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Functional Properties of Minimum Mean-square
Error and Mutual Information

Yihong Wu and Sergio Verdú

Abstract—In addition to exploring its various regularity prop-
erties, we show that the minimum mean-square error (MMSE)
is a concave functional of the input-output joint distribution.
In the case of additive Gaussian noise, the MMSE is shown to
be weakly continuous in the input distribution and Lipschitz
continuous with respect to the quadratic Wasserstein distance for
peak-limited inputs. Regularity properties of mutual information
are also obtained. Several applications to information theory and
the central limit theorem are discussed.

Index Terms—Bayesian statistics, minimum mean-square error
(MMSE), mutual information, Gaussian noise, non-Gaussian
noise, central limit theorem.

I. INTRODUCTION

Monotonicity, convexity and infinite differentiability of the
minimum mean square error (MMSE) in Gaussian noise as a
function of the signal to noise ratio (SNR) have been shown in
[2]. In contrast, this paper deals with the functional aspects of
MMSE, i.e., as a function of the input-output joint distribution
PXY , and in particular, as a function of the input distribution
PX when PY |X is fixed. We devote special attention to
additive Gaussian noise.

The MMSE is a functional of the input-output joint distri-
bution PXY defined on (R2,B), or equivalently of the pair
(PX , PY |X): Define

m(PXY ) = m(PX , PY |X) (1)
= mmse(X|Y ) (2)

= E[(X − E[X|Y ])2]. (3)

These notations will be used interchangeably. When Y is
related to X through an additive-noise channel with gain

√
snr,

i.e., Y =
√
snrX+N where N is independent of X , we denote

mmse(X,N, snr) = mmse(X|
√
snrX +N), (4)

mmse(X, snr) = mmse(X,NG, snr), (5)

where NG is standard Gaussian distributed. Similarly, we
denote the mutual information by

I(X,N, snr) = I(X;
√
snrX +N), (6)

I(X, snr) = I(X,NG, snr), (7)

In Section II we study various concavity properties of the
MMSE functional defined in (3) – (5). Unlike the mutual
information I(PX , PY |X), which is concave in PX , convex in
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PY |X but neither convex nor concave in PXY , we show
that the MMSE functional m(PXY ) is concave in the joint
distribution PXY , hence concave individually in PX when
PY |X is fixed, and in PY |X when PX is fixed. m(PX , PY |X)
is neither concave nor convex in the pair (PX , PY |X).

Various regularity properties of MMSE are explored in
Section III. In particular, we show that:
• mmse(X,N, snr) is weakly lower semi-continuous (l.s.c.)

in PX but not continuous in general.
• When N has a continuous and bounded density, PX 7→

mmse(X,N, snr) is weakly continuous.
• When N is Gaussian and X has a finite moment of a cer-

tain order, PX 7→ mmse(X, snr) is Lipschitz continuous
with respect to the Wasserstein distance [3].

For more general distortion functions (not necessarily mean-
square), concavity and lower semicontinuity properties of the
optimal distortion as a function of the input distribution or
channel statistics have recently been studied in [4] in the
context of stochastic control.

Via the I-MMSE relationship1 [5]

I(X, snr) =
1

2

∫ snr

0

mmse(X, γ)dγ, (8)

regularities of MMSE are inherited by the mutual information
when the input power is bounded. Several applications of these
continuity properties are given in Section IV:
• Using the weak continuity of MMSE, we prove that the

differential version of the I-MMSE relationship

dI(X, snr)

dsnr
=

1

2
mmse(X, snr) (9)

holds for all snr > 0 as long as the mutual information is
finite, thus dropping the finite-variance condition imposed
on X in [5, Theorem 1].

• The Lipschitz continuity of MMSE enables us to gauge
the gap between the Gaussian channel capacity and the
mutual information achieved by a given input by comput-
ing its Wasserstein distance to the Gaussian distribution.

• We give upper bounds on the convergence rate (in terms
of relative entropy) in the central limit theorem for
densities obtained as the convolution of Gaussian with
another distribution under various moment assumptions.

• We give an example of the central limit theorem in the
sense of weak convergence where the non-Gaussianness
is finite but does not vanish.

1Throughout the paper natural logarithms are adopted and information units
are nats.
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We also give a new bound on the decrease of MMSE due to
additional observations in terms of the mutual information.

In Section V we discuss the data processing inequality
associated with MMSE, which implies mmse(X,N, snr) is
decreasing in snr for those N with a stable distribution,2 e.g.,
Gaussian.

In Section VI we present relevant results on the extrem-
ization of the MMSE functional with Gaussian inputs and/or
Gaussian noise. While the least favorable input with additive
Gaussian noise is Gaussian, the worst random transformation
faced by Gaussian inputs is an attenuation followed by additive
Gaussian noise, which coincides with the optimal forward
random transformation achieving the Gaussian rate-distortion
function, i.e. the backward random transformation is an ad-
ditive Gaussian noise. Nonetheless, the worst additive-noise
channel is still Gaussian. We also discuss MMSE-maximizing
input distribution under amplitude constraint and its discrete
nature.

II. CONCAVITY

Theorem 1. For any PXY , QXY and 0 ≤ α ≤ 1,

m(αPXY + (1− α)QXY )

= αm(PXY ) + (1− α)m(QXY ) + α(1− α)× (10)∫
λ(dy) (EP [X|Y = y]− EQ[X|Y = y])

2 dPY
dλ

(y)
dQY
dλ

(y)

where λ = αPY + (1 − α)QY , PY and QY denote the
marginals of Y under PXY and QXY respectively. Conse-
quently, m(PXY ) is a concave functional in PXY .

