easy to see that the optimal input is
equiprobably distributed on {±1} for all snr, which is exactly
the 2-point Gauss quadrature XQ

2 . In view of (28) and (29),
we have

C(snr)− C2(snr) =
log e
12

snr4 + O
(
snr5

)
. (30)

Note that the snr4 coefficient is quadratic in E
[
X4
]

and
uniquely maximized by E

[
X4
]

= 3, the fourth moment of the
standard Gaussian. For m = 3, the 3-point Gauss quadrature

has the same first five moments and achieves a capacity gap
of Θ(snr6).

Remark 2. As Shannon [19] observed, BPSK (antipodal
signaling) achieves capacity in the low-SNR regime. Theorem
7 provides a finer quantitative justification of its optimality,
in the sense that BPSK coincides with the 2-point Gauss
quadrature and achieves the Gaussian channel capacity up to
the third-order term.

Theorem 7 gives an optimality characterization of the
Gauss-quadrature constellation in the low-SNR regime. Sur-
prisingly, when the cardinality is large, this constellation
achieves exponentially small gap to the capacity for all SNR
(see Section V).

V. LOWER BOUNDS ON FINITE-CONSTELLATION CAPACITY

In order to bound the relative entropy, we define the
following distances between probability measures [20]:

• The Hellinger distance between P and Q is

H(P,Q) =

√∫
(
√

dP −
√

dQ)2. (31)

• The χ2-distance between P and Q is

χ2(P,Q) =
∫ (

dP
dQ
− 1
)2

dQ. (32)

• The total variation distance between P and Q is

V (P,Q) =
∫
|dP − dQ|, (33)

which is equal to the L1 distance between their respective
densities with respect to a dominating measure.

Except for the χ2-distance, the above definitions are metrics on
the space of probability measures. Together with the relative
entropy, they satisfy the following bounds:

Lemma 1.
• [6, (2.4)]

H2(P,Q) ≤ V (P,Q) ≤ 2H(P,Q). (34)

• Csiszár-Kullback-Kemperman inequality:

D(P ||Q) ≥ log e
2

V 2(P,Q). (35)

• [20, p. 429]

H2(P,Q) log e ≤ D(P ||Q) ≤ χ2(P,Q) log e. (36)

Next we will work with the χ2-distance which allows us to
take a Hilbert-space approach and facilitates computation.
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A. Upper bounds

For PXm ∈ Mm, denote the density of the channel output
Ym =

√
snrXm +N by

pm(y) = E
[
ϕ(y −

√
snrXm)

]
. (37)

Then the ideal output density (m =∞) is given by

p∞(y) = E
[
ϕ(y −

√
snrX∞)

]
= ϕ1+snr(y), (38)

where X∞ ∼ N (0, 1) and ϕσ2(y) , 1
σϕ
(
y
σ

)
denotes the

density of N (0, σ2).
Let {γk}k≥0 be an orthonormal basis of L2(R,dy). Then

ψk ,
√
p∞γk forms an orthonormal basis for L2

(
R, 1

p∞
dy
)

.

Observe that pm ∈ L2
(
R, 1

p∞
dy
)

for each m. This is obvious
for m =∞. For m ∈ N, note that the likelihood ratio is upper
bounded by

pm
p∞

(y)

= E
[
exp

(
− (y −Xm)2

2
+

y2

2(1 + snr)

)]
(39)

= E

[
exp

(
− snr

2(1 + snr)

(
y − 1 + snr√

snr
Xm

)2

+
X2
m

2

)]
(40)

≤ E
[
exp

(
X2
m

2

)]
, (41)

hence ∫
p2
m

p∞
dy ≤ E

[
exp

(
X2
m

2

)]
<∞. (42)

Expanding pm under the basis {ψk}, we have

χ2(pm, p∞) = ‖pm − p∞‖2L2(R, 1
p∞ dy) (43)

=
∑
k≥0

| 〈pm, ψk〉 − 〈p∞, ψk〉 |2. (44)

Note that by Fubini’s theorem and (37) and (38),

〈pm, ψk〉 =
∫
pm
√
p∞γk

1
p∞

dy (45)

=
∫

E
[
ϕ(y −

√
snrXm)

] γk√
p∞

(y)dy (46)

= E
[
ηk(
√

snrXm)
]
, (47)

where we define
ηk , ϕ ∗ γk√

p∞
. (48)

Plugging (47) into (44), we have

χ2(pm, p∞) =
∑
k≥0

∣∣E [ηk(
√

snrXm)
]
− E

[
ηk(
√

snrX∞)
]∣∣2 ,
(49)

which implies that in order for the output density pm to ap-
proximate the Gaussian density p∞ in the sense of χ2-distance,
the expectation of each ηk under Xm must approximate that
under the standard Gaussian X∞.

