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Abstract—If is standard Gaussian, the minimum mean-
square error (MMSE) of estimating a random variable based
on � vanishes at least as fast as � as . We
define the MMSE dimension of as the limit as of the
product of and the MMSE. MMSE dimension is also shown
to be the asymptotic ratio of nonlinear MMSE to linear MMSE.
For discrete, absolutely continuous or mixed distribution we show
that MMSE dimension equals Rényi’s information dimension.
However, for a class of self-similar singular (e.g., Cantor dis-
tribution), we show that the product of and MMSE oscillates
around information dimension periodically in (dB). We also
show that these results extend considerably beyond Gaussian noise
under various technical conditions.

Index Terms—Additive noise, Bayesian statistics, Gaussian
noise, high-SNR asymptotics, minimum mean-square error
(MMSE), mutual information, non-Gaussian noise, Rényi infor-
mation dimension.

I. INTRODUCTION

A. Basic Setup

T HE minimum mean square error (MMSE) plays a pivotal
role in estimation theory and Bayesian statistics. Due to

the lack of closed-form expressions for posterior distributions
and conditional expectations, exact MMSE formulae are scarce.
Asymptotic analysis is more tractable and sheds important in-
sights about how the fundamental estimation-theoretic limits de-
pend on the input and noise statistics. The theme of this paper is
the high-SNR scaling law of MMSE of estimating based on

when is independent of .
The MMSE of estimating based on is denoted by1

(1)

(2)
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1Throughout the paper, the probability space ���� � � is fixed. For � �
�� � ��� denotes the collection of all random variables defined on ���� � �
with finite � moments. � ��� denotes the collection of all almost surely
(a.s.) bounded random variables. � denotes the density of a random variable�
whose distribution is absolutely continuous with respect to Lebesgue measure.
� � � denotes that � and � are mutually singular, i.e., there exists a measurable
set � such that ���� � � and ���� � �. 	 denotes a standard normal
random variable. For brevity, natural logarithms are adopted and information
units are nats.

where the infimum in (1) is over all Borel measurable . When
is related to through an additive-noise channel with gain

, i.e.,

(3)

where is independent of , we denote

(4)

and, in particular, when the noise is Gaussian, we simplify

(5)

B. Main Contributions

Before defining MMSE dimension, note that

(6)

where the rightmost side is the mean-square error attained by
the linear estimator . Therefore2 as

(7)

Seeking a finer characterization, we are interested in the exact
scaling constant in (7), which depends on the distribution
only. To this end, we define the lower and upper MMSE dimen-
sion of as

(8)

(9)

When they coincide, the common value is denoted by ,
called the MMSE dimension of . This information mea-
sure governs the high-SNR scaling law of and
sharpens (7) to

(10)

2We use the following asymptotic notations: ��
� � ����
��
if ��	 
�� 
 �� ��
� � ����
�� if ��
� � ����
���

��
� � 
���
�� if ��
� � ����
�� and ��
� � ����
��� ��
� � ����
��
if ��	 � �� ��
� � ����
�� if ��
� � ��� �
��.
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As we show in Section II-B, MMSE dimension also character-
izes the high-SNR suboptimality of linear estimation.

The MMSE dimension is closely related to the information
dimension defined by Rényi in [2]:

Definition 1 (Information Dimension): Let be a
real-valued random variable. Denote for a positive integer

the quantized version of

(11)

where denotes the largest integer not exceeding . Define

(12)

(13)

called lower and upper information dimensions of respec-
tively, where denotes the entropy of a discrete random
variable . If , the common value is called the
information dimension of , denoted by .

Information dimension has many applications, for example,
in lossless analog compression [3], quantization [4], rate-dis-
tortion theory [5] and fractal geometry [6]. Based on the inte-
gral relationship between the MMSE and mutual information
in Gaussian channels [7] and the high-SNR behavior of mutual
information [8], we show that the information dimensions are
sandwiched between the MMSE dimensions

(14)

If is discrete, absolutely continuous or a mixture thereof, we
show that (14) holds with equalities, that is, the MMSE dimen-
sion coincides with the information dimension. In view of the
fact that information dimensions of discrete and absolutely con-
tinuous distributions are zero and one respectively [2, Th. 1 and
3], this implies that

(15)

if has an absolutely continuous distribution, and

(16)

if has a discrete distribution (even if it takes values on a dense
subset of the real line).

We define the conditional MMSE dimension as
the average over of the MMSE dimension of , and
show that

(17)

with equality if is a discrete random variable.
If has a singular distribution, (14) does not hold with equal-

ities. In fact, for self-similar inputs (e.g., the Cantor distribution
[6]), we prove that the MMSE dimension does not exist; the
function fluctuates periodically in (dB)
around the information dimension. This periodicity originates

from the self-similarity of the input distribution, and the period
can be computed exactly.

C. Connections to Asymptotic Statistics

The high-SNR behavior of is equivalent to the
behavior of quadratic Bayesian risk for the Gaussian location
model in the large sample limit, where is the prior distribu-
tion and the sample size plays the role of . To see this,
let be a sequence of i.i.d. standard Gaussian
random variables independent of and denote
and . By the sufficiency of sample mean

in Gaussian location models, we have

(18)

where the right-hand side is the function defined in
(5) evaluated at . Therefore as sample size grows, the Bayesian
risk of estimating vanishes as with the scaling constant
given by the MMSE dimension of the prior3

(19)

The asymptotic expansion of has been studied
in [9]–[11] for absolutely continuous priors and general models
where and are not necessarily related by additive Gaussian
noise. Further comparison to our results is given in Section IV-C.

D. Related Work

The low-SNR asymptotics of has been
studied extensively in [7] and [12]. In particular, it is shown
in [12, Proposition 7] that if all moments of are finite, then

is smooth on and admits a Taylor expansion at
up to arbitrarily high order. For example, if

and , then as

(20)

However, the asymptotics in the high-SNR regime remain un-
derexplored in the literature. In [7, p. 1268] it is pointed out
that the high-SNR behavior depends on the input distribution:
For example, for binary decays exponentially,
while for standard Gaussian . Un-
like the low-SNR regime, the high-SNR behavior is consid-
erably more complicated, as it depends on the measure-theo-
retical structure of the input distribution rather than moments.
On the other hand, it can be shown that the high-SNR asymp-
totics of MMSE is equivalent to the low-SNR asymptotics when
the input and noise distributions are switched. As we show in
Section II-D, this simple observation yields new low-SNR re-
sults for Gaussian input contaminated by non-Gaussian noise.

