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Abstract—Consider the problem of estimating the Shannon
entropy of a distribution on k elements from n independent
samples. We show that the minimax mean-square error is within
universal multiplicative constant factors of ( k

n log k
)2+ log2 k

n
. This

implies the recent result of Valiant-Valiant [1] that the minimal
sample size for consistent entropy estimation scales according to
Θ( k

log k
). The apparatus of best polynomial approximation plays

a key role in both the minimax lower bound and the construction
of optimal estimators.

Index Terms—large alphabet, high-dimensional statistics, en-
tropy estimation, best polynomial approximation, functional es-
timation

I. INTRODUCTION

Let P be a distribution over an alphabet of cardinality k.
Let X1, . . . , Xn be i.i.d. samples drawn from P . Without loss
of generality, we shall assume that the alphabet is [k] ≜
{1, . . . , k}. To perform statistical inference on the unknown
distribution P or any functional thereof, a sufficient statistic
is the histogram N ≜ (N1, . . . , Nk), where

Nj =
n∑

i=1

1{Xi=j}

records the number of occurrences of j ∈ [k] in the sample.
Then N ∼ Multinomial(n, P ).

The problem of interest is to estimate the Shannon entropy
of distribution P :

H(P ) =

k∑
i=1

pi log
1

pi
.

Entropy estimation has many applications in various fields,
such as neuroscience [2] and biomedical research [3], etc.
To investigate the decision-theoretic fundamental limit, we
consider the minimax quadratic risk of entropy estimation:

R∗(k, n) ≜ inf
Ĥ

sup
P∈Mk

E[(Ĥ(N)−H(P ))2] (1)

where Mk denotes the set of probability distributions on
[k]. The goal of the paper is to provide non-asymptotic
characterization of the minimax risk R∗(k, n) within constant
factors.

From a statistical standpoint, the problem of entropy estima-
tion falls under the category of functional estimation, where we

This research was supported by the National Science Foundation under
Grant IIS-1447879, and CCF-1423088, and University of Illinois College
of Engineering Strategic Research Initiatives. The authors are with the
Department of Electrical and Computer Engineering and the Coordinated
Science Lab, University of Illinois at Urbana-Champaign, Urbana, IL,
{yihongwu,pyang14}@illinois.edu.

are not interested in directly estimating the high-dimensional
parameter (the distribution P ) per se, but rather a function
thereof (the entropy H(P )). To estimate a function, perhaps
the most natural idea is the “plug-in” approach, namely, first
estimate the parameter and then substitute into the function.
This leads to the commonly used plug-in estimator, i.e., the
empirical entropy,

Ĥplug-in = H(P̂ ), (2)

where P̂ = (p̂1, . . . , p̂k) denotes the empirical distribution
with p̂i =

Ni

n . As frequently observed in functional estimation
problems, the plug-in estimator suffers from severe bias.
Indeed, although Ĥplug-in is asymptotically efficient in the
“fixed-P -large-n” regime, it can be highly suboptimal in high
dimensions.

Our main result is the characterization of the minimax risk
within universal constant factors:

Theorem 1. If n ≳ k
log k ,1

R∗(k, n) ≍
(

k

n log k

)2

+
log2 k

n
. (3)

If n ≲ k
log k , there exists no consistent estimators, i.e.,

R∗(k, n) ≳ 1.

To interpret the minimax rate (3), we note that the second
term corresponds to the classical “parametric” term inversely
proportional to 1

n , which is governed by the variance and
the central limit theorem (CLT). The first term corresponds
to the squared bias, which is the main culprit in the regime
of insufficient samples. Note that R∗(k, n) ≍ ( k

n log k )
2 if

and only if n ≲ k2

log4 k
, where the bias dominates. As a

consequence, the minimax rate in Theorem 1 implies that to
estimate the entropy within ϵ bits with probability, say 0.9, the
minimal sample size is given by

n ≍ log2 k

ϵ2
∨ k

ϵ log k
. (4)

Next we evaluate the performance of plug-in estimator in
terms of its worst-case mean-square error

Rplug-in(k, n) ≜ sup
P∈Mk

E[(Ĥplug-in(N)−H(P ))2]. (5)

1 For any sequences {an} and {bn} of positive numbers, we write an ≳ bn
or bn ≲ an when an ≥ cbn for some absolute constant c. Finally, we write
an ≍ bn when both an ≳ bn and an ≲ bn hold.



