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Abstract—If N is standard Gaussian, the minimum mean-
square error (MMSE) of estimating X based on

√
snrX + N

vanishes at least as fast as 1
snr

as snr → ∞. We define the
MMSE dimension of X as the limit as snr → ∞ of the product
of snr and the MMSE. For discrete, absolutely continuous or
mixed X we show that the MMSE dimension equals Rényi’s
information dimension. However, for singular X , we show that
the product of snr and MMSE oscillates around information
dimension periodically in snr (dB). We also show that discrete
side information does not reduce MMSE dimension. These results
extend considerably beyond Gaussian N under various technical
conditions.

I. INTRODUCTION

A. Basic Setup

The minimum mean square error (MMSE) plays a pivotal
role in estimation theory and Bayesian statistics. Due to the
lack of closed-form expressions for posterior distributions and
conditional expectations, exact MMSE formulae are scarce.
Asymptotic analysis is more tractable and sheds important
insights about how the fundamental estimation-theoretic limits
depend on the input and noise statistics. The theme of this
paper is the high-SNR scaling law of the MMSE of estimating
X based on

√
snrX +N when N is independent of X .

The MMSE of estimating X based on Y is given by

mmse(X|Y ) = E[(X − E[X|Y ])2]. (1)

When Y is related to X through an additive-noise channel
with gain

√
snr, i.e.,

Y =
√

snrX +N (2)

where N ⊥⊥ X , we denote

mmse(X,N, snr) = mmse(X|
√

snrX +N), (3)

and, in particular, when the noise is Gaussian (denoted by
NG), we simplify

mmse(X, snr) = mmse(X,NG, snr). (4)

B. Asymptotics of MMSE

The low-SNR asymptotics of mmse(X, snr) has been stud-
ied extensively in [1, Section II.F], where the Taylor expansion
of mmse(X, snr) at snr = 0 has been obtained and the
coefficients turn out to depend only on the moments of X .
However, the asymptotics in the high-SNR regime have not

received much attention in the literature. The high-SNR behav-
ior depends on the input distribution: For example, for binary
X , mmse(X, snr) decays exponentially, while for standard
Gaussian X ,

mmse(X, snr) =
1

snr + 1
. (5)

Unlike the low-SNR regime, the high-SNR asymptotics de-
pend on the measure-theoretical structure of the input distri-
bution rather than its moments.

Before defining MMSE dimension, note that

0 ≤ mmse(X,N, snr) ≤ varN

snr
, (6)

where the upper bound can be achieved using the affine
estimator f(y) = y−EN√

snr
. Assuming N has finite variance, as

snr→∞, we have1:

mmse(X,N, snr) = O
(

1
snr

)
(7)

Seeking a finer characterization, we are interested in the exact
scaling constant in (7). To this end, we define the upper and
lower MMSE dimension of the pair (X,N) as:

D(X,N) = lim sup
snr→∞

snr ·mmse(X,N, snr)
varN

, (8)

D(X,N) = lim inf
snr→∞

snr ·mmse(X,N, snr)
varN

. (9)

If D(X,N) = D(X,N), the common value is denoted
by D(X,N), called the MMSE dimension of (X,N). This
information measure governs the high-SNR scaling law of
MMSE and sharpens (7) to:

mmse(X,N, snr) =
D(X,N)varN

snr
+ o

(
1

snr

)
. (10)

When the side information U (independent of N ) is present,
replacing mmse(X,N, snr) by mmse(X,N, snr|U), the con-
ditional MMSE dimension of (X,N) given U is similarly
defined, denoted by D(X,N |U). When N is Gaussian, we
use the notation D(X) (D(X|U)), called the (conditional)
MMSE dimension of X . By (6), we have

0 ≤ D(X,N |U) ≤ D(X,N |U) ≤ 1. (11)

1We use the following asymptotic notation: f(x) = O (g(x)) if and only
if lim sup

|f(x)|
|g(x)| < ∞. f(x) = Ω(g(x)) if and only if g(x) = O (f(x)).

f(x) = Θ(g(x)) if and only if f(x) = O (g(x)) and f(x) = Ω(g(x))



Although most of our attention is focused on square in-
tegrable noise, mmse(X,N, snr) is finite even for infinite-
variance N , as long as varX <∞. But (8) and (9) no longer
make sense in that case. Hence the scaling law in (7) could fail.
Examples can be constructed where mmse(X,N, snr) decays
strictly slower than 1

snr , e.g., as log snr
snr or even 1√

snr
. However,

for certain X , mmse(X,N, snr) can still decay according to
1

snr for some infinite-variance N [2].