3In view of Lemma 1 in Section V, the limit of (19) is unchanged even if �
takes non-integer values.
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The asymptotic behavior of Fisher’s information (closely re-
lated to MMSE when is Gaussian) is conjectured in [8, p.
755] to satisfy

(21)

As a corollary to our results, we prove this conjecture when
has no singular components. The Cantor distribution gives

a counterexample to the general conjecture (Section V-A).
Other than our scalar Bayesian setup, the weak-noise asymp-

totics of optimal estimation/filtering error has been studied
in various regimes in statistics. One example is filtering a
deterministic signal observed in weak additive white Gaussian
noise (AWGN): Pinsker’s theorem ([13], [14]) establishes the
exact asymptotics of the optimal minimax square error when
the signal belongs to a Sobolev class with finite duration. For
AWGN channels and stationary Markov input processes that
satisfy a stochastic differential equation, it is shown in [15,
p. 372] that, under certain regularity conditions, the filtering
MMSE decays as .

E. Organization

Section II states the main definitions, as well as connec-
tions to linear estimation, Fisher information, and low-SNR
asymptotics of MMSE. Section III gives an overview of Rényi
information dimension and its applications in Shannon theory.
The relationship between MMSE dimension and information
dimension is shown. Section IV gives results on (conditional)
MMSE dimension for various input distributions. Results about
non-Gaussian noise and second-order expansion involving
Fisher information are also presented. Asymptotic tightness
of the Bayesian Crámer-Rao bound is discussed. Based on
discrete approximation and regularity of the MMSE functional
[16], some numerical experiments are shown in Section V.
Section VI concludes the paper with remarks about future
work. Technical proofs are relegated to the appendix.

II. MMSE DIMENSION

In this section we define the (conditional) MMSE dimension
formally. We focus particular attention on the case of Gaussian
noise.

A. Definitions

Let be random variables with and
independent of . Define

(22)
We first note the following general inequality:4

(23)

4We do not impose the constraint of � � �. Therefore is a dimen-
sionless ratio that takes the role of in the original notation of [7, (3)], where
� is assumed to be standard Gaussian.

where the rightmost side can be achieved using the affine esti-
mator . Therefore as , it holds that

(24)

We are interested in the exact scaling constant, which depends
on the distribution of and . To this end, we introduce the
following notion:

Definition 2: Define the upper and lower MMSE dimension
of the pair as follows:

(25)

(26)

If , the common value is denoted by
, called the MMSE dimension of . In particular,

when is Gaussian, we denote these limits by ,
and , called the upper, lower, and MMSE dimension of

respectively.
Replacing by , the

conditional MMSE dimension of given can be de-

fined similarly, denoted by and
respectively. When is Gaussian, we denote

them by , and , called the
upper, lower, and conditional MMSE dimension of given
respectively.

The following proposition is a simple consequence of (23):

Theorem 1:

(27)

The next proposition shows that MMSE dimension is in-
variant to translations and positive scaling of input and noise.

Theorem 2: For any , if either
•

or
• and either or has a symmetric distribution,

then

(28)

(29)

Proof: Appendix A.

B. Linear MMSE

MMSE dimension characterizes the gain achievable by non-
linear estimation over linear estimation in the high-SNR regime.
To see this, define the linear MMSE (LMMSE) as

(30)
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When , direct optimization over and reveals
that the best parameters are given by

(31)

(32)

Hence

(33)

(34)

(35)

as . As long as , the above analysis holds
for any input even if , in which case (34) simplifies
to . In view of Definition 2, (35)
gives a more general definition of MMSE dimension:

(36)

which can be easily generalized to random vectors or processes.

C. Asymptotics of Fisher Information

In the special case of Gaussian noise it is interesting to draw
conclusions on the asymptotic behavior of Fisher’s information
based on our results. Recall that the Fisher information (with
respect to the location parameter) of a random variable is
defined as: [17, Definition 4.1]

(37)

where denotes the collection of all continuously differen-
tiable functions. When has an absolutely continuous density

, we have . Otherwise, .
In view of the representation of MMSE by the Fisher infor-

mation of the channel output with additive Gaussian noise [18,
(1.3.4)], [7, (58)]

(38)

and , letting yields

(39)

By the lower semicontinuity of Fisher information [17, p. 79],
when the distribution of is not absolutely continuous,

diverges as vanishes, but no faster than

(40)

because of (39). Similarly to the MMSE dimension, we can de-
fine the Fisher dimension of a random variable as follows:

(41)

(42)

Equation (39) shows Fisher dimension and MMSE dimension
are complementary of each other:

(43)

In [8, p.755] it is conjectured that

(44)

or equivalently

(45)

According to Theorem 5, this holds for distributions without
singular components but not in general. Counterexamples can
be found for singular . See Section IV-E for more details.

D. Duality to Low-SNR Asymptotics

Note that

(46)

(47)

(48)

which gives an equivalent definition of the MMSE dimension:

(49)

This reveals an interesting duality: the high-SNR MMSE
scaling constant is equal to the low-SNR limit of MMSE
when the roles of input and noise are switched. Restricted to
the Gaussian channel, it amounts to studying the asymptotic
MMSE of estimating a Gaussian random variable contaminated
with strong noise with an arbitrary distribution. On the other
end of the spectrum, the asymptotic expansion of the MMSE
of an arbitrary random variable contaminated with strong
Gaussian noise is studied in [12, Sec. V.A]. The asymptotics
of other information measures have also been studied: For
example, the asymptotic Fisher information of Gaussian (or
other continuous) random variables under weak arbitrary noise
was investigated in [19]. The asymptotics of non-Gaussianness
in this regime is studied in [20, Th. 1]. The second-order
asymptotics of mutual information under strong Gaussian
noise is studied in [21, Sec. IV].

Unlike which is monotonically decreasing
with may be increasing in
(Gaussian ), decreasing (binary-valued ) or oscillatory
(Cantor ) in the high-SNR regime (see Fig. 3). In those cases
in which is monotone, MMSE
dimension and information dimension exist and coincide, in
view of (49) and Theorem 8.