Analogous to Theorem 1 which applies to the optimal es-
timator, the risk of the plug-in estimator admits a similar
characterization:

Proposition 1. If n ≳ k, then

Rplug-in(k, n) ≍
(
k

n

)2

+
log2 k

n
. (6)

If n ≲ k, then Ĥplug-in is inconsistent, i.e., Rplug-in(k, n) ≳ 1.

Note that the first and second term in the risk (6) again
corresponds to the squared bias and variance, respectively.
Comparing (3) and (6), we reach the following verdict on
the plug-in estimator: Empirical entropy is rate-optimal, i.e.,
achieving a constant factor of the minimax risk, if and only if
we are in the “data-rich” regime n = Ω( k2

log2 k
). In the “data-

starved” regime of n = o
(

k2

log2 k

)
, empirical entropy is strictly

rate-suboptimal.

A. Previous results

Below we give a concise overview of the previous results
on entropy estimation.

a) Fixed alphabet: For fixed distribution P and n → ∞,
Antos and Kontoyiannis showed that [4] the plug-in estimator
is always consistent and the asymptotic variance of the plug-in
estimator is obtained in [5]. However, the convergence rate of
the bias can be arbitrarily slow on a possibly infinite alphabet.
The asymptotic expansion of the bias is obtained in, e.g., [6],
[7]:

E[Ĥplug-in(N)] = H(P )−k − 1

2n
+

1

12n2

(
1−

k∑
i=1

1

pi

)
+O(n−3)

(7)
which inspired various types of bias correction to the plug-in
estimator.

b) Large alphabet: It is well-known that to estimate
the distribution P itself, say, under the total variation loss,
we need at least Θ(k) samples. However, to estimate the
entropy H(P ) which is a scalar function, it is unclear from
first principles whether n = Θ(k) is necessary. Using non-
constructive arguments, Paninski first proved that it is possible
to consistently estimate the entropy using sublinear sample
size, i.e., there exists nk = o(k), such that R∗(k, nk) → 0
as k → ∞ [8]. Valiant proved that no consistent estimator
exists, i.e., R∗(k, nk) ≳ 1 if n ≲ k

exp(
√
log k)

[9]. The sharp
scaling of the minimal sample size of consistent estimation
is shown to be k

log k in the breakthrough results of Valiant
and Valiant [1], [10]. However, the optimal sample size as
a function of alphabet size k and estimation error ϵ has not
been completely resolved. Indeed, an estimator based on linear
programming is shown to achieve an additive error of ϵ using

k
ϵ2 log k samples [11, Theorem 1], while k

ϵ log k samples are
shown to be necessary [10, Corollary 10]. This gap is partially
amended in [12] by proposing a different estimator, which
requires k

ϵ log k samples but only valid when ϵ > k−0.03.
Theorem 1 generalizes their result by characterizing the full
minimax rate and the sharp sample complexity is given by (4).

We briefly discuss the difference between the lower bound
strategy of [10] and ours. Since the entropy is a permutation-
invariant functional of the distribution, a sufficient statistic for
entropy estimation is the histogram of the histogram N :

hi =
k∑

j=1

1{Nj=i}, i ∈ [n], (8)

also known as fingerprint [10], which is the number of symbols
that appear exactly i times in the sample. A canonical approach
to obtain minimax lower bounds for functional estimation is
Le Cam’s two-point argument [13, Chapter 2], i.e., finding
two distributions which have very different entropy but induce
almost the same distribution for the sufficient statistics, in this
case, the histogram Nk