Proof: Appendix A.

Corollary 1. m(PX , PY |X) is individually concave in each
of its arguments when the other one is fixed.

Remark 1. MMSE is not concave in the pair (PX , PY |X).
We illustrate this point by the following example: for i = 1, 2,
let Yi = Xi + Ni, where X1 and N1 are independent
and equiprobable on {0, 1}, X2 and N2 are independent
and equiprobable on {8, 10} and {4, 6} respectively. Then
mmse(X1|Y1) = 1

8 and mmse(X2|Y2) = 1
2 . Let Y = X +N ,

where the distribution of X (resp. N ) is the equal mixture of
those of X1 and X2 (resp. N1 and N2). Then

mmse(X|Y ) =
1

4
[mmse(X1|Y1) + mmse(X2|Y2)] (11)

<
1

2
[mmse(X1|Y1) + mmse(X2|Y2)]. (12)

Corollary 2 (Non-strict concavity). In general MMSE is not
strictly concave.

Proof: According to (10), it can be shown that

m(αPXY + (1− α)QXY ) = αm(PXY ) + (1− α)m(QXY )
(13)

2A distribution P is called stable if for X1, X2 independent identically
distributed according to P , for any a, b ∈ R, the random variable aX1+bX2

has the same distribution as cX + d for some c, d ∈ R [6, p. 6].

holds for all 0 < α < 1 if and only if

EP [X|Y = y] = EQ[X|Y = y] (14)

holds for PY -a.e. and QY -a.e. y. Therefore, instances of non-
strict concavity can be established by constructing pairs of
distributions which give rise to the same optimal estimator.
Consider the following examples:

1) Let Y = X+N where X and N are i.i.d. By symmetry,
E[X|Y = y] = E[N |Y = y]. Then since E[X|Y =
y] + E[N |Y = y] = y, the optimal estimator is given by
E[X|Y = y] = y/2, regardless of the distribution of X .
Therefore, in this case, the mapping PXY 7→ m(PXY ) is
affine between those joint distributions.

2) Let X and N be independent and standard Gaussian.
Denote the joint distribution of (X,

√
snrX + N) and

(X, snr+1√
snr
X) by PXY and QXY respectively. Then the

optimal estimators of X under PXY and QXY are both
X̂(y) =

√
snr√

snr+1
y. Therefore, PY |X 7→ m(PX , PY |X) is

not strictly concave.
3) Let Y = X + 2πN , where N is independent of X and

equiprobable Bernoulli. Consider two densities of X:

fX1(x) = ϕ(x), (15)
fX2(x) = ϕ(x)(1 + sinx), (16)

where ϕ(x) , 1√
2π

e−
x2

2 denotes the standard normal
density. It can be shown that the optimal estimators for
(15) and (16) are the same:

X̂(y) = y − 2πϕ(y − 2π)

ϕ(y) + ϕ(y − 2π)
, (17)

hence the MMSE functional for this channel is the same
for any mixture of (15) and (16).

Despite the non-strict concavity in PX for general PY |X ,
in the special case of additive Gaussian noise, MMSE is
indeed a strictly concave functional of PX , as shown next. The
proof exploits the relationship between the optimal estimator
in Gaussian channels and the Weierstrass transform [7] of the
input distribution.

Theorem 2. For fixed snr > 0, PX 7→ mmse(X, snr) and
PX 7→ I(X, snr) are both strictly concave.

Proof: Appendix B.

III. REGULARITY OF MMSE

A. Continuity and semi-continuity

In general the functional m(PXY ) is not weakly semi-
continuous. To see this, consider (Xn, Yn) = (X,X/n),
which converges in distribution to (X,Y ) = (X, 0). Therefore
mmse(X|Y ) = varX . However, mmse(Xn|Yn) = 0 for each
n. Thus,

mmse(X|Y ) > lim sup
n→∞

mmse(Xn|Yn) (18)
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and therefore m(PXY ) is not lower semi-continuous (l.s.c.) in
PXY . On the other hand, consider Yn = Y = 0 and

Xn =

{
0 w.p. 1− 1

n

n w.p. 1
n

(19)

Then Xn
D−→ X = 0. Since mmse(X|Y ) = varX = 0 and

mmse(Xn|Yn) = varXn = n − 1, it holds that m(PXY ) is
not u.s.c.:

mmse(X|Y ) < lim inf
n→∞

mmse(Xn|Yn). (20)

Nevertheless, assuming either bounded input or additive
noise, MMSE is indeed a weakly u.s.c. functional.

Theorem 3. Let E ∈ BR2 be such that {x : (x, y) ∈ E}
is bounded. Denote the collection of all Borel probability
measures on E by M(E). Then PXY 7→ m(PXY ) is weakly
u.s.c. on M(E).

Proof: Variational representations prove effective tools in
proving semi-continuity and convexity of information mea-
sures (for example relative entropy [8], Fisher information [9],
etc). Here we follow the same approach by using the following
variational characterization of MMSE3:

m(PXY ) = inf
f∈B(R)

{
E[(X − f(Y ))2] : E[f2(Y )] <∞

}
(21)

= inf
f∈C0(R)

E[(X − f(Y ))2] (22)

where B(R) and C0(R) denote the collection of all real-valued
Borel and continuous bounded functions on R respectively,
and (22) is due to the denseness of C0 in L2.