E. Noise With Infinite Variance

Although most of our focus is on square integrable random
variables, the functional can be defined for
infinite-variance noise. Consider but .
Then is still finite but (25) and (26) cease to
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make sense. Hence the scaling law in (24) could fail. It is in-
structive to consider the following example:

Example 1: Let be uniformly distributed in and
have the following density:

(50)

Then . As decreases, the tail of becomes
heavier and accordingly decays slower. For
instance, for and we obtain (see Appendix B)

(51)

(52)

respectively. Therefore in both cases the MMSE decays strictly
slower than , i.e., for or

(53)

However, does not always imply (53). For
example, consider an arbitrary integer-valued (none of
whose moments may exist) and a.s. Then

for all .

III. RELATIONSHIP BETWEEN MMSE DIMENSION AND

INFORMATION DIMENSION

In this section we give an overview of Rényi information di-
mension and its properties, as well as its application in Shannon
theory. When the noise is Gaussian, we show that the infor-
mation dimension is sandwiched between the lower and upper
MMSE dimension.

A. Rényi Information Dimension

The lower and upper information dimensions of a random
variable are defined in Definition 1. It is shown in [3, Proposition
1] that the information dimension is finite if and only if the mild
condition

(54)

is satisfied. In particular, any whose Shannon transform [22,
Definition 2.12] exists, i.e.,

(55)

has finite information dimension.

Theorem 3 ([3]): If , then

(56)

If , then

(57)

The information dimension of can be understood as the
entropy rate of the fractional part of :

Theorem 4 ([3, Sec. III.D]): Assume that . For
an integer , write the -ary expansion of as

(58)

where the digit is a discrete
random variable taking values in . Then
and coincide with the normalized lower and upper entropy
rates of the process

(59)

(60)

By the Lebesgue Decomposition Theorem [23], any proba-
bility distribution can be uniquely represented as the mixture of
a discrete, an absolutely continuous and a singular (with respect
to Lebesgue measure) probability measure. For nonsingular
distributions, the information dimension can be determined as
follows:

Theorem 5 ([2]): Let be a random variable such that
. Assume the distribution of can be repre-

sented as

(61)

where is a discrete distribution, is an absolutely continuous
distribution and . Then

(62)

Therefore, when has a discrete-continuous mixed distribu-
tion, the information dimension of is exactly the weight of
the continuous part. When the distribution of has a singular
component, its information dimension does not admit a simple
formula in general. In fact if has a singular distribution, it
is possible that the information dimension does not exist [2].
However, for the important class of self-similar singular distri-
butions, the information dimension can be explicitly determined
[24], [5]. For example, the information dimension of the Cantor
distribution is . See Section IV-E.

Let denote the mutual information be-
tween and , where is independent of .
It is proved in [25] that if and only
if (54) holds. Using [8, Th. 2.7 and 3.1] and [3, Appendix A],
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we can relate the scaling law of mutual information under weak
noise to Rényi’s information dimension:5

Theorem 6: Let be independent of with .
Then

(63)

(64)

In [5] Kawabata and Dembo studied the high-rate behavior of
rate-distortion function of an arbitrary random variable. Particu-
larized to mean-square distortion, [5, Proposition 3.3] becomes:

Theorem 7: Let

(65)

denote the rate-distortion function of with mean-square dis-
tortion. Then

(66)

(67)

As a consequence of Theorems 6 and 7, when exists, it
holds that

(68)

(69)

when and respectively. Intuitively, (69) agrees
with (68) because when the distortion goes to zero, the optimal
backward channel behaves like a Gaussian channel.

B. Bounds on Information Dimension

The following theorem reveals a connection between the
MMSE dimension and the information dimension of the input:

Theorem 8: If , then

(70)

Therefore, if exists, then exists and

(71)

and equivalently, as ,

(72)

In view of (27) and (57), (70) fails when . A
Cantor-distributed provides an example in which the inequal-
ities in (70) are strict (see Section IV-E). However, whenever

5The results in [8] are proved under the assumption of (55), which can in fact
be weakened to (54).

has a discrete-continuous mixed distribution, (71) holds and
the information dimension governs the high-SNR asymptotics
of MMSE.

The proof of Theorem 8 hinges on two crucial results:
• The I-MMSE relationship [7]:6

(73)

where we have used the following short-hand notations:

(74)

(75)

• The high-SNR scaling law of in Theorem 6.
Before proceeding to the proof, we first outline a naïve at-

tempt at proving that MMSE dimension and information dimen-
sion coincide. Assuming

(76)

it is tempting to apply the l’Hôpital’s rule to (76) to conclude

(77)

which, combined with (73), would produce the desired result in
(71). However, this approach fails because applying l’Hôpital’s
rule requires establishing the existence of the limit in (77) in
the first place. In fact, we show in Section IV-E when has
certain singular (e.g., Cantor) distribution, the limit in (77),
i.e., the MMSE dimension, does not exist because of oscil-
lation. Nonetheless, because mutual information is related to
MMSE through an integral relation, the information dimension
does exist since oscillation in MMSE is smoothed out by the
integration.

In fact it is possible to construct a function which sat-
isfies all the monotonicity and concavity properties of mutual
information [7, Corollary 1]

(78)

(79)

yet the limit in (77) does not exist because of oscillation. For
instance,

(80)

satisfies (76), (78), and (79), but (77) fails, since

(81)

6The previous result in [7, Th. 1] requires �� � � �. It is shown in [25]
that ������ � � suffices.
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Fig. 1. Plot of ��� � against ��� , where � has a ternary
Cantor distribution.

In fact (81) gives a correct quantitative depiction of the oscil-
latory behavior of for Cantor-distributed (see
Fig. 1).

Proof of Theorem 8: First we prove (70). By (73), we
obtain

(82)

By definition of , for all , there exists , such that
holds for all . Then by (82),

for any

(83)

(84)

In view of (64), dividing both sides by and by the arbi-
trariness of , we conclude that . Similarly,

holds.
Next, assuming the existence of , (71) simply follows

from (70), which can also be obtained by applying l’Hôpital’s
rule to (76) and (77).

IV. EVALUATION OF MMSE DIMENSION

In this section we drop the assumption of and
proceed to give results for various input and noise distributions.