We choose the basis {γk} carefully so that it is easy to
evaluate the convolution in (48) as well as the expectation of
ηk under the Gaussian measure. In view of (16), we choose
the following orthonormal basis:

γk(y) =

√
ϕ1+snr(y)

k!
Hk

(
y√

1 + snr

)
. (50)

Then by the convolution formula of Hermite polynomials [21,
7.374.8, p. 804], the convolution in (48) is given by

ηk(y) =
1√
k!

(
snr

1 + snr

) k
2

Hk

(
y√
snr

)
. (51)

By the orthogonality of the Hermite polynomials, for all k ≥ 1,
we have E [Hk(X∞)] = 0, hence

E
[
ηk(
√

snrX∞)
]

= 0. (52)

Also, η0 ≡ 1. In view of (36) and (51), plugging (52) into
(49) yields

D(pm||p∞) ≤ χ2(pm, p∞) log e (53)

=
∑
k≥1

log e
k!

(
snr

1 + snr

)k
|E [Hk(Xm)]|2 . (54)

B. Achievability by Gauss Quadrature

Since Hk is a polynomial of degree k, we immediately
see from (54) that choosing the input to match the Gaussian
moments will yield a small non-Gaussianness. To fulfill this
requirement, a natural choice is the Gauss quadrature. Next
we prove a non-asymptotic upper bound on the capacity gap
based on this scheme.

Theorem 8. For any m ∈ N and snr > 0,

Dm(snr) ≤ C(snr)− I(XQ
m, snr) (55)

≤ 4(1 + snr)
(

snr

1 + snr

)2m

(56)

Proof: Note that E
[
Hk(XQ

m)
]

= 0 for all odd k by sym-
metry. By definition of Gauss quadrature, E

[
Hk(XQ

m)
]

= 0
for all k ≤ 2m− 1. Therefore by (54), we have

χ2(pm, p∞) =
∑
k≥m

1
(2k)!

(
snr

1 + snr

)2k ∣∣E [H2k(XQ
m)
]∣∣2 .

(57)

Next we estimate the error term on higher-order moments of
the Gaussian quadrature. By Cramér’s inequality [21, p. 997],

|Hk(y)| ≤ κ
√
k!e

y2

4 , (58)

where κ ≈ 1.086 is an absolute constant. Therefore∣∣E [H2k(XQ
m)
]∣∣ ≤ κ√(2k)!E

[
exp

(
(XQ

m)2

4

)]
. (59)

Note that (XQ
m)2 → X2

∞ in distribution and X2
∞ is χ2

1-
distributed with density pX2

∞
(z) = 1√

2πz
e−

z
2 . Since X2

∞
has an exponential tail with exponent 1

2 , by [22, Theorem

5



1], the moment generating function E
[
exp

(
t(XQ

m)2
)]

con-
verges to E

[
exp

(
tX2
∞
)]

= 1√
1−2t

for all t < 1
2 . Therefore

E
[
exp

(
(XQ

m)2

4

)]
→
√

2. Moreover, it can be shown that the
convergence is from below. Thus in view of (59) and (57), we
have

χ2(pm, p∞) ≤ 2κ2
∑
k≥m

(
snr

1 + snr

)2k

, (60)

where 2κ2 ≈ 2.36.
Fig. 2 shows the numerical value of the exponent achieved

by the Gauss quadrature, that is,

lim
m→∞

1
m

log
1

C(snr)− I(XQ
m, snr)

, (61)

together with the lower and upper bounds in Theorem 1. We
see that the performance of Gauss quadrature is near optimal.
It is possible to improve the upper bound in Theorem 8, since
using the Cramér inequality in (59) overestimates the error
term of higher-order moments. More refined analysis entails
exploiting the asymptotic expansion of Hermite polynomials
and its oscillatory behavior.

10 20 30 40
snr

0.5

1.0

1.5

2.0

Exponent

Lower bound

Upper bound

Gauss quadrature

Fig. 2. Bounds on the optimal exponent limm→∞
1
m

log 1
Dm(snr)

.