For a fixed estimator f ∈ C0(R),

E[(X − f(Y ))2] =

∫∫
(x− f(y))2PXY (dx,dy) (23)

is weakly continuous in PXY . This is because (x, y) 7→ (x−
f(y))2 ∈ C0(R2) since E is bounded in x. Therefore by (22),
m(PXY ) is weakly u.s.c. because it is the pointwise infimum
of weakly continuous functions. In view of the counterexample
in (20), we see that the boundedness assumption on E is not
superfluous.

Remark 2. The variational representation of MMSE in (22)
provides an alternative proof of its concavity as follows: since
for any f ∈ B(R), E[(X−f(Y ))2] is affine in PXY , m(PXY )
is concave because it is the pointwise infimum of affine
functions. This proof does not rely on the boundedness of
E. Hence we could set E = R2.

Theorem 4. Let E[N2] < ∞. Then for any snr > 0, PX 7→
mmse(X,N, snr) is weakly u.s.c. In addition, if N has a con-
tinuous and bounded density, then PX 7→ mmse(X,N, snr) is
weakly continuous.

Proof: Appendix C.

3The Borel measurability of estimators in (22) is not superfluous. For
example [10], it is possible to construct a random variable Y and a non-
measurable function f̂ such that X = f̂(Y ) is a random variable independent
of Y . Then mmse(X|Y ) = varX while E[(X − f̂(Y ))2] = 0.

Remark 3. Theorem 4 cannot be extended to snr = 0, because
mmse(X,N, 0) = varX , which is weakly l.s.c. in PX but not
continuous, as the example in (19) illustrates. For snr > 0,
PX 7→ mmse(X,N, snr) need not be weakly continuous
if the sufficient conditions in Theorem 4 are not satisfied.
For example, suppose that X and N are both equiprobable
Bernoulli. Let Xk = qkX , where qk is a sequence of irrational
numbers converging to 1. Then Xk → X in distribution, and
mmse(Xk, N, 1) = 0 for all k, but mmse(X,N, 1) = 1

8 . This
also show that under the condition of Theorem 3, m(PXY )
need not be weakly continuous in PXY .

Corollary 3. For fixed snr > 0, PX 7→ mmse(X, snr) is
weakly continuous.

Corollary 3 guarantees that the MMSE of a random variable
can be calculated using the MMSE of its successively finer dis-
cretizations, which paves the way for numerically calculating
MMSE for singular inputs (e.g., Cantor distribution) in [11].
However, one caveat is that to calculate the value of MMSE
within a given accuracy, the quantization level needs to grow
with snr such that the quantization error is much smaller than
the noise.

In view of the representation of the MMSE by the Fisher
information of the channel output with additive Gaussian noise
[5, (58)] (known as Brown’s identity in the statistics literature
[12, (1.3.4)]):

snr ·mmse(X, snr) = 1− J(
√
snrX +NG), (24)

Corollary 3 implies the weak continuity of J(
√
snrX + NG)

in PX . While Fisher information is only l.s.c. [9, p. 79], here
the continuity is due to convolution with the Gaussian density.

B. Lipschitz continuity

Seeking a finer characterization of the modulus of conti-
nuity of PX 7→ mmse(X, snr), we introduce the Wasserstein
distance [3].

Definition 1. For 1 ≤ p ≤ ∞, the Wasserstein space of order
p on R is defined as the collection of all Borel probability
measures with finite pth-order moments, denoted by Pp(R).
The Wasserstein distance of order p (Wp distance) is a metric
on Pp(R), defined for µ, ν ∈ Pp(R) as

Wp(µ, ν) = inf
{
‖X − Y ‖p : X ∼ µ, Y ∼ ν

}
, (25)

where the infimum is over all joint distributions of (X,Y ).

On the real line the Wp distance coincides with the Lp
distance between the quantile functions of two distributions
[13], [14]:

Wp(PX , PY ) =
∥∥F−1

X − F−1
Y

∥∥
p
, (26)

where FX denotes the cumulative distribution function of X .
By Hölder’s inequality,

Wp(PX , PY ) ≤Wq(PX , PY ), p ≤ q. (27)

The Wp distance metrizes the topology of weak convergence
plus convergence of pth-order moments. Because in general,
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convergence in distribution does not yield convergence of mo-
ments, this topology is strictly finer than the weak-* topology.
Since W2 convergence implies convergence of variance, in
view of Corollary 3, for all snr ≥ 0, PX 7→ mmse(X, snr) is
continuous on the metric space (P2(R),W2). Capitalizing on
the smoothness of the optimal estimator in Gaussian channel,
the Lipschitz continuity of PX 7→ mmse(X, snr) can be
established as follows:

Theorem 5. For any snr ≥ 0 and any 1 ≤ p, q ≤ ∞ with
1
p + 1

q = 1,

|mmse(Z, snr)−mmse(X, snr)|√
varX +

√
varZ

(28)

≤
[√

2(‖X‖24q + ‖Z‖24q) + 2 snr varX + 1
]
W2p(X,Z).

Consequently, PX 7→ mmse(X, snr) is Wr-Lipschitz continu-
ous on any compact set in P4r/(r−2)(R) for any 2 ≤ r ≤ 6.

Proof: Appendix D.
Finally we present two results which frequently enable us

to approximate MMSE of a given input using its truncated
version, where the approximation error is uniform in the
random transformation.

