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Abstract—It is shown that under suitable regularity
conditions, differential entropy is O(

√
n)-Lipschitz as a

function of probability distributions on Rn with respect
to the quadratic Wasserstein distance. Under similar
conditions, (discrete) Shannon entropy is shown to be
O(n)-Lipschitz in distributions over the product space
with respect to Ornstein’s d̄-distance (Wasserstein distance
corresponding to the Hamming distance). These results
together with Talagrand’s and Marton’s transportation-
information inequalities allow one to replace the unknown
multi-user interference with its i.i.d. approximations. As an
application, a new outer bound for the two-user Gaussian
interference channel is proved, which, in particular, settles
the “missing corner point” problem of Costa (1985).

I. INTRODUCTION

Arguably, a key novel effect in multi-user informa-
tion theory is multi-user interference, where one user’s
codebook creates complicated non-i.i.d. disturbance for
other users. A convenient workaround would be to have
rigorous approximation results allowing replacing com-
plicated non-i.i.d. interference with simpler i.i.d. one.
Such approximation is the key contribution of this paper.

As a concrete example, we consider the so-called
“missing corner point” problem in the capacity region of
the two-user Gaussian interference channels (GIC) [1],
which has attracted renewed attention recently as wit-
nessed by [2]–[5] and Sason’s comprehensive treatment
in [6].

Mathematically, the key question for settling “missing
corner point” is the following: Given independent n-
dimensional random vectors X1, X2, G2, Z with the
latter two being Gaussian, is it true that

D(PX2+Z‖PG2+Z) = o(n) (1)
?

=⇒ |h(X1 +X2 + Z)− h(X1 +G2 + Z)| = o(n).

This paper proves that indeed under suitable regularity
conditions, the difference in entropy (in both continuous
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and discrete cases) can be bounded by the Wasserstein
distance, a notion originating from optimal transporta-
tion theory which turns out to be the main tool of this
paper. Wasserstein distance, in turn, can be bounded by
Kullback-Leibler divergence by virtue of Marton’s and
Talagrand’s information-transportation inequalities [7],
[8].

We start with the definition of the Wasserstein distance
on the Euclidean space. Given probability measures P,Q
on Rn, define their p-Wasserstein distance (p ≥ 1) as

Wp(P,Q) , inf(E[‖X − Y ‖p])1/p, (2)

where ‖ · ‖ denotes the Euclidean distance and the
infimum is taken over all couplings of P and Q, i.e., joint
distributions PXY whose marginals satisfy PX = P and
PY = Q. The following dual representation of the W1

distance is useful:

W1(P,Q) = sup
Lip(f)≤1

∫
fdP −

∫
fdQ. (3)

It is easy to see that in order to control |h(X)−h(X̃)|
by means of W2(PX , PX̃), one necessarily needs to
assume some regularity properties of PX and PX̃ ; oth-
erwise, choosing one to be a fine quantization of the
other creates infinite gap between differential entropies,
while keeping the W2 distance arbitrarily small. Our
main result in Section II shows that under moment con-
straints and certain conditions on the densities (which are
in particular satisfied by convolutions with Gaussians),
various information measures such as differential entropy
and mutual information on Rn are in fact

√
n-Lipschitz

continuous with respect to the W2-distance. These results
have natural counterparts in the discrete case where the
Euclidean distance is replaced by Hamming distance
(Section IV).

Furthermore, transportation-information inequalities,
such as those due to Marton [7] and Talagrand [8],
allow us to bound the Wasserstein distance by the KL
divergence. For example, Talagrand’s inequality states
that if Q = N (0,Σ), then

W 2
2 (P,Q) ≤ 2σmax(Σ)

log e
D(P‖Q) , (4)

where σmax(Σ) denotes the maximal singular value of
Σ. Invoking (4) in conjunction with the Wasserstein
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continuity of the differential entropy, we establish (1)
and prove a new outer bound for the capacity region
of the two-user GIC, finally settling the missing corner
point in [1]. See Section III for details.

Notations: Throughout this paper log is with re-
spect to an arbitrary base, which also specifies the
units of differential entropy h(·), Shannon entropy H(·),
mutual information I(·; ·) and divergence D(·‖·). The
natural logarithm is denoted by ln. The norm of x ∈ Rn

is denoted by ‖x‖ , (
∑n

j=1 x
2
j )1/2. For random vari-

ables X and Y , let X ⊥⊥ Y denote their independence.
Proofs: Full version of this work containing all

proofs and extensions is available [9].