VI. CONVERSES

In this section we give several lower bounds on the capacity
gap and sketch the proof of the converse part of Theorem 1.

A. Lower bound via L2 distances

Note that (36) provides a lower bound on the output non-
Gaussianness via the Hellinger distance, which, however, does
not work well with the convolution structure of the output
density in (37). Instead, we use the L2 distance which allows
us to take a similar orthogonal-expansion approach as in
Section V-A.

Note that for bounded densities, L2 distance is dominated
by the Hellinger distance. From (37) and (38), we see that

‖pm‖∞ = supy pm(y) ≤ 1√
2π

. Thus,

‖pm − p∞‖22 =
∫

(pm − p∞)2dy (62)

≤ 4√
2π

∫
(
√
pm −

√
p∞)2dy (63)

=
4√
2π
H(pm, p∞)2, (64)

which implies

D(pm||p∞) ≥
√

2π log e
4

‖pm − p∞‖22 . (65)

Next we show that

lim sup
m→∞

1
m

log
1

‖pm − p∞‖22
≤ 2 log

(
1 +

2
snr

)
, (66)

which, together with (65), leads to the converse part of
Theorem 1.

Proof sketch: Let

αk(y) =

√
ϕ 1

2
(y)

k!
Hk(
√

2y). (67)

Then {αk}k≥0 forms an orthonormal basis on L2(R,dy).
Since pm is square integrable, similar to the derivation in
Section V-A, we have

‖pm − p∞‖22
=
∑
k≥0

|〈pm, αk〉 − 〈p∞, αk〉|2 (68)

=
∑
k≥0

∣∣E [ϕ ∗ αk(
√

snrXm)
]
− E

[
ϕ ∗ αk(

√
snrX∞)

]∣∣2
(69)

=
∑
k≥0

1√
π2k+1k!

∣∣E [ζk(
√

snrXm)
]
− E

[
ζk(
√

snrX∞)
]∣∣2 ,
(70)

where we have used [21, 7.374.6, p. 803],

ϕ ∗ αk(y) =
1

2
k+1
2 π

1
4
√
k!
ζk(y) (71)

with ζk(y) , yke−
y2

4 . Note that ζk reaches its unique
maximum

ζ∗k =
(

2k
e

) k
2

(72)

at
√

2k. As k grows, ζk becomes increasingly concentrated at√
2k. To see this, define

g(α) = e
1−α2

2 α. (73)

Then ζk(α
√

2k) = ζ∗kg(α)k. Let P {Xm = xim} = wim for
i = 1, . . . ,m. Then

E
[
ζk(
√

snrX∞)
]

= ζ∗k

m∑
i=1

wim

[
g

(
xim√

2k

)]k
. (74)
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On the other hand, for odd k, E
[
ζk(
√

snrX∞)
]

= 0. For even
k, direct calculation shows that

E
[
ζk(
√

snrX∞)
]

=

√
2

snr + 2

(
snr

snr + 2

) k
2
(
k
k
2

)(
k

2

)
!

(75)

∼
(

snr

snr + 2

) k
2

ζ∗k . (76)

Plugging (72), (74) and (76) into (70) and using Stirling’s
approximation, we have

‖pm − p∞‖22

∼
∑
k≥1

1√
k

∣∣∣∣∣
m∑
i=1

wim

[
g

(
xim√

2k

)]k
−
(

snr

snr + 2

) k
2

∣∣∣∣∣
2

. (77)

In order for the right-hand side (77) to be exponentially small,

each sum
∑m
i=1 wim

[
g
(
xim√

2k

)]k
must has the same exponent√

snr
snr+2 . This imposes two restrictions on the distribution of

Xm:

1) The weights need to behave like Gaussian asymptotically:
wim ∼ exp

(
−x

2
im

2

)
.

2) There is at least one atom in [
√
k,
√
k + 2)] for k =

0, 2, 4, . . ..

Since Xm only has m atoms, the 2mth term in (77) cannot

have the desired exponent, hence ‖pm − p∞‖22 &
(

snr
snr+2

)2m

.