Lemma 1. For any PXY Z ,∣∣∣√mmse(X|Y )−
√
mmse(Z|Y )

∣∣∣ ≤ ‖X − Z‖2 . (29)

Proof:√
mmse(X|Y ) ≤ ‖X − E[Z|Y ]‖2 (30)

≤ ‖X − Z‖2 + ‖Z − E[Z|Y ]‖2 (31)

= ‖X − Z‖2 +
√

mmse(Z|Y ). (32)

Interchanging the roles of X and Z, (29) follows.

Lemma 2. Let X be distributed according to P . For A > 0,
denote by PA the distribution of X conditioned on the event
{|X| ≤ A}, i.e., PA(E) = P (E∩[−A,A])

P ([−A,A]) for any measurable
set E. Then For any PY |X ,

m(P, PY |X)− 4E
[
X21{|X|>A}

]
≤ m(PA, PY |X) (33)

≤
m(P, PY |X)

P {|X| ≤ A}
(34)

Proof of Lemma 2: Let XA be distributed according to
PA and YA be the output of PY |X when the input is XA. Then
the joint distribution of (XA, YA) is equal to the distribution
of (X,Y ) conditioned on the event {|X| ≤ A}, i.e.,

P {XA ∈ E, YA ∈ B} =
P {X ∈ E ∩ [−A,A], Y ∈ B}

P {X ∩ [−A,A]}
.

(35)

Since
X̂A(y) , E [XA|YA = y] (36)

is a suboptimal estimator of X , we have

mmse(X|Y )

≤ E
[
(X − X̂A(Y ))2

]
(37)

= E
[
(X − X̂A(Y ))2

∣∣ |X| ≤ A]P {|X| ≤ A}
+ E

[
(X − X̂A(Y ))21{|X|>A}

]
(38)

≤ E
[
(XA − X̂A(Y ))2

]
P {|X| ≤ A}

+ 4E
[
|X|21{|X|>A}

]
(39)

= mmse(XA|YA)P {|X| ≤ A}+ 4E
[
|X|21{|X|>A}

]
, (40)

which implies (33). To show (34), note that

mmse(X|Y )

= E
[
(X − E [X|Y ])2

]
(41)

≥ E
[
(X − E [X|Y ])2||X| ≤ A

]
P {|X| ≤ A} (42)

≥ mmse(XA|YA)P {|X| ≤ A}. (43)

IV. APPLICATIONS TO MUTUAL INFORMATION

A. Finite mutual information and the I-MMSE relationship

Capitalizing on the weak continuity of MMSE proved in
Theorem 4, we prove that the I-MMSE relationship holds as
long as the mutual information is finite, thus removing the
finite-variance condition imposed on the input in [5, Theorem
1].

Theorem 6. For any random variable X , the following are
equivalent:
a) I(X, snr) <∞ for any snr > 0;
b) I(X, snr) <∞ for all snr > 0;
c) H(bXc) <∞.
Furthermore, if I(X, snr) <∞, then (9) holds for all snr > 0.

It should be remarked that I(X, snr) <∞ is much weaker
than E

[
X2
]
<∞, as the following sufficient condition shows,

which also applies to non-Gaussian noise:

Lemma 3. Let N have a density with h(N) > −∞. Let ψ :
R+ → R be an increasing continuous function that satisfies
the following conditions:

1) ∫
R+

e−ψ(x)dx <∞. (44)

2) For any 0 ≤ λ ≤ 1, there exists aλ, bλ, cλ ≥ 0, such that

ψ(λx+(1−λ)y) ≤ aλψ(x)+ bλψ(y)+ cλ, ∀x, y ≥ 0.
(45)

If

E [ψ(|X|)] <∞ (46)
E [ψ(|N |)] <∞ (47)

Then
1) I(X,N, snr) <∞ for all snr ≥ 0.
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2) snr 7→ I(X,N, snr) is continuous on R+.

Proof: See Appendix E.
Examples of function ψ that satisfies (45) include:

1) ψ is convex.
2) ψ is increasing and subadditive (e.g., ψ concave with

ψ(0) = 0).
Consequently, any convex, increasing and non-constant ψ
satisfies both (44) and (45). Particularizing to Gaussian noise,
choosing ψ to quadratic implies that varX < ∞ is sufficient
for I(X, snr) <∞. In fact, choosing ψ to be nested logarith-
mic, we obtain a family of sufficient conditions much weaker
than square integrability: define

lk(x) , log ◦ · · · ◦ log︸ ︷︷ ︸
k times

(tk + |x|), (48)

where tk denotes the (k − 1)th tetration (iterated exponen-
tial) of e. Then E [lk(X)] < ∞ for some k ∈ N implies
I(X, snr) <∞ for all snr > 0.

Proof of Theorem 6: The equivalence between a) and
c) has been shown in [15, Theorem 1]. To prove that a) ⇔
b), assume that I(X, snr′) < ∞ for some snr′ > 0. By
monotonicity, it is sufficient to consider snr > snr′. Since
X− (

√
snrX+NG)− (

√
snr′X+NG) forms a Markov chain,

we have

I(X, snr)− I(X, snr′)

= I(X;
√
snrX +NG|

√
snr′X +NG) (49)

≤ 1

2
E
[
log
(

1 + var(X|
√
snr′X +NG)

)]
(50)

≤ 1

2
log(1 + mmse(X, snr′)) (51)

≤ 1

2
log

(
1 +

1

snr′

)
, (52)

where (50) follows from the concavity of the logarithm.
Therefore I(X, snr) <∞ for all snr > 0.