II. WASSERSTEIN-CONTINUITY OF ENTROPY

Proposition 1. Let B satisfy ‖B‖ ≤
√
nP (a.s.), let

G ∼ N (0, σ2
GIn) be independent of B, V = B+G. For

any U we have

h(U)− h(V ) ≤ log e

2σ2
G

(
E[‖U‖2]− E[‖V ‖2]

)
+

log e

σ2
G

√
nPW1(PU , PV ) . (5)

Proof. First notice that density pV of V satisfies

∇ log pV (v) =
log e

σ2
G

(B̂(v)− v) , (6)

where B̂(v) , E[B|V = v] = E[BpG(v−B)]
E[pG(v−B)] satisfies

‖B̂(v)‖ ≤
√
nP since ‖B‖ ≤

√
nP almost surely (as

in [10, Proof of Theorem 8]). Denoting κ the appropriate
constant and t̄ , 1− t we get:

log
pV (v)

pV (u)
=

=

∫ 1

0

dt 〈∇ log pV (tv + t̄u), v − u〉 (7)

= κ

∫ 1

0

dt〈B̂(tv + t̄u), v − u〉 − κ

2
(‖v‖2 − ‖u‖2)

(8)

≤ κ
√
nP‖v − u‖ − κ

2
(‖v‖2 − ‖u‖2) . (9)

Taking expectation of the last equation under the W1-
optimal coupling we obtain (5) after noticing

h(U)− h(V ) +D(PU‖PV ) = E
[
log

pV (V )

pV (U)

]

Corollary 2. Let A,B,G,Z be independent, with G ∼
N (0, σ2

GIn), Z ∼ N (0, σ2
ZIn) and B satisfying ‖B‖ ≤

√
nP (a.s.). Furthermore, assume E[A] = E[B] = 0 and

E[‖A‖2] = E[‖G‖2]. Then for every c ∈ [0, 1] we have:

h(B +A+ Z)− h(B +G+ Z)

≤
√

2nP (σ2
G + c2σ2

Z) log e

σ2
G + σ2

Z

√
D(PA+cZ‖PG+cZ)

Proof. First, notice that by definition Wasserstein dis-
tance is non-increasing under convolutions, i.e., W2(P1∗
Q,P2 ∗ Q) ≤ W2(P1, P2). Since c ≤ 1 and Gaussian
distribution is stable, we have

W2(PB+A+Z , PB+G+Z) ≤W2(PA+cZ , PG+cZ),

and via Talagrand’s inequality (4) for some κ > 0

W2(PA+cZ , PG+cZ) ≤
√
κD(PA+cZ‖PG+cZ) .

From here we apply Proposition 1 with G replaced by
G+ Z.

III. GAUSSIAN INTERFERENCE CHANNELS

A. New outer bound

Consider the two-user Gaussian interference channel
(GIC):

Y1 = X1 + bX2 + Z1

Y2 = aX1 +X2 + Z2 ,
(10)

with a, b ≥ 0, Zi ∼ N (0, In) and a power constraint on
the n-letter codebooks: either

‖X1‖ ≤
√
nP1, ‖X2‖ ≤

√
nP2 a.s. (11)

Denote by R(a, b) the capacity region of the GIC (10).
As an application of the results developed in Section II,
we prove an outer bound for the capacity region.

Theorem 3. Let 0 < a ≤ 1, C2 = 1
2 log(1 + P2) and

C̃2 = 1
2 log(1 + P2

1+a2P1
). Then for any b ≥ 0 and C̃2 ≤

R2 ≤ C2, any rate pair (R1, R2) ∈ R(a, b) satisfies

R1 ≤
1

2
log min

{
A− 1

a2
+ 1, Rc

}
(12)

where

Rc = A
(1 + P2)(1− (1− a2) exp(−2δ))− a2

P2
, (13)

A = (P1 + a−2(1 + P2)) exp(−2R2), (14)

δ = C2 −R2 + a

√
2P1(C2 −R2) log e

1 + P2
. (15)

Consequently, R2 ≥ C2− ε implies that R1 ≤ 1
2 log(1+

a2P1

1+P2
)− ε′ where ε′ = O(

√
ε) as ε→ 0.