A. Data Processing Lemma for MMSE Dimension

Theorem 9: For any and any

(85)

(86)

When is Gaussian and is discrete, (85) and (86) hold with
equality.

Proof: Appendix C.

In particular, Theorem 9 states that no discrete side informa-
tion can reduce the MMSE dimension. Consequently, we have

(87)

for any , that is, knowing arbitrarily finitely many digits
does not reduce its MMSE dimension. This observation

agrees with our intuition: when the noise is weak, can
be estimated with exponentially small error [see (92)], while
the fractional part is the main contributor to the
estimation error.

It is possible to extend Theorem 9 to non-Gaussian noise (e.g.,
uniform, exponential or Cauchy distributions) and general chan-
nels. See Remark 4 at the end of Appendix C.

B. Discrete Input

Theorem 10: If is discrete (finitely or countably infinitely
valued), and whose distribution is absolutely con-
tinuous with respect to Lebesgue measure, then

(88)

In particular,

(89)

Proof: Since constants have zero MMSE dimension,
, in view of Theorem 9. The more

general result in (88) is proved in Appendix D.

Remark 1: Theorem 10 implies that
as . As observed in Example 4, MMSE can

decay much faster than polynomially. Suppose the alphabet of
, denoted by , has no accumulation point.

Then

(90)

If is almost surely bounded, say , then
for all . On the other

hand, if is almost surely bounded, say , then
decays exponentially: since the error proba-

bility, denoted by , of a MAP estimator for based on
is , where

and is the standard normal density

(91)

Hence

(92)

If the input alphabet has accumulation points, it is possible
that the MMSE decays polynomially. For example, when
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takes values on and is uniform distributed
on , it can be shown that .

C. Absolutely Continuous Input

Theorem 11: Suppose the density of is bounded
and is such that for some

(93)

as . Then

(94)

holds for all with an absolutely continuous distribution with
respect to Lebesgue measure. In particular,

(95)

i.e.,

(96)

Proof: Appendix E.

If the density of is sufficiently regular, then (94) holds for
all noise distributions:

Theorem 12: Suppose the density of is continuous and
bounded. Then

(97)

holds for all (not necessarily absolutely continuous)
.

Proof: Appendix E.

In view of Theorem 12 and (36), we conclude that the
linear estimator is dimensionally optimal for estimating abso-
lutely continuous random variables contaminated by additive
Gaussian noise, in the sense that it achieves the input MMSE
dimension.

A refinement of Theorem 12 entails the second-order expan-
sion for for absolutely continuous input . This
involves the Fisher information of . Suppose .
Then

(98)

(99)

(100)

where (98) and (99) follow from the convexity and translation
invariance of Fisher information respectively. In view of (39),
we have

(101)

which improves (96) slightly.
Under stronger conditions the second-order term can be de-

termined exactly. A result of Prelov and van der Meulen [19]

states that: if and the density of satisfies certain
regularity conditions [19, (3)–(7)], then

(102)

Therefore in view of (38), we have

(103)

This result can be understood as follows: Stam’s inequality [26]
implies that

(104)

(105)

Using (38), we have

(106)

(107)

Inequality (106) is also known as the Bayesian Crámer-Rao
bound (or the Van Trees inequality) [27, pp. 72–73], [28, Corol-
lary 2.3]. In view of (103), we see that (106) is asymptotically
tight for sufficiently regular densities of .

Instead of using the asymptotic expansion of Fisher informa-
tion and Stam’s inequality, we can show that (103) holds for a
much broader class of densities of and non-Gaussian noise:

Theorem 13: Suppose with bounded density
whose first two derivatives are also bounded and

. Furthermore, assume satisfies the following regularity
condition [29, (2.5.16)]:

(108)

Then for any ,

(109)
Proof: Appendix E.

Combined with (107), Theorem 13 implies that the Bayesian
Crámer-Rao bound

(110)

(111)

is asymptotically tight if and only if the noise is Gaussian.
Equation (109) reveals a new operational role of . The

regularity conditions imposed in Theorem 13 are much weaker
and easier to check than those in [19]; however, (103) is slightly
stronger than (109) because the term in (103) is in fact

, as a result of (102).
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It is interesting to compare (109) to results on asymptotic
Bayesian risk in the large sample limit [9, Th. 5.1a]:

• When is Gaussian, recalling (18), we have

(112)

(113)

This agrees with the results in [9] but our proof only re-
quires that has a density.

• When is non-Gaussian, under the regularity conditions
in [9, Th. 5.1a], we have

(114)

which agrees with the Bayesian Crámer-Rao bound in the
product case. On the other hand, by (109) we have

(115)

(116)

whose first-order term is inferior to (114), due to the
Crámer-Rao bound . This agrees with the
fact that the sample mean is asymptotically suboptimal for
non-Gaussian noise, and the suboptimality is characterized
by the gap in the Crámer-Rao inequality.

To conclude the discussion of absolutely continuous inputs,
we give an example where (109) fails:

Example 2: Consider and uniformly distributed on
. It is shown in Appendix B that

(117)

Note that (109) does not hold because does not have a dif-
ferentiable density, hence . This example illustrates
that the term in (96) is not necessarily .

D. Mixed Distribution

Next we present results for general mixed distributions,
which are direct consequences of Theorem 9. The following
result asserts that MMSE dimensions are affine functionals, a
fundamental property shared by Rényi information dimension
[3, Th. 2].

Theorem 14:

(118)

(119)

where is a probability mass function and each
is a probability measure.

Another application of Theorem 9 is to determine the
MMSE dimension of inputs with mixed distributions, which

are frequently used in statistical models of sparse signals [3],
[30]–[32]. According to Theorem 9, knowing the support does
not decrease the MMSE dimension.

Corollary 1: Let where is independent of ,
taking values in with . Then

(120)

(121)

Obtained by combining Theorems 10, 11, and 14, the next
result solves the MMSE dimension of discrete-continuous mix-
tures completely. Together with Theorem 8, it also provides an
alternative proof of Rényi’s theorem on information dimension
(Theorem 5) via MMSE.

Theorem 15: Let have a discrete-continuous mixed distri-
bution as defined in (61). Then its MMSE dimension equals the
weight of the absolutely continuous part, i.e.,

(122)

The above results also extend to non-Gaussian noise or gen-
eral channels which satisfy the condition in Remark 4 at the end
of Appendix C.