C. Asymptotics of Fisher information

In the special case of Gaussian noise it is interesting to draw
conclusions on the asymptotic behavior of Fisher’s information
based on our results. Similarly to the MMSE dimension, we
can define the Fisher dimension of a random variable X as
follows:

J (X) = lim sup
ε↓0

ε2 · J(X + εNG), (12)

J (X) = lim inf
ε↓0

ε2 · J(X + εNG). (13)

In view of the representation of MMSE via the Fisher infor-
mation of the channel output [3, (1.3.4)], [1, (58)]:

snr ·mmse(X, snr) = 1− J(
√

snrX +NG) (14)

and J(aZ) = a−2J(Z), we conclude that Fisher dimension
and MMSE dimension are complementary of each other:

J (X) + D(X) = J (X) + D(X) = 1. (15)

D. Connections to asymptotic statistics

The high-SNR asymptotic behavior of mmse(X, snr) is
equivalent to the behavior of the Bayesian risk for the Gaussian
location model in the large sample limit, where PX is the prior
distribution and the sample size n plays the role of snr. Let
{Ni : i ∈ N} be a sequence of i.i.d. standard Gaussian random
variables independent of X and denote Yi = X +Ni. By the
sufficiency of the sample mean Ȳ = 1

n

∑n
i=1 Yi in Gaussian

location models, we have

mmse(X|Y n) = mmse(X|Ȳ ) = mmse(X,n). (16)

Therefore as sample size grows, the Bayesian risk of estimat-
ing X vanishes as O

(
1
n

)
with the scaling constant given by

the MMSE dimension of the prior:

D(X) = lim
n→∞

mmse(X|Y n)n. (17)

The asymptotics of mmse(X|Y n) has been studied in [4], [5]
for absolutely continuous priors and general models where X
and Y are not necessarily related by additive Gaussian noise.
Those results are compared with ours in Section II.

II. MAIN RESULTS

A. Connections to information dimension

The MMSE dimension is intimately related to the informa-
tion dimension defined by Rényi in [6]:

Definition 1. Let X be a real-valued random variable. Denote
for a positive integer m the quantized version of X:

〈X〉m =
bmXc
m

. (18)

Define2

d(X) = lim inf
m→∞

H (〈X〉m)
logm

(19)

and

d(X) = lim sup
m→∞

H (〈X〉m)
logm

, (20)

where d(X) and d(X) are called lower and upper information
dimensions of X respectively. If d(X) = d(X), the common
value is called the information dimension of X , denoted by
d(X).

The following theorem reveals a connection between the
MMSE dimension and the information dimension of the input:

Theorem 1. If E[X2] <∞, then

D(X) ≤ d(X) ≤ d(X) ≤ D(X), (21)

Therefore, if D(X) exists, then d(X) exists, and

D(X) = d(X). (22)

Due to space limitations, proofs are referred to [2].
In [7, p.755] it is conjectured that J (X) = 1 − d(X),

or equivalently, in view of (15), D(X) = d(X). This holds
for distributions without singular components but not in gen-
eral. The Cantor distribution gives a counterexample to the
general conjecture (see Section II-D). However, whenever X
has a discrete-continuous mixed distribution, (22) holds and
information dimension governs the high-SNR asymptotics of
MMSE.

Next we drop the assumption of varX <∞ and proceed to
give results for various input and noise distributions.

B. Absolutely continuous inputs

Theorem 2. If X has an absolutely continuous distribution
with respect to Lebesgue measure, then D(X) = 1, i.e.,

mmse(X, snr) =
1

snr
+ o

(
1

snr

)
. (23)

In view of (40), Theorem 2 implies that absolutely contin-
uous priors result in procedures whose asymptotic Bayes risk
coincides with the minimax level.