Remark 1. The first part of the bound (12) coincides
with Sato’s outer bound [11] and [12, Theorem 2] by
Kramer, which [12, Theorem 2] was obtained by reduc-
ing the Z-interference channel to the degraded broadcast
channel; the second part of (12) is new and it settles the



missing corner point of the capacity region. Location of
this corner point was first proposed by Costa [13] but
with a flawed proof, as pointed out in [14]. The high-
level difference between our proof and that of [13] is the
replacement of Pinsker’s inequality by Talagrand’s and
the use of a coupling argument.1

Proof. Without loss of generality, assume that all ran-
dom variables have zero mean. First of all, setting
b = 0 (which is equivalent to granting the first user
access to X2) will not shrink the capacity region of the
interference channel (10). Therefore to prove the desired
outer bound it suffices to focus on the following Z-
interference channel henceforth:

Y1 = X1 + Z1

Y2 = aX1 +X2 + Z2 .
(16)

Let (X1, X2) be n-dimensional random variables corre-
sponding to the encoder output of the first and second
user, which are uniformly distributed on the respective
codebook. For i = 1, 2 we define Ri , 1

nI(Xi;Yi). By
Fano’s inequality there is no difference asymptotically
between this definition of rate and the operational one.
Define the entropy-power function of the X1-codebook:

N1(t) , exp

{
2

n
h(X1 +

√
tZ)

}
, Z ∼ N (0, In) .

We know the following general properties of N1(t):
• N1 is monotonically increasing.
• N1(0) = 0 (since X1 is uniform over the code-

book).
• N ′1(t) ≥ 2πe (since N1(t+ δ) ≥ N1(t) + 2πeδ by

entropy power inequality).
• N1(t) is concave (Costa’s entropy power inequal-

ity [1]).
• N1(t) ≤ 2πe(P1 + t) (Gaussian maximizes differ-

ential entropy).
We can then express R1 in terms of the entropy power
function as

R1 =
1

2
log

N1(1)

2πe
. (17)

It remains to upper bound N1(1). We only show the
second part of the bound. Note that

nR2 = h(X2 + aX1 + Z)− h(aX1 + Z) ≤
n

2
log 2πe(1 + P2 + a2P1)− h(aX1 + Z) , (18)

and therefore

N1

(
1

a2

)
≤ 2πeA , (19)

1After circulating our initial draft, we were informed that authors
of [3] posted an updated manuscript [15] that also proves Costa’s
conjecture. Their method is based on the analysis of the minimum
mean-square error (MMSE) properties of good channel codes, but we
were not able to verify all the details. A further update is in [16].

Let G2 ∼ N (0, P2In). Using E[‖X2‖2] ≤ nP2 and
X1 ⊥⊥ X2, we obtain

nR2 = I(X2;Y2) ≤ I(X2;Y2|X1) = I(X2;X2 + Z2)

≤nC2 −D(PX2+Z2
‖PG2+Z2

),

that is,

D(PX2+Z2‖PG2+Z2) ≤ n(C2 −R2). (20)

Furthermore,

nR2 = h(aX1 +X2 + Z2)− h(aX1 +G2 + Z2)
(21)

+ h(aX1 +G2 + Z2)− h(aX1 + Z2) . (22)

Note that the second term (22) is precisely
n
2 log

N1(
1
a2 )

N1(
1+P2
a2 )

. The first term (21) can be bounded by

applying Corollary 2 and (20) with B = aX1, A = X2,
G = G2 and c = 1 to get an estimate

n

√
2a2P1(C2 −R2) log e

1 + P2
. (23)

Combining (21) – (23) yields

N1

(
1

a2

)
≤ exp(2δ)

1 + P2
N1

(
1 + P2

a2

)
. (24)

where δ is defined in (15). From the concavity of N1(t)
and (24)

N1(1) ≤ γN1

(
1

a2

)
− (γ − 1)N1

(
1 + P2

a2

)
(25)

≤ N1

(
1

a2

)(
γ − (γ − 1)

1 + P2

exp(2δ)

)
, (26)

where γ = 1 + 1−a2

P2
> 1. In view of (17), upper

bounding N1

(
1/a2

)
in (26) via (19) we get after some

simplifications the second part of (12).