B. Lower bound via peak amplitude

The next result gives another lower bound on the capacity
gap based on the peak amplitude:

Theorem 9. Let ‖Xm‖∞ →∞. Then

lim sup
m→∞

1
‖Xm‖2∞

log
1

D(pm||p∞)

≤ 2 lim sup
m→∞

1
‖Xm‖2∞

log
1

V (pm, p∞)
(78)

≤ snr

(
√

1 + snr − 1)2
. (79)

As a consequence of Theorem 9, in order to achieve
exponential convergence to the capacity, it is necessary to have

‖Xm‖∞ = Ω(
√
m). (80)

According to (79) and Remark 1, the exponent of the Gauss
quadrature scheme is upper bounded by 4snr

(
√

1+snr−1)2
, which

is larger than the upper bound 2 log
(
1 + 2

snr

)
in Theorem 1.

Proof: Inequality (78) follows from (35). To show (79),
we prove the following lemma:

Lemma 2. For any 0 < a < a′,

V (pm, p∞) ≥ 4Q
(

a′√
1 + P

)
− 4Q(a′ − a)

− 2P
{
|Xm| >

a√
snr

}
. (81)

Choosing a = ‖Xm‖∞ and a′ >
√

1+P√
1+P−1

a arbitrarily close
to equality yields the desired upper bound on the exponent in
(79). To prove Lemma 2, note that

P {|Y∞| > a′} = 2Q
(

a′√
1 + snr

)
. (82)

On the other hand, by union bound we have

P {|Ym| > a′} ≤ P {|N | > a′ − a}+ P
{√

snr|Xm| ≥ a
}

(83)

= 2Q(a′ − a) + P
{
|Xm| ≥

a√
snr

}
. (84)

By definition of the total variation distance, we have

V (pm, p∞) = 2 sup
A
|P {Y ∈ A} − P {Y∞ ∈ A}| (85)

≥ 2 P {|Y∞| > a′} − 2 P {|Ym| > a′}. (86)

Substituting (82) and (84) into (86) yields (81).

VII. COMPARISON OF VARIOUS CONSTELLATIONS

In this section we compare the performance of several
achievable schemes, including
A. Equilattice constellation Um defined in Theorem 6, which

is capacity-achieving in the high-SNR regime.
B. Gauss quadrature XQ

m defined in Theorem 2, which is
capacity-achieving in the low-SNR regime.

C. Quantized: uniformly divide the Gaussian CDF into m
segments and define an equiprobable input distribution
with atoms given by [23]

xim = E [X∞|αi,m ≤ X∞ ≤ αi+1,m] , i = 1, . . . ,m,
(87)

where αj,m = Φ−1((j − 1)/m), j = 1, . . . ,m+ 1. The
constellation is then scaled to have unit variance.

D. CLT: let {Zk} be i.i.d. equiprobable on {±1}. Define the
normalized random walk:

X̂m =
1√
m− 1

m−1∑
k=1

Zk, (88)

D=
2√
m− 1

(
Bm −

m− 1
2

)
, (89)

where Bm ∼ Binomial(m − 1, 1/2). It follows that X̂m

has m equally-spaced atoms. By the central limit theorem
(CLT), X̂m is asymptotically normal.

7



A. Performance analysis

As m→∞, Um converges weakly to the uniform distribu-
tion U on [−

√
3,
√

3]. Therefore the equilattice constellation
does not achieve the Gaussian capacity. In the high-SNR-large-
constellation limit, the gap is given by

lim
snr→∞

lim
m→∞

C(snr)− I(Um; snr)

= D(U || N (0, 1)) =
1
2

log
πe
6
≈ 0.25 bits, (90)

Therefore at high SNR, the effective SNR loss due to using
equilattice is πe

6 ≈ 1.53 dB (e.g., [17], [24]).
Because of their asymptotic normality, for the constellation

B, C and D, the capacity gap vanishes as m→∞. However,
except for the Gauss quadrature, the other constellations
achieve only polynomial convergence according to Θ

(
1
m2

)
.

To see this, note that each moment is matched with 1
m

precision, which, in view of (54), implies the convergence
speed is O

(
1
m2

)
. On the other hand, the expectation of

ζ2(y) = y2e−
y2

4 also has an error of 1
m . Therefore the

convergence rate is Ω
(

1
m2

)
, in view of (65) and (70).

B. Numerical Results

In Fig. 3 – 4 we plot the capacity gap Cm(snr)−I(Xm, snr)
versus constellation size m for various input distributions; At
snr = 0 dB (Fig. 3), we see that the Gauss quadrature domi-
nates all other schemes. At snr = 10 dB (Fig. 4(a)), X̂m seems
to outperform the Gauss quadrature. This is because when
snr is higher, more points are required for the exponential
convergence of the Gauss quadrature. Indeed, as shown in the
blowup in Fig. 4(b), Gauss quadrature achieves the smallest
gap for m ≥ 25 with exponential rate, while the convergence
rate achieved by X̂m is polynomially decaying. Nevertheless,
empirical evidence suggests that X̂m suffers from a relatively
small capacity gap in the whole SNR range.