Under certain regularity conditions on N (X resp.) we can
extend Theorem 2 to show

D(X,N) = 1 (24)

2Throughout the paper, natural logarithms are adopted and information units
are nats.



for all absolutely continuous X (N resp.). For example, when
X has a continuous and bounded density, (24) holds for all
square-integrable N even without a density.

A refinement of Theorem 2 entails the second-order expan-
sion for mmse(X, snr) for absolutely continuous input X . This
involves the Fisher information of X . Suppose J(X) < ∞,
then J(

√
snrX + NG) ≤ J(X)snr−1, by the convexity and

translation invariance of Fisher information. In view of (14),
we have

mmse(X, snr) =
1

snr
+ O

(
1

snr2

)
, (25)

which is a slight improvement of (23).
Under stronger conditions the second-order term can be

determined exactly. A result in [8] states that: if J(X) < ∞
and the density of X satisfies certain regularity conditions [8,
(3) – (7)], then

J(X + εNG) = J(X) + O (ε). (26)

Therefore in view of (14), we have

mmse(X, snr) =
1

snr
− J(X)

snr2
+ o

(
1

snr2

)
. (27)

This result can be understood as follows: using (14) and Stam’s
inequality [9], we have [10, pp. 72–73]

mmse(X, snr) ≥ 1
J(X) + snr

, (28)

which is also known as the Bayesian Cramér-Rao bound (or
the Van Trees inequality). In view of (27), we see that (28) is
asymptotically tight for sufficiently regular densities of X .

Instead of using the asymptotic expansion of Fisher infor-
mation and Stam’s inequality, we can show that (27) holds
for a much broader class of densities of X and non-Gaussian
noise: if X has finite third moment and its density has bounded
first two derivatives, then for any finite-variance N ,

mmse(X,N, snr) =
varN

snr
− J(X)var2N

snr2
+ o

(
1

snr2

)
. (29)

This equation reveals a new operational role of J(X). The
regularity conditions imposed on the input density are much
weaker and easier to check than those in [8]; however, (27) is
slightly stronger than (29) because the o

(
snr−2

)
term in (27)

is in fact O
(
snr−5/2

)
, as a result of (26).

It is interesting to compare (29) to the asymptotic expansion
of Bayesian risk in the large sample limit [5]. Under the
regularity conditions in [5, Theorem 5.1a], we have

mmse(X|Y n1 ) =
1

nJ(N)
− J(X)
n2 J(N)2

+ o
(

1
n2

)
. (30)

On the other hand, by (29) we have

mmse(X|Ȳ ) = mmse(X,n) =
varN

n
−J(X)(varN)2

n2
+o
(

1
n2

)
.

(31)
When N is Gaussian, (31) agrees with (30), but our proof
requires much weaker regularity conditions. When N is not
Gaussian, (31) is inferior to (30) on the first term, due to

the Cramér-Rao bound varN ≥ 1
J(N) . This agrees with the

fact that sample mean is asymptotically suboptimal for non-
Gaussian noise, and the suboptimality is characterized by the
gap in the Cramér-Rao inequality.

To conclude the discussion of absolutely continuous inputs,
we give an example where (29) fails:

Example 1. Consider X and N uniformly distributed on [0, 1].
It can be shown that mmse(X,N, snr) = varN

(
1

snr −
1

2snr
3
2

)
for snr ≥ 4. Note that (29) does not hold because X does not
have a differentiable density, hence J(X) = ∞ (in the sense
of the generalized Fisher information in [11, Definition 4.1]).

C. Conditional MMSE dimension
Next we present results for general mixed distributions,

which can be equivalently stated via the conditional MMSE
dimension.

Theorem 3 (Conditional MMSE dimension).

D(X,N) ≥ D(X,N |U), (32)
D(X,N) ≥ D(X,N |U). (33)

When N is Gaussian and U is discrete, (32) and (33) hold
with equality.