1 or the fingerprints hn
1 , both of which

have non-product distributions. A frequently used technique to
reduce dependence is Poisson sampling (see Section II), where
we relax the fixed sample size to a Poisson random variable
with mean n. This does not change the statistical nature of the
problem due to the exponential concentration of the Poisson
distribution near its mean. Under the Poisson sampling model,
the sufficient statistics N1, . . . , Nk are independent Poissons
with mean npi; however, the entries of the fingerprint remain
highly dependent. To contend with the difficulty of comput-
ing statistical distance between high-dimensional distributions
with dependent entries, the major tool in [10] is a new CLT
for approximating the fingerprint distribution by quantized
Gaussian distribution, which are parameterized by the mean
and covariance matrices and hence more tractable. This turns
out to improve the lower bound in [9] obtained using Poisson
approximation.

In contrast, in this paper we shall not deal with the finger-
print directly, but rather use the original sufficient statistics
Nk

1 due to their independence endowed by the Poissonized
sampling. Our lower bound relies on choosing two random
distributions (priors) with almost iid entries which effectively
reduces the problem to one dimension, thus circumventing the
hurdle of dealing with high-dimensional non-product distri-
butions. The main intuition is that a random vector with iid
entries drawn from a positive unit-mean distribution is not
exactly but sufficiently close to a probability vector due to the
law of large numbers, so that effectively it can be used as a
prior in the minimax lower bound.

B. Best polynomial approximation

The proof of both the upper and the lower bound in
Theorem 1 relies on the apparatus of best polynomial ap-
proximation. Our inspiration comes from previous work on
functional estimation in Gaussian mean models [14], [15].
Nemirovski (credited in [16]) pioneered the use of polyno-
mial approximation in functional estimation and showed that
unbiased estimators for the truncated Taylor series of the
smooth functionals is asymptotically efficient. This strategy
is generalized to non-smooth functionals in [14] using best
polynomial approximation and in [15] for estimating the ℓ1-
norm in Gaussian mean model.



On the constructive side, the main idea is to trade bias
with variance. Under the iid sampling model, it is easy
to show (see, e.g., [17, Proposition 8]) that to estimate a
functional f(P ) using n samples, an unbiased estimator exists
if and only if f(P ) is a polynomial in P of degree at most
n. Similarly, under Poisson sample model, f(P ) admits an
unbiased estimator if and only if f is real analytic. Conse-
quently, there exists no unbiased entropy estimator with or
without Poissonized sampling. Therefore, a natural idea is
to approximate the entropy functional by polynomials which
enjoy unbiased estimation, and reduce the bias to at most
the uniform approximation error. The choice of the degree
aims to strike a good bias-variance balance. Shortly before
we posted this paper to arxiv, we learned that Jiao et al. [18]
independently used the idea of best polynomial approximation
in constructing rate-optimal estimators for Shannon entropy
and power sums with a slightly different procedure.

While the use of best polynomial approximation on the con-
structive side is admittedly natural, the fact that it also arises
in the optimal lower bound is perhaps surprising. As carried
out in [14], [15], the strategy is to choose two priors with
matching moments up to a certain degree, which ensures the
impossibility to test. The minimax lower bound is then given
by the maximal separation in the expected functional values
subject to the moment matching condition. This problem is
the dual of best polynomial approximation in the optimization
sense. For entropy estimation, this approach yields the optimal
minimax lower bound, although the argument is considerably
more involved due to the constraint on the mean of the prior.

C. Notations

Throughout the paper all logarithms are with respect to
the natural base and the entropy is measured in nats. Let
Poi(λ) denote the Poisson distribution with mean λ whose
probability mass function is poi(λ, j) ≜ λje−λ

j! , j ∈ Z+.
Given a distribution P , its n-fold product is denoted by
P⊗n. For a parametrized family of distributions {Pθ} and
a prior π, the mixture is denoted by Eπ [Pθ] =

∫
Pθπ(dθ).

In particular, E [Poi (U)] denotes the Poisson mixture with
respect to the distribution of a positive random variable U .
The total variation and Kullback-Leibler divergence between
probability measures P and Q are respectively given by
TV(P,Q) = 1

2

∫
|dP − dQ| and D(P∥Q) =

∫
dP log dP

dQ .
All proofs are omitted due to space limitations and referred

to [19].