To conclude this subsection, we illustrate Theorem 15 by the
following examples:

Example 1 (Continuous Input): If , then

(123)

and (95) holds.

Example 4 (Discrete Input): If is equiprobable on ,
then by (92) or [33, Th. 3],

(124)

and (89) holds.

Example 5 (Mixed Input): Let be uniformly distributed in
, and let be distributed according to an equal mixture of

a mass at 0 and a uniform distribution on . Then

(125)

(126)

which implies and verifies Theorem 15 for non-
Gaussian noise.

E. Singularly Continuous Distribution

In this subsection we consider atomless input distributions
mutually singular with respect to Lebesgue measure. There are
two new phenomena regarding MMSE dimensions of singular
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inputs. First, the lower and upper MMSE dimensions

and depend on the noise distribution, even if the noise
is restricted to be absolutely continuous. Second, the MMSE
dimension of a singular input need not exist. For an important
class of self-similar singular distributions (e.g., the Cantor dis-
tribution), the function oscillates be-
tween the lower and upper dimension periodically in
(i.e., in dB). This periodicity arises from the self-similarity of
the input, and the period can be determined exactly. Unlike the
lower and upper dimension, the period does not depend on the
noise distribution.

We focus on a special class of inputs with self-similar distri-
butions [24, p.36]: inputs with i.i.d. digits. Consider
a.s. For an integer , the -ary expansion of is de-
fined in (58). Assume that the sequence is i.i.d.
with common distribution supported on . Ac-
cording to Theorem 4, the information dimension of exists
and is given by the normalized entropy rate of the digits

(127)

For example, if is Cantor-distributed, then the ternary expan-
sion of consists of i.i.d. digits, and for each ,

(128)

By (127), the information dimension of the Cantor distribution
is . The next theorem shows that for such the scaling
constant of MMSE oscillates periodically.

Theorem 16: Let a.s., whose -ary expansion
defined in (58) consists of i.i.d. digits with common distribution

. Then for any , there exists a -periodic
function7 , such that as

(129)

The lower and upper MMSE dimension of are given by

(130)

(131)

Moreover, when is Gaussian, the average of
over one period coincides with the information dimension of

(132)

Proof: Appendix F.

7Let� � �. We say a function � � � is � -periodic if ���� � ����� �
for all � � , and � is called a period of � ([34, p. 183] or [35, Sec. 3.7]). This
differs from the definition of the least period which is the infimum of all periods
of � .

Fig. 2. Plot of ����� � against ��	 , where � has a ternary
Cantor distribution and � is uniformly distributed in 
�� ��.

Remark 2: Trivial examples of Theorem 16 include
( or a.s.) and ( is uniformly distributed

on ).
Theorem 16 shows that in the high-SNR regime, the func-

tion is periodic in (dB) with period
dB. Plots are given in Figs. 1–2. Although this reveals

the oscillatory nature of , we do not have a
general formula to compute the lower (or upper) MMSE dimen-
sion of . However, when the noise is Gaussian, Theorem
8 provides a sandwich bound in terms of the information dimen-
sion of , which is reconfirmed by combining (130)–(132).

Remark 3 (Binary-Valued Noise): One interesting case for
which we are able to compute the lower MMSE dimension cor-
responds to binary-valued noise, with which all singular inputs
(including discrete distributions) have zero lower MMSE di-
mension (see Appendix H for a proof). This phenomenon can
be explained by the following fact about negligible sets: a set
with zero Lebesgue measure can be translated by an arbitrarily
small amount to be disjoint from itself. Therefore, if an input
is supported on a set with zero Lebesgue measure, we can per-
form a binary hypothesis test based on its noisy version, which
admits a decision rule with zero error probability when SNR is
large enough.

V. NUMERICAL RESULTS

A. Approximation by Discrete Inputs

Due to the difficulty of computing conditional expectation
and estimation error in closed form, we capitalize on the reg-
ularity of the MMSE functional by computing the MMSE of
successively finer discretizations of a given . For an integer

we uniformly quantize to . Then we numerically
compute for fixed . By the weak continuity
of [16, Corollary 3], as the quantization
level grows, converges to ;
however, one caveat is that to obtain the value of MMSE within
a given accuracy, the quantization level needs to grow as
grows (roughly as ) so that the quantization error is much
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smaller than the noise. Lastly, due to the following result, to ob-
tain the MMSE dimension it is sufficient to only consider integer
values of .

Lemma 1: It is sufficient to restrict to integer values of

when calculating and in (25) and
(26) respectively.

Proof: Appendix G.

B. Self-Similar Input Distribution

We numerically calculate the MMSE for Cantor distributed
and Gaussian noise by choosing .

By (128), is equiprobable on the set , which has
cardinality and consists of all 3-adic fractionals whose
ternary digits are either 0 or 2. According to Theorem 16, in the
high-SNR regime, oscillates periodically in

with period , as plotted in Fig. 1. The lower and
upper MMSE dimensions of the Cantor distribution turn out to
be (to six decimals)

(133)

(134)

Note that the information dimension

is sandwiched between and , ac-
cording to Theorem 8. From this and other numerical evidence
it is tempting to conjecture that

(135)

when the noise is Gaussian.
It should be pointed out that the sandwich bounds in (70) need

not hold when is not Gaussian. For example, in Fig. 2 where
is plotted against for Cantor

distributed and uniformly distributed in , it is evident

that .

C. Non-Gaussian Noise

Via the input-noise duality in (48), studying high-SNR
asymptotics provides insights into the behavior of

for non-Gaussian noise . Combining
various results from Sections IV-B, IV-C, and IV-E, we
observe that can behave very irregularly in
general, unlike in Gaussian channels where
is strictly decreasing in . To illustrate this, we consider
the case where standard Gaussian input is contaminated
by various additive noises. For all , it is evident that

. Due to Theorem 12, the
MMSE vanishes as regardless of the noise. The behavior
of MMSE associated with Gaussian, Bernoulli, and Cantor
distributed noises is as follows [Fig. 3(a)].

• For standard Gaussian is con-
tinuous at and decreases monotonically according
to . Recall that [16, Sec. III] this monotonicity is due
to the MMSE data-processing inequality [36] and the sta-
bility of Gaussian distribution.