Next we show that for any 0 < snr′ < snr <∞,

I(X, snr)− I(X, snr′) =
1

2

∫ snr

snr′
mmse(X, γ)dγ. (53)

For m ∈ N, let Xm be a random variable distributed according
to the distribution of X conditioned on the event {|X| ≤ m},
i.e., P {Xm ∈ A} = P{X∈A∩[−m,m]}

P{|X|≤m} for any Borel subset A.
This is well-defined because the denominator is positive for
sufficiently large m. Since Xm is bounded, we have

I(Xm, snr)− I(Xm, snr
′) =

1

2

∫ snr

snr′
mmse(Xm, γ)dγ. (54)

Since Xm → X in distribution, by the weak continuity
of MMSE proved in Corollary 3, limm→∞mmse(Xm, γ) =
mmse(X, γ). Since mmse(X, γ) ≤ 1

γ , which in integrable
on the interval (snr′, snr), applying dominated convergence
theorem to (54) yields

lim
m→∞

I(Xm, snr)− I(Xm, snr
′) =

1

2

∫ snr

snr′
mmse(X, γ)dγ.

(55)

To establish (53), it remains to show

lim
m→∞

I(Xm, snr) = I(X, snr). (56)

By the lower semicontinuity of relative entropy, it is sufficient
to show

lim sup
m→∞

I(Xm, snr) ≤ I(X, snr). (57)

Note that

I(X, snr) = I
(
X, 1{|X|≤m};

√
snrX +NG

)
(58)

≥ I
(
X;
√
snrX +NG

∣∣1{|X|≤m}) (59)

≥ P(|X| ≤ m)I
(
X;
√
snrX +NG

∣∣|X| ≤ m)
(60)

= P(|X| ≤ m)I(Xm, snr), (61)

which implies the desired (57).
In view of the continuity of mmse(X, ·) on (0,∞) estab-

lished in [2, Proposition 7], differentiating (53) yields (9) for
every snr > 0.

Remark 4. It can be shown that the integral I-MMSE rela-
tionship (8) holds for all snr > 0. First consider the case of
I(X, snr) < ∞. Sending snr′ → 0 in (53) and applying the
monotone convergence theorem, we have

I(X, snr)− lim
snr′↓0

I(X, snr′) =
1

2

∫ snr

0

mmse(X, γ)dγ. (62)

Therefore establishing (8) for any X amounts to proving the
continuity of I(X, ·) at snr = 0+, which has been established
in [16] for arbitrary X with finite mutual information.

In case of I(X, snr) =∞, the integral I-MMSE relationship
(8) still holds in the sense that both sides are infinity. To
see this, let XA be distributed according to the conditional
distribution PA defined in Lemma 2. Then

1

2

∫ snr

0

mmse(X, γ)dγ

=
1

2
lim inf
A→∞

P {|X| ≤ A}
∫ snr

0

mmse(X, γ)dγ (63)

≥ 1

2
lim inf
A→∞

∫ snr

0

mmse(XA, γ)dγ (64)

≥ lim inf
A→∞

I(XA, snr) (65)

≥ I(X, snr) =∞, (66)

where
• (64): by (34);
• (65): by (8), since XA is bounded;
• (66): by the lower semicontinuity of PX 7→ I(X, snr).

B. Regularity of mutual information

Note that unlike the finite-dimensional setting (e.g. [17]), the
concavity of mutual information does not imply continuity. In
view of the weak lower semi-continuity of relative entropy [8],
I(X, snr) is weakly l.s.c. in PX but not continuous in general,
as the following example illustrates: Let

PXk = (1− k−1)N (0, 1) + k−1N (0, exp(βkα)) (67)



6

with α ≥ 1 and β > 0, which converges weakly to PX =
N (0, 1) regardless of the choice of (α, β). Using the concavity
of I(·, snr) and the dominated convergence theorem, it can be
shown that for any snr > 0,

I(Xk, snr)→

{
1
2 (β + log(1 + snr)) α = 1

∞ α > 1
(68)

but I(X, snr) = 1
2 log(1 + snr).

Nevertheless, mutual information is indeed weakly contin-
uous in the input distribution if the input variance is bounded
and the additive noise is Gaussian. Applying Corollary 3 and
the dominated convergence theorem to (8), we obtain:

Theorem 7. If Xk
D−→ X and sup varXk < ∞, then

I(Xk, snr)→ I(X, snr) for any snr ≥ 0.

By the W2-continuity of MMSE (in Theorem 5), I(·, snr)
is also W2-continuous. Moreover, Lipschitz continuity holds
when the input is peak-limited, as the following result shows,
which is obtained by integrating both sides of (28) and (8):

Corollary 4. Under the conditions in Theorem 5, For any
snr ≥ 0, 1 ≤ p, q ≤ ∞ with 1

p + 1
q = 1,

I(Z, snr)− I(X, snr)√
varX +

√
varZ

(69)

≤ snr

2

[√
2(‖X‖24q + ‖Z‖24q) + snr varX + 1

]
W2p(X,Z).

Consequently, PX 7→ I(X, snr) is Wr-Lipschitz continuous on
any compact set in P4r/(r−2)(R) for any 2 ≤ r ≤ 6.