II. POISSON SAMPLING

The multinomial distribution of the sufficient statistic N =
(N1, . . . , Nk) is difficult to analyze because of the dependency.
A commonly used technique is the so-called Poisson sampling,
where we relax the sample size n from being deterministic to
a Poisson random variable n′ with mean n. Under this model,
we first draw the sample size n′ ∼ Poi(n), then draw n′ i.i.d.
samples from the distribution P . The main benefit is that now
the sufficient statistics Ni

ind∼ Poi(npi) are independent, which
significantly simplifies the analysis.

Analogous to the minimax risk (1), we define its counterpart
under the Poisson sampling model:

R̃∗(k, n) ≜ inf
Ĥ

sup
P∈Mk

E(Ĥ(N)−H(P ))2, (9)

where Ni
ind∼ Poi(npi) for i = 1, . . . , k. In view of the ex-

ponential tail of Poisson distributions, the Poissonized sample
size is concentrated near its mean n with high probability,
which guarantees that the statistical performance as well as
the minimax risk under Poisson sampling are provably close
to that with fixed sample size. Indeed, the inequality

R̃∗(k, 2n)− exp(−n/4) log2 k ≤ R∗(k, n) ≤ 2R̃∗(k, n/2)
(10)

allows us to focus on the risk of the Poisson model.

III. MINIMAX LOWER BOUND

In this section we give converse results for entropy estima-
tion and prove the lower bound part of Theorem 1. It suffices to
show that the minimax risk is lower bounded by the two terms
in (3) separately. This follows from combining Propositions 2
and 3 below.

Proposition 2. For all k, n ∈ N,

R∗(k, n) ≳ log2 k

n
. (11)

Proposition 3. If n ≥ ck
log k for some c > 0, then

R∗(k, n) ≥ c′
(

k

n log k

)2

(12)

where c′ only depends on c.

Proposition 2 follows from a simple application of Le Cam’s
two-point method: If two input distributions P and Q are suf-
ficiently close such that it is impossible to reliably distinguish
between them using n samples with error probability less than,
say, 1

2 , then any estimator suffers a quadratic risk proportional
to the separation of the functional values |H(P )−H(Q)|2.

The remainder of this section is devoted to illustrating the
broad strokes for proving Proposition 3. Since it can be shown
that the best lower bound provided by the two-point method
is log2 k

n , proving (12) requires more powerful techniques. To
this end, we use a generalized version of Le Cam’s method
involving two composite hypotheses (also known as fuzzy
hypothesis testing in [20]):

H0 : H(P ) ≤ t versus H1 : H(P ) ≥ t+ d, (13)

which is more general than the two-point argument using only
simple hypothesis testing. Similarly, if we can establish that
no test can distinguish (13) reliably, then we obtain a lower
bound for the quadratic risk on the order of d2. By the minimax
theorem, the optimal probability of error for the composite
hypotheses test is given by the Bayesian version with respect
to the least favorable prior. For (13) we need to choose a pair of
priors, which, in this case, are distributions on the probability
simplex Mk, is to ensure the entropy values are separated.



A. Construction of the priors

The main idea for constructing the priors is as follows:
First of all, the symmetry of the entropy functional implies
that the least favorable prior must be permutation-invariant.
This inspires us to use the following iid construction. For
conciseness, we focus on the case of n ≍ k

log k for now and
our goal is an Ω(1) lower bound. Let U be a R+-valued
random variable with unit mean. Denote the random vector
P = 1

k (U1, . . . , Uk), consisting of iid copies of U . Note that
P itself is not a probability distribution; however, the key
observation is that, since E[U ] = 1, the law of large numbers
implies P is approximately a probability distribution. Use some
soft arguments we can show that the distribution of P can
effectively serve as a prior.