Fig. 3. Plot of ����� � against , where � is standard Gaussian
and � is standard Gaussian, equiprobable Bernoulli or Cantor distributed (nor-
malized to have unit variance). (a) Behavior of MMSE under various noise dis-
tributions. (b) Low-SNR plot for Cantor distributed � .

• For equiprobable Bernoulli is discon-
tinuous at , since

(136)

As , the MMSE vanishes according to
, in view of (48) and (92), and since it

also vanishes as , it is not monotonic with
.

• For Cantor distributed is also discon-
tinuous at . According to Theorem 16, as ,
MMSE oscillates relentlessly and does not have a limit
[See the zoom-in plot in Fig. 3(b)].

VI. CONCLUSION

Through the high-SNR asymptotics of MMSE in Gaussian
channels, we defined a new information measure called MMSE
dimension. Although stemming from estimation-theoretic prin-
ciples, MMSE dimension shares several important features with
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Rényi’s information dimension. By Theorem 9 and [3, Th. 2],
they are both affine functionals. According to Theorem 8, infor-
mation dimension is sandwiched between the lower and upper
MMSE dimensions. For distributions with no singular compo-
nents, they coincide to be the weight of the continuous part of the
distribution. The high-SNR scaling law of mutual information
and MMSE in Gaussian channels are governed by the informa-
tion dimension and the MMSE dimension respectively. In [3],
we have shown that the information dimension plays a pivotal
role in almost lossless analog compression, an information-the-
oretic model for noiseless compressed sensing. In fact we have
shown in [37] that the MMSE dimension is closed related to the
fundamental limit in noisy compressed sensing with stable re-
construction.

Characterizing the high-SNR suboptimality of linear estima-
tion, (36) provides an alternative definition of MMSE dimen-
sion, which enables us to extend our results to random vectors
or processes. In these more general setups, it is interesting to
investigate how the causality constraint of the estimator affects
the high-SNR behavior of the optimal estimation error. Another
direction of generalization is to study the high-SNR asymptotics
of MMSE with a mismatched model in the setup of [38] or [39].

APPENDIX A
PROOF OF THEOREM 2

Proof: Invariance of the MMSE functional under transla-
tion is obvious. Hence for any

(137)

(138)

(139)

(140)

(141)

Therefore,

(142)

(143)

(144)

(145)

where (144) and (145) follow from (140) and (141) respectively.
The claims in Theorem 2 are special cases of (144) and (145).

The proof for follows analogously.

APPENDIX B
CALCULATION OF (51), (52), AND (117)

In this appendix we compute for three dif-
ferent pairs of .

First we show (52), where is uniformly distributed in
and has the density in (50) with . Let . Then

, where

(146)

(147)

and

(148)

(149)

Then

(150)

(151)

(152)

where we have used . Taking Taylor expansion on
(152) at yields (52). For , (51) can be shown in
similar fashion.

To show (117), where and are both uniformly distributed
in , we note that

(153)

(154)

where . Then (117) can be obtained using
(151).

APPENDIX C
PROOF OF THEOREM 9

A. Outline

From

(155)

we immediately obtain the inequalities in (85) and (86). Next
we prove that equalities hold if is discrete. Let

denote the alphabet of with
. Denote by the distribution of given
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. Then the distribution of is given by the following
mixture:

(156)

Our goal is to establish

(157)

(158)

After recalling an important lemma due to Doob in
Appendix C-B, we decompose the proof of (157) and (158)
into four steps, which are presented in Appendixes C-C–C-F
respectively:

1) We prove the special case of and ;
2) We consider ;
3) Via the Hahn-Lebesgue decomposition and induction on ,

the conclusion is extended to any finite mixture;
4) We prove the most general case of countable mixture

.

B. Doob’s Relative Limit Theorem

The following lemma is a combination of [40, Exercise 2.9,
p. 243] and [41, Th. 1.6.2, p. 40]:

Lemma 2: Let and be two Radon measures on . Define
the density of with respect to by

(159)

where denotes the open ball of radius centered at . If
, then

(160)

If , then

(161)

The Lebesgue-Besicovitch differentiation theorem is a direct
consequence of Lemma 2:

Lemma 3 ([41, Corollary 1.7.1]: Let be a Radon measure
on and . Then

(162)

holds for -a.e. .
It is instructive to reformulate Lemma 2 in a probabilistic con-

text: Suppose and are probability measures and and are
random variables distributed according to and respectively.

Let be uniformly distributed in and independent of
. Then has the following density:

(163)

hence the density of with respect to can be written as

(164)

A natural question is whether (164) still holds if has a non-
uniform distribution. In [42, Th. 4.1], Doob gave a sufficient
condition for this to be true, which is satisfied in particular by
Gaussian-distributed [42, Th. 5.2]:

Lemma 4: For any , let . Under the
assumption of Lemma 2, if

(165)

are finite for all and , then

(166)

holds for -a.e. .
Consequently we have counterparts of Lemmas 2 and 3:

Lemma 5: Under the condition of Lemma 2, if , then

(167)

If , then

(168)

Lemma 6: Under the condition of Lemma 3,

(169)

holds for -a.e. .

C. Mixture of Two Mutually Singular Measures

We first present a lemma which enables us to truncate the
input or the noise. The point of this result is that the error term
depends only on the truncation threshold but not on the obser-
vation.

Lemma 7: For define and
. Then for all ,

(170)
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Proof:

(171)

(172)

(173)

(174)

(175)

The other direction of (170) follows in entirely analogous
fashion.

Let be a random variable with distribution , for .
Let be a random variable independent of , taking
values on with probability and
respectively. Then the distribution of is

(176)

Fixing , we define

(177)

(178)

and

(179)

(180)

Then the densities of and
are respectively given by

(181)

(182)

We want to show

(183)

i.e., the benefit of knowing the true distribution is merely
in the high-SNR regime. To this end, let and define

(184)

(185)

By the orthogonality principle,

(186)

(187)

where

(188)

and

(189)

Therefore,

(190)

(191)

(192)

(193)

(194)

where
• (191): by (188) and (189).
• (192): by (179) and (180).
• (193): by (181) and (182).
Next we show that as , the quantity defined in (185)

vanishes

(195)

Indeed,

(196)

(197)

where
• (196): by (194) and

(198)

• (197): by (179) and (180), we have for ,

(199)
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Write

(200)

Fix . Since

(201)

and , applying Lemma 5 yields

(202)

for -a.e. . Therefore,

(203)

for -a.e. . In view of (200) and (199), we have

(204)

by the dominated convergence theorem, and in entirely analo-
gous fashion

(205)

Substituting (204) and (205) into (197), we obtain (195).
By Lemma 7,

(206)

(207)

By the arbitrariness of , letting yields

(208)

(209)

which gives the desired result (183).