Theorem 3 implies that any discrete side information does
not change the high-SNR asymptotics of MMSE. Conse-
quently, knowing arbitrarily finitely many digits of X does not
reduce its MMSE dimension. Another application of Theorem
3 is to determine the MMSE dimension of inputs with mixed
distributions, which are frequently used in statistical models
of sparse signals [12], [13], [14]. According to Theorem 3,
knowing the support does not decrease the MMSE dimension.

Corollary 1. Let X = UZ where U is independent of Z,
taking values in {0, 1} with P {U = 1} = ρ. Then D(X) =
ρD(Z), D(X) = ρD(Z).

Having proved results about countable mixtures, the fol-
lowing theorem about MMSE dimension of discrete random
variables is just a simple corollary.

Theorem 4. For X discrete (even with countably infinite
alphabet), D(X) = 0.

Without recourse to conditional MMSE dimension, Theo-
rem 4 can be extended to D(X,N) = 0 for all discrete X
and absolutely continuous N .

Obtained by combining Theorems 2 – 4, the next result
gives a complete characterization to the MMSE dimension
of discrete-continuous mixtures. Together with Theorem 1,
Theorem 5 also provides an MMSE-based proof of Rényi’s
theorem on information dimension [6] for square integrable
inputs.

Theorem 5. If X is distributed according to a mixture of
an absolutely continuous and a discrete distribution, then
its MMSE dimension equals the weight of the absolutely
continuous part.



In [2] we generalize Theorem 5 to non-Gaussian noise.
For square integrable input, the MSE attained by the optimal

linear estimator is varN
snr +o

(
1

snr

)
. Therefore the linear estimator

is dimensionally optimal for estimating absolutely continuous
random variables contaminated by additive Gaussian noise, in
the sense that it achieves the input MMSE dimension.

To conclude this subsection, we illustrate Theorem 5 by the
following examples:

Example 2 (Continuous input). If X ∼ N (0, 1), then
mmse(X, snr) is given in (5) and Theorem 2 holds.

Example 3 (Discrete input). If X is equiprobable on {−1, 1},
then

mmse(X, snr) = O
(

1√
snr

e−
snr
2

)
(34)

and therefore D(X) = 0 as predicted by Theorem 4. In
fact, exponential decay holds for all inputs whose alphabet
has no accumulation points. Otherwise, the MMSE can decay
polynomially [2].

Example 4 (Mixed input). Let N be uniformly distributed in
[0, 1], and let X be distributed according to an equal mixture
of a mass at 0 and a uniform distribution on [0, 1]. Then
mmse(X,N, snr) = varN

(
1

2snr + 1

4snr
3
2

)
+ o

(
1

snr
3
2

)
, which

implies D(X,N) = 1
2 as predicted by Theorem 5 for non-

Gaussian noise.

D. Singularly continuous inputs

We focus on a special class of inputs with self-similar
singular distributions [15, p. 36]: inputs with i.i.d. digits.

Theorem 6. Let X ∈ [0, 1] a.s., whose M -ary expansion X =∑
j∈N(X)jM−j consists of i.i.d. digits {(X)j} with common

distribution P . Then for any finite-variance N , there exists a
2 logM -periodic function ΦX,N : R → [0, 1], such that as
snr→∞,

mmse(X,N, snr) =
varN

snr
ΦX,N (log snr) + o

(
1

snr

)
. (35)

The lower and upper MMSE dimension of (X,N) are given
by

D(X,N) = lim sup
b→∞

ΦX,N (b) = sup
0≤b≤2 logM

ΦX,N (b), (36)

D(X,N) = lim inf
b→∞

ΦX,N (b) = inf
0≤b≤2 logM

ΦX,N (b). (37)

Moreover, when N = NG is Gaussian, the average of ΦX,NG

over one period coincides with the information dimension of
X:

1
2 logM

∫ 2 logM

0

ΦX,NG
(b)db = d(X) =

H(P )
logM

. (38)

Theorem 6 shows that in the high-SNR regime, the function
snr mmse(X,N, snr) is periodic in snr (dB) with period M2

(dB). This periodicity arises from the self-similarity of the
input, and unlike the lower and upper dimension, the period
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Fig. 1. snr mmse(X, snr) when X has a ternary Cantor distribution.

depends on the input distribution but not the noise. Although
Theorem 6 reveals the oscillatory nature of mmse(X,N, snr),
we do not have a general formula to compute the lower (or
upper) MMSE dimension of (X,N). However, when the noise
is Gaussian, Theorem 1 provides a sandwich bound in terms
of the information dimension of X , which is reconfirmed by
combining (36) – (38).