Next we outline the main ingredients in Le Cam’s method:
1) Functional value separation: Define ϕ(x) ≜ x log 1

x .
Note that

H(P) =
k∑

i=1

ϕ

(
Ui

k

)
=

1

k

k∑
i=1

ϕ(Ui) +
log k

k

k∑
i=1

Ui,

which also concentrates near its mean E [H(P)] =
E [ϕ(U)] + E [U ] log k. Therefore, given another random
variable U ′ with unit mean, we can obtain P′ similarly
using iid copies of U ′. Then with high probability,
H(P) and H(P′) are separated by the difference in the
respective means

E [H(P)]− E [H(P′)] = E [ϕ(U)]− E [ϕ(U ′)] ,

which we want to maximize.
2) Indistinguishably: Note that given P , the sufficient statis-

tics satisfy Ni
ind∼ Poi(npi). Therefore, if P is drawn

from the distribution of P, then N = (N1, . . . , Nk) are
iid distributed according the Poisson mixture E[Poi(nkU)].
Similarly, if P is drawn from the prior of P′, then N is
distributed according to (E[Poi(nkU

′)])⊗k. To establish
the impossibility of testing, we need the total varia-
tion distance between the two k-product distributions to
strictly bounded away from one, for which a sufficient
condition is

TV(E[Poi(nU/k)],E[Poi(nU ′/k)]) ≤ c/k (14)

for some small c.
To conclude, we see that the iid construction fully exploits
the independence blessed by the Poisson sampling, thereby
reducing the problem to one dimension. This allows us to
sidestep the difficulty encountered in [10] when dealing with
fingerprints which are high-dimensional random vectors with
dependent entries.

What remains is the following scalar problem: choose U,U ′

to maximize |E [ϕ(U)] − E [ϕ(U ′)] | subject to the constraint
(14). A commonly used proxy for bounding the total variation
distance is moment matching, i.e., E

[
U j
]

= E
[
U ′j] for

all j = 1, . . . , L. Together with some L∞-norm constraints,
a sufficient large L ensures the total variation bound (14).

Combining the above steps, our lower bound is proportional
to the value of the following convex optimization problem (in
fact, infinite-dimensional linear programming):

FL(λ) ≜ sup E [ϕ(U)]− E [ϕ(U ′)]

s.t. E [U ] = E [U ′] = 1

E
[
U j
]
= E

[
U ′j] , j = 1, . . . , L,

U, U ′ ∈ [0, λ]

(15)

for some appropriately chosen L ∈ N and λ > 1 depending
on n and k.

Finally, we connect the optimization problem (15) to the
machinery of best polynomial approximation: Denote by PL

the set of polynomials of degree L and

EL(f, I) ≜ inf
p∈PL

sup
x∈I

|f(x)− p(x)|, (16)

which is the best uniform approximation error of a function f
over a finite interval I by polynomials of degree L. We prove
that

FL(λ) ≥ 2EL(log, [1/λ, 1]). (17)

Due to the singularity of the logarithm at zero, the approx-
imation error can be made bounded away from zero if λ
grows quadratically with the degree L. Choosing L ≍ log k
and λ ≍ log2 k leads to the lower bound of n ≳ k

log k for
consistent estimation. For n ≫ k

log k , the lower bound for the
quadratic risk follows from relaxing the unit-mean constraint
in (15) to E [U ] = E [U ′] ≤ 1 and a simple scaling argument.
We remark that analogous construction of priors and proof
techniques have subsequently been used in [18] to obtain sharp
minimax lower bound for estimating the power sum in which
case the log p function is replaced by pα.

IV. OPTIMAL ESTIMATOR VIA BEST POLYNOMIAL
APPROXIMATION

As observed in various previous results as well as suggested
by the minimax lower bound in Section III, the major difficulty
of entropy estimation lies in the bias due to insufficient
samples. Inspired by the observation in Section I-B that
polynomials admit unbiased estimators, our main idea is to
approximate ϕ by a polynomial of degree L, say gL, for which
we pay a price in bias at most the uniform approximation
error. While the approximation error clearly decreases with the
degree L, it is not unexpected that the variance of the unbiased
estimator for gL(pi) is increasing in both L and pi. Therefore
we only apply the polynomial approximation scheme to small
pi and directly use the plug-in estimator for large pi, since the
signal-to-noise ratio is sufficiently large.