D. Mixture of Two Absolutely Continuous Measures

Now we assume . In view of the proof in
Appendix C-C, it is sufficient to show (195). Denote the
Radon-Nikodym derivative of with respect to by

(210)

where satisfies .

From (193), we have

(211)

(212)

(213)

where

(214)

If , applying Lemma 5 we obtain

(215)

for -a.e. and every . In view of (198), we conclude that the
integrand in (212) is also .

If , then

(216)

(217)

(218)

(219)

(220)

for -a.e. and every , which follows from applying Lemma
6 to . By Lemma 5, we have

(221)

Combining (220) and (221) yields that the integrand in (213)
is . Since the integrand is bounded by , (183) follows
from applying the dominated convergence theorem to (211).
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E. Finite Mixture

Dealing with the more general case where and are ar-
bitrary probability measures, we perform the Hahn-Lebesgue
decomposition [41, Th. 1.6.3] on with respect to , which
yields

(222)

where and and are two probability
measures such that and . Consequently,

. Therefore,

(223)

(224)

(225)

where

(226)

(227)

Then

(228)

(229)

(230)

(231)

(232)

where
• (238): applying the results in Appendix C-D to (225), since

by assumption , we have .
• (229), (231): applying the results in Appendix C-C to

(226), (227) and (222), since and
.

Similarly, . This completes the
proof of (157) and (158) for .

Next we proceed by induction on : Suppose that (157) holds
for . For , assume that , then

(233)

(234)

(235)

where (234) and (235) follow from the induction hypothesis.
Therefore, (157) and (158) hold for any .

F. Countable Mixture

Now we consider : without loss of generality, assume
that for all . Then

(236)

(237)

where

• (236): we have denoted .

• (237): by Theorem 1.

Sending yields , and in en-

tirely analogous fashion, . This com-
pletes the proof of Theorem 9.

Remark 4: Theorem 9 also generalizes to non-Gaussian
noise. From the above proof, we see that (183) holds for all
noise densities that satisfy Doob’s relative limit theorems,
in particular, those meeting the conditions in [42, Th. 4.1],
e.g., uniform (by (164)) and exponential and Cauchy density
([42, Th. 5.1]).

More generally, notice that Lemma 4 deals with convolu-
tional kernels which correspond to additive-noise channels. In
[42, Th. 3.1], Doob also gave a result for general kernels. There-
fore, it is possible to extend the results in Theorem 9 to general
channels.

APPENDIX D
PROOF OF THEOREM 10

Proof: Let and .
In view of (49), it is equivalent to show that

(238)

Fix . Since , there exists , such that

(239)

Since a.s., we can choose such that

(240)

Define

(241)

and . Then we have

(242)

(243)

where (243) follows from (239) and (240).
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The optimal estimator for based on is given by

(244)

Then the MMSE of estimating based on is

(245)

(246)

(247)

(248)

where
• (247): by , since a.s. We have also

defined

(249)

• (248): by (241) and

(250)

(251)

(252)

where (252) follows from (239) and (240).
Next we show that for all and , as , we have

(253)

Indeed, using (244),

(254)

(255)

(256)

(257)

(258)

where
• (256): by (241).

• (258): by the boundedness of and the dominated con-
vergence theorem.

By definition in (249), we have

(259)

In view of (248) and dominated convergence theorem, we have

(260)

Then

(261)

(262)

(263)

where
• (261): by the suboptimality of .
• (261): by the triangle inequality.
• (263): by (243) and (260).

By the arbitrariness of , the proof of (238) is completed.

APPENDIX E
PROOF OF THEOREMS 11–13

We first compute the optimal MMSE estimator under ab-
solutely continuous noise . Let . The density of

is

(264)

Denote

(265)

Then the optimal MSE estimator of given is given by

(266)
A. Proof of Theorem 12

Proof: By (48), we have

(267)

Due to Theorem 1, we only need to show

(268)

which, in view of (267), is equivalent to

(269)

The optimal estimator for given is given by

(270)
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Fix an arbitrary positive . Since , there exists
, such that

(271)

Then

(272)

(273)

(274)

(275)

where
• (273): by writing

and the triangle inequality.
• (274): by for all .
• (275): by (271) and

(276)

Define

(277)

(278)

(279)

Suppose . Then by the bounded convergence theorem,

(280)

(281)

hold for all . Since a.s.,

(282)

(283)

holds a.s. Then by Fatou’s lemma

(284)

By (275),

(285)

(286)

By the arbitrariness of , we conclude that

(287)

hence (268) holds.

B. Proof of Theorem 11

Now we are dealing with whose density is not necessarily
continuous or bounded. In order to show that (280) and (281)
continue to hold under the assumptions of the noise density in
Theorem 11, we need the following lemma from [43, Sec. 3.2]:

Lemma 8 ([43, Th. 3.2.1]): Suppose the family of functions
satisfies the following conditions: for some

constant and

(288)

(289)

(290)

hold for all and . Then for all

(291)

holds for Lebesgue-a.e. .
Note that in the original version of Lemma 8 in [43, Sec. 3.2]

, and is dubbed approximation of the identity. For
or 1, the same conclusion follows from scaling. The

case of can be shown as follows: take some kernel
which is an approximation to the identity. Then is also
an approximation to the identity. Then the conclusion for
follows by applying Lemma 8 to both and and then
subtracting the corresponding (291) limits.

Proof of Theorem 11: Based on the proof of Theorem 12, it
is sufficient to show that (280) and (281) hold for Lebesgue-a.e.

and . Fix . First look at (281): introduce the following kernel
which corresponds to the density of

(292)

We check that is an approximation to the identity by
verifying:

• (288): .
• (289): , since

is bounded.
• (290): by boundedness of and (93), we have: for some

(293)

then

(294)

(295)

(296)
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Note that

(297)

Since , by Lemma 8, (281) holds for Lebesgue-a.e.
. Similarly, we define

(298)

Then it is verifiable that satisfies (288)–(290), with

(299)

Since

(300)

Lemma 8 implies that (280) holds for Lebesgue-a.e. .