In fact W2-continuity also carries over to non-Gaussian
noise:

Theorem 8. Let W2(PXk , PX) → 0, i.e., Xk
D−→ X and

second-order moments also converge. Then I(Xk, N, snr) →
I(X,N, snr) whenever N has finite non-Gaussianness

D(N) , D(PN || N (E[N ], varN)). (70)

Proof: Note that

I(X,N, snr)

=
1

2
log

(
1 +

snr varX

varN

)
−D(

√
snrX +N) +D(N), (71)

Since variance converges under W2 convergence, the upper
semi-continuity PX 7→ I(X,N, snr) follows from the lower
semi-continuity of relative entropy. As we mentioned before,
the lower semicontinuity of PX 7→ I(X,N, snr) is inherited
by that of relative entropy.

As a consequence of Theorem 7, we can restrict inputs
to a weakly dense subset (e.g., discrete distributions) in the
maximization

C(snr) = max
E[X2]≤1

I(X, snr) =
1

2
log(1 + snr) (72)

with max replaced by sup. It is interesting to analyze how
the gap between C(snr) and the maximal mutual information
achieved by unit-variance inputs taking m values, denoted by
Cm(snr), closes as m grows. The W2-Lipschitz continuity of
mutual information allows us to obtain an upper bound on the

convergence rate. It is known that the optimal W2 distance
between a given distribution and discrete distributions taking
m values coincides with the square root of the quantization
error of the optimal m-point quantizer [18], which scales
according to 1

m [19]. Choosing X to be the output of the
optimal quantizer and applying a truncation argument, we
conclude that C(snr) − Cm(snr) = O

(
1
m

)
. In fact, the gap

vanishes exponentially fast [20].

C. Applications to the central limit theorem

We proceed to prove upper bounds for the convergence rate
of non-Gaussianness in central limit theorem with i.i.d. random
variables whose distribution is the convolution between a
Gaussian distribution and an arbitrary distribution satisfying
certain moment assumptions.

Theorem 9. Let {Xi} and {Wi} be independent i.i.d. se-
quences of random variables where Wi ∼ N (0, σ2). Let
Zi = Xi +Wi and

Sn =
1√
n

n∑
i=1

Zi. (73)

Then
• If E

[
X6

1

]
<∞, then

D(Sn) = O(n−
1
3 ). (74)

• If the moment generating function of X1 is finite, then

D(Sn) = O(n−
1
2 ). (75)

Proof: Let Tn = 1√
n

∑n
i=1Xi. Then Sn = Tn + σNG

with independent NG ∼ N (0, 1). Let X̄1 denote a normal
random variable with the same mean and variance as X1. Let
1 ≤ p, q ≤ ∞ and 1

p + 1
q = 1. According to (71), we have

D(Sn) = D
(
Tn
σ

+NG

)
(76)

= I(X̄1, σ
−2)− I(Tn, σ

−2) (77)
≤ LnW2p(PX̄1

, PTn), (78)

with

Ln ,
√
Pσ−2

[√
2(
∥∥X̄1

∥∥2

4q
+ ‖Tn‖24q) + Pσ−2 + 1

]
. (79)

where (78) follows from Corollary 4.
The Wasserstein distance between PTn and PX̄1

satisfies the
following:
• For r > 2, if E [|X1|r] <∞, then [21], [22, (1.5)]

Wr(PX̄1
, PTn) = O(n

1
r−

1
2 ). (80)

• If the moment generating function of X1 is finite, then
[22, (1.6)] for any r ≥ 1,

Wr(PX̄1
, PTn) = O(n−

1
2 ). (81)

Note that ‖Tn‖r =
∥∥X̄1

∥∥
r

+ o(1) if E [|X|r] <∞. Applying
(80) with r = 6 and (81) to (78) respectively, we obtain the
desired results in (74) and (75).
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Remark 5. Non-asymptotic upper bounds on D(Sn) can be
obtained by combining (78) and the non-asymptotic results
on the Wasserstein distance in [22, Theorem 2.1 and (1.6)].
Theorem 9 can also be generalized to non-i.i.d. sequences by
applying [22, Theorem 4.1].

Remark 6. The asymptotics of D(Sn) is studied in [23],
where it is shown that D(Sn) = o(1) if and only if
D(Sn0) < ∞ for some n0 ∈ N. Previous work in [24], [25]
showed that if Z1 has finite Poincaré constant [25, Definition
1.2], the non-Gaussianness D(Sn) vanishes as the optimal
rate O(n−1). However, finiteness of the Poincare constant
implies Z1 has moments of all orders [26], while (74) only
assumes the existence of the sixth moment. In the special
case of compactly-supported X1, [27, Theorem 1.8] implies
that Z1 has a finite Poincaré constant. Therefore in this case
D(Sn) = O(n−1), which is stronger than (75).

After the submission of the present paper, the exact asymp-
totics of D(Sn) has been established in [28, Theorem 1.1]
using Edgeworth-type expansions: Let Sn be defined in (73)
with E

[
Z4

1

]
<∞. Then

D(Sn) =

(
E
[
Z3

1

])2
12n

+ o

(
1

n log n

)
, (82)

which improves Theorem 9 significantly.

To conclude this section, we give an example where the
non-Gaussianness of a sequence of absolutely continuous
distributions does not vanish in the central limit theorem.
Consider the following example [29, 17.4]: let {Zk} be a
sequence of independent random variables, with

P {Zk = 1} = P {Zk = −1} =
1

2
(1− k−2), (83)

P {Zk = k} = P {Zk = −k} =
1

2
k−2. (84)

Define Sn = 1√
n

∑n
k=1 Zk. While varSn → 2, direct compu-

tation of characteristic functions reveals that Sn
D−→ N (0, 1).