Next we describe the estimator in detail. In view of the
relationship (10) between the risks with fixed and Poisson
sample size, we shall assume the Poisson sampling model to
simplify the analysis. We split the samples equally and use the
first half for selecting to use either the polynomial estimator
or the plug-in estimator and the second half for estimation.
Specifically, we draw two sets of samples independently, of
which each has Poi(n) samples. Count the samples in each



set separately to obtain corresponding N,N ′. Then N and N ′

are independent, where Ni, N
′
i

i.i.d.∼ Poi (npi).
Let c0, c1, c2 > 0 be constants to be specified. Let

L = ⌊c0 log k⌋. Denote the best polynomial of degree L to
uniformly approximate ϕ on [0, 1] is pL(x) =

∑L
m=0 amxm.

Through a change of variables, we see that the best polynomial
of degree L to approximate ϕ on [0, c1 log k

n ] is

PL(x) ≜
L∑

m=0

amnm−1

(c1 log k)
m−1x

m +

(
log

n

c1 log k

)
x.

Define the factorial moment by (x)m ≜ x!
(x−m)! , which gives

an unbiased estimator for the monomials of the Poisson mean:
E[(X)m] = λm where X ∼ Poi(λ). Consequently, the
following polynomial of degree L

gL(Ni) ≜
1

n

L∑
m=0

am

(c1 log k)
m−1 (Ni)m +

(
log

n

c1 log k

)
Ni

is an unbiased estimator for PL(pi).
Define a bias-corrected plug-in estimator for ϕ by

ϕ0(Ni) = ϕ

(
Ni

n

)
+

1

2n
. (18)

Define a preliminary estimator of entropy by

H̃ ≜
k∑

i=1

(
gL(Ni)1{N ′

i≤c2 log k} + ϕ0(Ni)1{N ′
i>c2 log k}

)
,

(19)
where we apply the estimator from polynomial approximation
if N ′

i ≤ c2 log k or the bias-corrected plug-in estimator
otherwise (c.f. the asymptotic expansion (7) of the bias un-
der the original sampling model). In view of the fact that
0 ≤ H(P ) ≤ log k for any distribution P with alphabet size
k, we define our final estimator by:

Ĥ = (H̃ ∨ 0) ∧ log k,

Since (19) can be expressed in terms of a linear combination
of the fingerprints (8) of the second sample and the coefficients
can be pre-computed using fast best polynomial approximation
algorithms (e.g., the Remez algorithm), it is clear that the
estimator Ĥ can be computed in linear time in n.

The next result gives an upper bound on the above estimator
under the Poisson sampling model, which, in view of the right
inequality in (10) and Proposition 1, implies the upper bound
on the minimax risk R∗(n, k) in Theorem 1.

Proposition 4. Assume that log n ≤ C log k for some constant
C > 0. Then there exists c0, c1, c2 depending on C only, such
that

sup
P∈Mk

E[(H(P )− Ĥ(N))2] ≲
(

k

n log k

)2

+
log2 k

n
,

where N = (N1, . . . , Nk)
ind∼ Poi(npi).

Remark 1. The estimator (19) uses the polynomial approxi-
mation of x log 1

x for those masses below log k
n and the bias-

corrected plug-in (18) otherwise. In view of the fact that the

lower bound in Proposition 3 is based on a pair of randomized
distributions whose masses are below log k

n (except for possibly
a fixed large mass at the last element), this suggests that the
main difficulty of the estimation tasks lies in those pi’s in the
interval [0, log k

n ], which are individually small but collectively
contribute significantly to the entropy.

Remark 2. The estimator in (19) depends on the alphabet
size k. In order to obtain an optimal adaptive estiamtor, simply
replace all log k by log n and the optimal rate in Proposition 4
continues to hold in the regime of k

log k ≲ n ≲ k2

log2 k
where

the plug-in estimator fails to attain the minimax rate.
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