The outer bound (12) is evaluated on Fig. 1 for the
case of b = 0 (Z-interference), where we also plot (just
for reference) the simple Han-Kobayashi inner bound for
the Z-GIC (16) attained by choosing X1 = U + V with
U ⊥⊥ V jointly Gaussian.

B. Corner points of the capacity region

The two corner points of the capacity region are
defined as follows:

C ′1(a, b) , max{R1 : (R1, C2) ∈ R(a, b)} , (27)

C ′2(a, b) , max{R2 : (C1, R2) ∈ R(a, b)} , (28)

where Ci = 1
2 log(1 + Pi). As a corollary, Theorem 3

completes the picture of the corner points for the capac-
ity region of GIC for all values of a, b ∈ R+. We refer
to [9] for complete details.
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Fig. 1. Illustration of the “missing corner point”: The bound in Theo-
rem 3 establishes the location of the upper corner point, as conjectured
by Costa [13]. The bottom corner point has been established by Sato
[11].

For a > 1 and b > 1 (strong interference) the capacity
region is well known [17], [18] an so we assume a ≤ 1
henceforth. For the top corner, we have that C ′1(a, b)
equals

1
2 log

(
1 + a2P1

1+P2

)
, 0 < a ≤ 1, b ≥ 0

C1, a = 0, b = 0

C1, a = 0, b ≥
√

1 + P1

1
2 log

(
1 + P1+(b2−1)P2

1+P2

)
, a = 0, 1 < b <

√
1 + P1

1
2 log

(
1 + P1

1+b2P2

)
, a = 0, 0 < b ≤ 1.

(29)
Note that for any b ≥ 0, a 7→ C ′1(a, b) is discontinuous
as a ↓ 0. The bottom corner point C ′2(a, b) equals

1
2 log

(
1 + P2

1+a2P1

)
, b = 0

1
2 log

(
1 + P2

1+a2P1

)
, b ≥

√
1+P1

1+a2P1

1
2 log

(
1 + b2P2

1+P1

)
, 1 < b <

√
1+P1

1+a2P1

1
2 log

(
1 + b2P2

1+P1

)
, 0 < b ≤ 1

(30)

which is discontinuous as b ↓ 0 for any fixed a ∈ [0, 1].

IV. DISCRETE VERSION

Fix a finite alphabet X and an integer n. On the
product space Xn we define the Hamming distance

dH(x, y) =

n∑
j=1

1{xj 6=yj} ,

and consider the corresponding Wasserstein distance W1.
In fact, 1

nW1(P,Q) is known as Ornstein’s d̄-distance

[7], [19], namely,

d̄(P,Q) =
1

n
inf E[dH(X,Y )], (31)

where the infimum is taken over all couplings PXY of
P and Q. We next formulate the analog of Proposition 1
for the discrete setting.

Proposition 4. Let PY |X,A be a two-input blocklength-
n memoryless channel, namely PY |X,A(y|x, a) =∏n

j=1W (yj |xj , aj), where W (·|·) is a stochastic matrix
and y ∈ Yn, x ∈ Xn, a ∈ An. Let X,A, Ã be
independent n-dimensional discrete random vectors. Let
Y and Ỹ be the outputs generated by (X,A) and (X, Ã),
respectively. Then

|H(Y )−H(Ỹ )| ≤ cnd̄(PY , PỸ ) (32)
D(PY ‖PỸ ) +D(PỸ ‖PY ) ≤ 2cnd̄(PY , PỸ ) (33)

|I(X;Y )− I(X; Ỹ )| ≤ 2cnE[d̄(PY |X , PỸ |X)]

(34)

where

c , max
x,a,y,y′

log
W (y|x, a)

W (y′|x, a)
, (35)

E[d̄(PY |X , PỸ |X)] ,
∑

x∈Xn

PX(x)d̄(PY |X=x, PỸ |X=x).

(36)

Proof. The function y 7→ logPY (y) is c-Lipschitz with
respect to the Hamming distance, cf. [10, Eqn. (58)].
From Lipschitz continuity we conclude the existence of
a coupling PY,Ỹ , such that

E
[∣∣∣∣log

PY (Y )

PY (Ỹ )

∣∣∣∣] ≤ cnd̄(PY , PỸ ) .

The rest of the proof of (32) and (33) is straightfor-
ward [9]. To get the inequality for mutual informations,
apply (32) to estimate |H(Y |X = x)−H(Ỹ |X = x)| in
terms of d̄(PY |X=x, PỸ |X=x) and average over X .