Equilattice

Quantized

CLT

Gauss quadrature

2 4 6 8 10 12 14 16
m0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014
Capacity Gap

Fig. 3. Capacity gap Cm(snr)− I(Xm, snr) at snr = 0 dB.

Fig. 5 shows the capacity of the equilattice Um and the
Gauss quadrature XQ

m as functions of SNR. We see that
equilattice constellation suffers an SNR loss of 1.53 dB,
while the Gauss quadrature has zero loss. On the other hand,

Equilattice

Gauss quadrature

Quantized
CLT

2 5 10 15 20 25 30 35 40
m0.0

0.2

0.4

0.6

0.8
Capacity Gap

(a) 2 ≤ m ≤ 40.

Gauss quadrature

CLT

20 25 30 35 40
m

0.0002

0.0004

0.0006

0.0008
Capacity Gap

(b) m ≥ 20.

Fig. 4. Capacity gap Cm(snr)− I(Xm, snr) at snr = 10 dB.

according to Remark 1, H(XQ
m) ∼ 1

2 logm = 1
2H(Um).

Therefore for fixed m and large SNR, the capacity of the Gauss
quadrature lies below that of equilattice, which is optimal in
the high-SNR regime by Theorem 6.

1.53dB

-10 10 20 30
snrHdBL

1

2

3

4

5

Capacity

Fig. 5. Capacity of the Gaussian channel, the equilattice (dashed) and the
Gauss quadrature (solid) constellations. Constellations of size 2, 4, 8, 16 and
∞ are denoted by gray, red, green, brown and blue respectively.
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VIII. CONCLUDING REMARKS

Apart from the point-to-point real-valued AWGN channel,
our results can be generalized to complex field. However, it
should be remarked that the optimal quadrature problem in
higher-dimension is still open. For instance, optimal construc-
tions for the two-dimensional Gaussian weight are unknown
for more than 20 points. Even the asymptotics of N∗(m) when
m is large is unknown [25], [26]. Thus finding tight bounds on
the optimal exponent appear to be challenging in the complex
field.

Another interesting direction is the (coherent) fading chan-
nel. If the channel gain is known only at the receiver, the
optimal input distribution is still standard Gaussian. If the
encoder also has access to the channel gain, the optimal input
is a Gaussian distribution with variance given by the water-
filling solution. It is interesting to study whether exponential
convergence still holds in these setups.

We conclude the paper by collecting a few open problems.

• Strict monotonicity of m→ Cm(snr);
• Uniqueness and symmetry of the optimal input distribu-

tion.
• How does the peak power of the optimal input scales

with constellation size? This question is closely related to
Smith’s classical result [27], which states that the optimal
input distribution for AWGN channel with both amplitude
and average power constraint is finitely supported. How-
ever, little is known about the cardinality of the support.
Suppose

√
m, the peak amplitude of Gauss quadrature, is

the optimal behavior. This would imply that the support
increases quadratically as the peak constraint grows.

• Finding the optimal input support under finite-
constellation constraint is a challenging problem
because of its non-convexity. On a related note, Huang
and Meyn [28] proposed an iterative algorithm to find
the optimal input distribution for AWGN channel with
both amplitude and average power constraint. It might
be possible to apply their cutting-plane method to
finite-constellation capacity problem. On the other hand,
finding the optimal weights given the locations is a
convex problem which can solved efficiently using the
Blahut-Arimoto algorithm.

• In accordance to the practice of allocating larger con-
stellation under higher SNR, it is interesting to consider
Cmsnr(snr) with msnr increasing with snr, e.g., msnr =
snrα. In view of (20), the case of α = 1/2 is particularly
interesting.
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[10] G. Szegö, Orthogonal polynomials, 4th ed. Providence, RI: American
Mathematical Society, 1975.

[11] G. Nikolov, “The Christoffel function for the Hermite weight is bell-
shaped,” Journal of Approximation Theory, vol. 125, no. 2, pp. 145–150,
2003.

[12] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions
with formulas, graphs, and mathematical tables. New York, NY: Wiley-
Interscience, 1984.
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