As an illustrative example, consider Cantor-distributed X
whose ternary expansion consists of i.i.d. digits, and for
each j, P {(X)j = 0} = P {(X)j = 2} = 1/2. According
to Theorem 6, in the high-SNR regime, snr mmse(X, snr)
oscillates periodically in log snr with period 2 log 3, as plotted
in Fig. 1. The lower and upper MMSE dimensions of the
Cantor distribution turn out to be (to six decimals): D(X) =
0.621102, D(X) = 0.640861. The information dimension
d(X) = log3 2 = 0.630930 is sandwiched between D(X) and
D(X), according to Theorem 1. From this and other numerical
evidence it is tempting to conjecture that when the noise is
Gaussian,

d(X) =
D(X) + D(X)

2
. (39)

It should be pointed out that the sandwich bounds in
(21) need not hold when N is not Gaussian. For example,
for X Cantor distributed and N uniformly distributed in
[0, 1], numerical calculation shows that d(X) = log3 2 >
D(X,N) = 0.5741.

III. CONCLUDING REMARKS

Through the high-SNR asymptotics of MMSE in Gaussian
channels, we defined a new information measure called MMSE
dimension. Although stemming from estimation-theoretic prin-
ciples, MMSE dimension shares several important features
with Rényi’s information dimension. By Theorem 3, MMSE
dimensions are affine functionals, a fundamental property
shared by information dimension [12, Theorem 2]. According
to Theorem 1, information dimension is sandwiched between
the lower and upper MMSE dimensions. For distributions with
no singular components, they coincide to be the weight on the



absolutely continuous part of the distribution. In [12], we have
shown that the information dimension plays a pivotal role in
almost lossless analog compression, an information theory for
noiseless compressed sensing. In fact we have shown that the
MMSE dimension serves as the fundamental limit in noisy
compressed sensing with stable recovery.

Via the input-noise duality

snr ·mmse(X,N, snr) = mmse
(
N,X, snr−1

)
(40)

and the following equivalent definition of the MMSE dimen-
sion

D(X,N) = lim
ε↓0

mmse(N,X, ε), (41)

studying high-SNR asymptotics provides insights into the
behavior of mmse(X,N, snr) for non-Gaussian noise N . Com-
bining various results from Sections II, we observe that unlike
in Gaussian channels where mmse(X, snr) is decreasing and
convex in snr, mmse(X,N, snr) can behave very irregularly in
general. To illustrate this, we consider the case where standard
Gaussian input is contaminated by various additive noises. For
all N , it is evident that mmse(X,N, 0) = varX = 1. The
behavior of MMSE associated with Gaussian, Bernoulli and
Cantor distributed noises is (Fig. 2)
• For standard Gaussian N , mmse(X, snr) = 1

1+snr is
continuous at snr = 0 and decreases monotonically
according to 1

snr . This monotonicity is due to the MMSE
data-processing inequality and the stability of Gaussian
distribution.

• For equiprobable Bernoulli N , mmse(X,N, snr) is dis-
continuous at snr = 0. As snr→ 0, the MMSE vanishes
according to O

(
1√
snr

e−
1

2snr

)
, in view of (40) and (34),

and since it also vanishes as snr→∞, it is not monotonic
with snr > 0.

• For Cantor distributed3 N , mmse(X,N, snr) is also dis-
continuous at snr = 0. According to Theorem 6, as
snr → 0, the MMSE oscillates relentlessly between
D(N) and D(N) and does not have a limit (See the
zoom-in plot in Fig. 3).

Nevertheless, as snr → ∞, the MMSE vanishes as varN
snr

regardless of the noise.
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