Now let Yn = Sn + NG
D−→ N (0, 2). Since {varYn} is

bounded, by Theorem 7, I(Sn;Sn +NG)→ 1
2 log 2. In view

of (71), we have D(Yn)→ 1
2 log 3

2 .

D. Bounds on MMSE via mutual information

To conclude this section, we present a result related to Tao’s
inequality [30], [31], which shows that the contribution of Z
in estimating X never exceeds half of the mutual information
between X and Z.

Theorem 10. Let X take values in the unit ball of an
Euclidean space. For any PY Z|X ,

mmse(X|Y )−mmse(X|Y, Z) ≤ 1

2
I(X;Z|Y ). (85)

In particular,

var(X)−mmse(X|Z) ≤ 1

2
I(X;Z). (86)

Proof: Let B = {x : ‖x‖2 ≤ 1}. Then

mmse(X|Y )−mmse(X|Y,Z)

= E
[
‖E [X|Y ]− E [X|Y, Z]‖22

]
(87)

=

∫
PY Z(dy,dz)

∥∥∥∥∫
B

x(PX|Y (dx|y)− PX|Y,Z(dx|y, z))
∥∥∥∥2

2
(88)

≤
∫
PY Z(dy,dz)

(∫
B

‖x‖2 |PX|Y (dx|y)− PX|Y,Z(dx|y, z)|
)2

(89)

≤
∫
PY Z(dy,dz)

∥∥PX|Y=y − PX|Y=y,Z=z

∥∥2

1
(90)

≤ 2

∫
PY Z(dy,dz)D(PX|Y=y ||PX|Y=y,Z=z) (91)

= 2I(X;Z|Y ). (92)

where (90) makes uses of the fact that x belongs to the
unit ball, (91) follows from the Kullback-Csiszár-Kemperman-
Pinsker inequality (e.g. [32]) and (89) follows from:∥∥∥∥∫

B

x(dP − dQ)

∥∥∥∥
2

≤
∫
B

‖x‖2 d|P −Q|. (93)

To verify (93), assume P 6= Q. Let µ denote the normalized
version of |P −Q|, i.e., µ = 1

|P−Q|(B) |P −Q|. Denote by |x|
the absolutely value of x taken componentwise. Then∥∥∥∥∫ x(dP − dQ)

∥∥∥∥
2

≤
∥∥∥∥∫ |x|d|P −Q|∥∥∥∥

2

(94)

= |P −Q|(B)

∥∥∥∥∫ |x|dµ∥∥∥∥
2

(95)

≤ |P −Q|(B)

∫
‖|x|‖2 dµ (96)

=

∫
‖x‖2 d|P −Q|, (97)

where (96) follows from Jensen’s inequality and the convexity
of norms.

V. DATA PROCESSING INEQUALITY

In [33] it is pointed out that, like mutual information,
MMSE satisfies a data processing inequality. We prove this
property along with a necessary and sufficient condition for
equality to hold.

Theorem 11. If4 X − Y − Z, then

mmse(X|Y ) ≤ mmse(X|Z) (98)

with equality if and only if E[X|Y ] = E[X|Z] a.e.

Proof: By the orthogonality principle and the Markov
property,

mmse(X|Z)−mmse(X|Y ) = E(E[X|Y ]−E[X|Z])2. (99)

Corollary 5. For any X , mmse(X, snr) is decreasing in snr.

4X −Y −Z means that X and Z are conditionally independent given Y ,
i.e., (X,Y, Z) is a Markov chain.
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Proof: The monotonicity is a consequence of Theorem
11: for any X and snr1 ≥ snr2 > 0, X −

(
X + 1√

snr1
NG

)
−(

X + 1√
snr2

NG

)
forms a Markov chain.

Using the same reasoning we can conclude that, for any N
with a stable law, mmse(X,N, snr) is monotonically decreas-
ing in snr for all X .

It should be noted that unlike the data processing inequality
for mutual information, equality in (98) does not imply that
Z is a sufficient statistic of Y for X . Consider the following
example of a multiplicative channel: Let U, V, Z be indepen-
dent square integrable random variables with zero mean. Let
Y = ZU and X = Y V . Then X − Y − Z and

E[X|Y ] = E[Y V |Y ] = Y E[V |ZU ] = Y EV = 0. (100)

Similarly E[X|Z] = 0. By Theorem 11, mmse(X|Z) =
mmse(X|Y ) = varX . However, X − Z − Y does not hold.

VI. MAXIMIZATION OF MMSE

In this section we consider the maximization of MMSE over
a convex set of PX for fixed PY |X and vice versa.

A. The worst input distribution

Theorem 12 ([2, Proposition 12]). Let N ∼ N (0, σ2
N )

independent of X ,

max
PX :varX≤σ2

X

mmse(X|X +N) =
σ2
Nσ

2
X

σ2
N + σ2

X

, (101)

where the maximum is achieved if and only if X ∼ N (a, σ2
X)

for some a ∈ R.

Through the I-MMSE relationship (8), Theorem 12 provides
an alternative explanation for optimality of Gaussian inputs
in Gaussian channels, because the integrand in (8) is maxi-
mized pointwise. Consequently, to approximate the capacity-
achieving Gaussian distribution under some given constraints,
it is equivalent to find X whose MMSE profile approximates
the Gaussian MMSE in the L1 norm. This observation has
been exploited in Section IV to estimate how discrete inputs
approach the Gaussian channel capacity.