We next show how to determine corner points of
capacity regions of discrete memoryless interference
channels (DMIC). We will need two extra results. First is
Marton’s transportation inequality that will help convert
Proposition 4 to bounds in terms of KL divergence:
When Q is a product distribution [7, Lemma 1] states:

d̄(P,Q) ≤

√
D(P‖Q)

2n log e
. (37)

Second is an auxiliary tensorization result which ap-
pears to be a standard exercise for degraded channels.2

2This is the analog of the following property of Gaussian channels:
For i.i.d. Gaussian Z and t1 < t2 < t3 we have I(X;X + t2Z) =
I(X;X + t3Z)+o(n) implies I(X;X + t1Z) = I(X;X + t3Z)+
o(n). This follows from Costa’s EPI.



Proposition 5. Let Xn → An → Bn, where the
memoryless channels PA|X and PB|A of blocklength n
satisfy PB|A=a 6⊥ PB|A=a′ ∀a 6= a′ and PA|X=x 6=
PA|X=x′ , ∀x 6= x′ Then there exists a continuous
function g : R+ → R+ satisfying g(0) = 0, such that
for all n I(Xn;An) ≤ I(Xn;Bn) + εn implies

H(Xn) ≤ I(Xn;Bn) + g(ε)n , (38)

We are now ready to state a non-trivial example of
corner points for the capacity region of DMIC.

Theorem 6. Consider the two-user DMIC:

Y1 = X1 , (39)
Y2 = X2 +X1 + Z2 mod 3 , (40)

where X1 ∈ {0, 1, 2}n, X2 ∈ {0, 1}n, Z2 ∈ {0, 1, 2}n
are independent and Z2 ∼ P⊗n2 is i.i.d. for some
non-uniform P2 containing no zeros. The maximal rate
achievable by user 2 is

C2 = max
supp(Q)⊂{0,1}

H(Q ∗ P2)−H(P2). (41)

At this rate the maximal rate of user 1 is

C ′1 = log 3− max
supp(Q)⊂{0,1}

H(Q ∗ P2). (42)

Proof. Given a sequence of codes with vanishing proba-
bility of error and rate pairs (R1, R2), where R2 = C2−
ε, we show that R1 ≤ C ′1 − ε′, where ε′ → 0 as ε→ 0.
Let Q2 be the maximizer of (41), i.e., the capacity-
achieving distribution of the channel X2 7→ X2 + Z2.
Let X̃2 ∈ {0, 1}n be distributed according to Qn

2 . Then
X̃2 + Z2 ∼ P⊗n3 , where P3 = Q2 ∗ P2. By Fano’s
inequality,

D(PX2+Z2
‖PX̃2+Z2

) ≤ nε+ o(n).

Since PX̃2+Z2
= P⊗n3 is a product distribution, Marton’s

inequality (37) yields

d̄(PX2+Z2
, PX̃2+Z2

) ≤
√

ε

2 log e
+ o(1).

Applying (34) in Proposition 4 and in view of the
translation invariance of the d̄-distance, we obtain

|I(X1;Y2)− I(X1;X1 + X̃2 + Z2)| ≤ (α
√
ε+ o(1))n,

for a finite constant α. On the other hand,

I(X1;X1 + Z2) = I(X1;Y2) + I(X1;X2|Y2) =

I(X1;Y2) + o(n), (43)

where I(X1;X2|Y2) ≤ H(X2|Y2) = o(n) by Fano’s
inequality. Combining the last two displays, we have

I(X1;X1+X̃2+Z2) ≤ I(X1;X1+Z2)+(α
√
ε+o(1))n.

Next we apply Proposition 5, with X = X1 → A =
X1 + Z2 → B = A+ X̃2 to get:

H(X1) ≤ I(X1;X1+X̃2+Z2)+g(α
√
ε)n ≤ nC ′1+o(n),

where the last inequality follows from the fact that
maxX1

I(X1;X1 + X̃2 + Z2) = nC ′1 attained by X1

uniform on {0, 1, 2}n.
Finally, note that the rate pair (C ′1, C2) is achievable

by a random MAC-code for (X1, X2) → Y2, with X1

uniform on {0, 1, 2}n and X2 ∼ Q⊗n2 .
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