C. Proof of Theorem 13

Proof: Without loss of generality, assume . Fol-
lowing the notation in the proof of Theorem 12, similar to
in (278), we define

(301)

Then

(302)

Fix . Since and are all bounded, we can
interchange derivatives with integrals [44, Th. 2.27] and write

(303)

(304)

(305)

Similarly, since , we have

(306)

(307)

Define the score function . Since
a.s., by (302),

(308)

holds a.s. Then

(309)

(310)

(311)

where
• (310): by the bounded convergence theorem, because the

ratio between the term in (308) and is upper
bounded by and , which are integrable by
assumption.

• (311): by and
, in view of (108).

APPENDIX F
PROOF OF THEOREM 16

By Remark 2, Theorem 16 holds trivially if or
. Otherwise, since if and only if

for all , but are i.i.d., therefore .
Similarly, . Hence a.s.

To prove (129), we define the function

(312)

(313)

where (313) follows from (48). The oscillatory behavior of is
given in the following lemma:

Lemma 9:
1) For any is an nondecreasing

nonnegative sequence bounded from above by .
2) Define a function by

(314)

Then is a 1-periodic function, and the convergence in
(314) is uniform in . Therefore as

(315)

In view of Lemma 9, we define a -periodic function
as follows:

(316)

Having defined , (129), (130), and (131) readily follow
from (315).

Next we prove (132) in the case of Gaussian : in view of
(316), it is equivalent to show

(317)
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Denote

(318)

Recalling defined in (313), we have

(319)

(320)

where (320) follows from (73) and is defined in (74).
Since exists, in view of (63) and (64), we have

(321)

Since the convergence in (314) is uniform in , for all
, there exists such that for all and ,

(322)

Then for all integers , we have

(323)

(324)

where
• (323): and map into .
• (324): by (322).

By the arbitrariness of and (321), we have

(325)

To finish the proof, we prove Lemma 9. Note that

(326)

(327)

(328)

(329)

(330)

(331)

where
• (326): by (313);
• (327): by (47) and (318);
• (328): by the -ary expansion of in (58) and we have

defined

(332)

(333)

• (329): by the data-processing inequality of MMSE [36],
since is independent of ;

• (330): by since is an i.i.d. sequence.
Therefore, for fixed is an nondecreasing sequence
in . By (326),

(334)

hence exists, denoted by . The 1-peri-
odicity of readily follows.

To prove (315), we show that there exist two functions
depending on the distribution of and only, such

that

(335)

and

(336)

(337)

Then (315) follows by combining (335)–(337) and sending
. Inequalities (336) and (337) also show that the convergence

in (314) is uniform in .
To conclude this proof, we proceed to construct the desired

functions and and prove (336) and (337): by monotonicity,
for all

(338)

Hence (336) follows. To prove (337), fix and to
be specified later. Define

(339)

(340)

We use a suboptimal estimator to bound . To
streamline the proof, introduce the following notation:

(341)

(342)

(343)

(344)

(345)

where is integer-valued. Note that since has i.i.d. -ary
expansion, are independent, and

(346)

hence

(347)

Based on , we use the following two-stage suboptimal esti-
mator for : first estimate (the first bits of ) based
on according to

(348)
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Then peel off from and plug it into the optimal
estimator for based on

(349)

to estimate , i.e.,

(350)

Next we bound the probability of choosing the wrong

(351)

(352)

(353)

(354)

(355)

where
• (351): by (345) and (348);
• (352): by the fact that if and only if ;
• (353): by (346);
• (354): by the assumption that a.s.;
• (355): by the bounded convergence theorem.

Note that is a nonincreasing nonnegative function de-
pending only on the distribution of and .

Finally we choose and analyze the performance of .
Observe from (351) that the probability of choosing the wrong

does not depend . This allows us to choose independent
of

(356)

Therefore,

(357)

(358)

(359)

where
• (357): by (313) and (345);
• (358): by the suboptimality of ;
• (359): by (350).

Now

(360)

(361)

(362)

where
• (360): by (347);
• (361): by for all , since

a.s.;
• (362): by Lemma 7, (355), (356), and

.
Define

(363)

(364)

where and are related to through (318) and (356), re-
spectively. Then substituting (362) into (359) yields

(365)

Note that the right hand side of (365) does not depend on . By
(314), sending we obtain

(366)

In view of (338), squaring8 (366) on both sides and noticing that
for all , we have

(367)

By (355) and (356), as . Since
and both tend to zero as , and (337) follows.

APPENDIX G
PROOF OF LEMMA 1

Proof: For any , there exists , such
that . Since the function

is monotonically decreasing, we have

(368)

hence

(369)

(370)

Since , the claim of Lemma 1 follows.

APPENDIX H
PROOF FOR REMARK 3

We show that for any singular and any binary-valued ,

(371)

To this end, we need the following auxiliary results:

Lemma 10 (Mutually Singular Hypothesis): The optimal test
for the binary hypothesis testing problem

(372)

8In this step it is essential that ���� be bounded, because in general
�
� ��

� � ���� does not imply that � � � � ����. For instance, � � � �
�� � � �.
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with prior has zero error probability if and only
if .

Proof: By definition, if and only if there exists an
event such that and . Then the test that
decides if and only if occurs yields zero error probability.

Lemma 11 ([45, Th. 10]): Let be a probability measure
on that is mutually singular with respect to Lebesgue
measure. Then there exists a Borel set with and
a non-empty perfect set such that is a family
of disjoint sets.

Proof of (371): In view of Theorem 2, we may assume
that is -valued without loss of generality. For any input

whose distribution is mutually singular to the Lebesgue
measure, we show that there exists a vanishing sequence ,
such that for all ,

(373)

which implies that .
By Lemma 11, there exists a Borel set and a perfect set ,

such that and is a family of disjoint
sets. Pick any . Since is perfect, there exists ,
such that and . Since and are
supported on disjoint subsets and respectively, their
distributions are mutually singular. By Lemma 10, the optimal
test for based on succeeds with probability one,
which implies (373).
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