Theorem 12 states that the least favorable input distribution
under the variance constraint is Gaussian. However, under the
amplitude constraint, the input distribution P ∗A that achieves

max
PX :|X|≤A

mmse(X|X +N) (102)

is finitely supported (see, for example, [34]), a consequence
of the analyticity of the Gaussian density. This phenomenon
is reminiscent of the fact that the capacity-achieving input
distribution for the Gaussian channel under amplitude con-
straints is also finitely supported [35]. In general, there are no
closed-form solutions for P ∗A (see [36] for numerical recipes).
However, when A ≤ 1.05, it has been shown that the worst
input distribution is binary [37]:

P ∗A =
1

2
(δA + δ−A). (103)

Capitalizing on the I-MMSE relationship (8), this result has
been used to establish that (103) also achieves

max
PX :|X|≤A

I(X;X +N) (104)

when A ≤ 1.05 [38].
The behavior of P ∗A when A is large has been investigated

in [39], where it is shown that if X∗A is distributed according
to P ∗A, then 1

AX
∗
A

D−→ P ∗ as A → ∞, where the limiting
distribution P ∗ has the following density:

p∗(x) = cos2 πx

2
1{|x|≤1}. (105)

Moreover,

max
PX :|X|≤A

mmse(X|X +N) = 1− π2

A2
+ o

(
1

A2

)
. (106)

An intuitive explanation for (105) and (106) is the following:
Let X∗A = AZ∗A. By (24),

mmse(X∗A|X∗A +N) = A2mmse(Z∗A, A
2) (107)

= 1− J(AZ∗A +N) (108)

= 1−A−2J(Z∗A +A−1N). (109)

Suppose that Z∗A converges to Z∗ in distribution and that
J(Z∗A + A−1N) = J(Z∗) + o(1). Then Z∗ must minimize
the Fisher information among all distributions supported on
[−1, 1]. This unique minimizer is given by (105) [40], [39].
Similarly, if a variance constraint varX ≤ αA2 is added to
(102) in addition to the amplitude constraint, it can be shown
that 1

AX
∗
A converges in distribution to the density supported

on [−1, 1] that minimizes the Fisher information with variance
not exceeding α, which has been obtained in [41].

Compared to (105), it is interesting to observe that the
capacity-achieving input distribution in (104) has a different
limiting behavior: Let X̃∗A achieves (104). Then 1

AX̃
∗
A con-

verges to the uniform distribution on [−1, 1], which maximizes
the differential entropy instead of minimizing the Fisher infor-
mation.

B. The worst random transformation

In this subsection we investigate the variance-constrained
additive noise that maximizes the MMSE of the input given its
noisy version. It is important to note that we do not constrain
the noise to be independent of the input. If the criterion is the
minimization of mutual information and the additive noise is
not allowed to depend on the input, the worst-case noise is
known for specific input distributions such as Gaussian and
binary [42].

Theorem 13.

max
PY |X :E[(Y−X)2]≤D

mmse(X|Y ) = min{σ2
X , D}, (110)

holds for any X with finite mean.

Proof of Theorem 13: (Converse)

mmse(X|Y ) = mmse(Y −X|Y ) (111)

≤ min{σ2
X , var(Y −X)} (112)

≤ min{σ2
X , D}. (113)
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(Achievability) If D ≥ σ2
X , mmse(X|Y ) = σ2

X is achieved
by Y = E [X]. If D < σ2

X , let Z =
√
snrX + NG with NG

independent of X and snr chosen such that mmse(X, snr) =
D. Such an snr always exists because mmse(X, snr) is a
decreasing continuous function [2, Proposition 7] in snr which
vanishes as snr → ∞. Moreover, it can be shown that
mmse(X, snr) → σ2

X as snr → 0, even if σ2
X = ∞. Then

Y = E[X|Z] achieves the upper bound since E[(X − Y )2] =
mmse(X|Y ) = mmse(X, snr) = D.

It is interesting to analyze the worst channel in (110) for
Gaussian input X ∼ N (0, σ2

X). When D < σ2
X , the maximal

MMSE is achieved by an attenuator followed by contamination
by additive independent Gaussian noise

Y =

(
1− D

σ2
X

)
X +

√
D − D2

σ2
X

NG, (114)

Interestingly, (114) is the minimizer of

RX(D) = min
PY |X :E(Y−X)2≤D

I(X;Y ) (115)

=
1

2
log+

(
σ2
X

D

)
, (116)

where log+(x) , max{log x, 0}. Hence the backward random
transformation PX|Y consists of additive Gaussian noise with
variance D. Nonetheless, the worst independent additive-noise
channel is still Gaussian, i.e.,

max
PN :varN≤D

mmse(X|X +N) =
σ2
XD

σ2
X +D

, (117)

because when N is independent X , by (111), the problem
reduces to the situation in Theorem 12 and the same expression
applies.

APPENDIX A
PROOF OF THEOREM 1

Proof: Let PX1Y1
and PX2Y2

be two joint distributions.
Let B be a random variable taking values on {1, 2} with
P {B = 1} = α1 = 1 − α2. Let (X,Y ) be distributed
according to PXiYi conditioned on B = i for i = 1 or 2. Then
(X,Y ) has joint distribution PXY = α1PX1Y1

+ α2PX2Y2
.

Denote the densities of PXiYi and PYi with respect to PXY
and PY by hi and gi respectively.

The optimal estimator for Xi based on Yi is given by

X̂i(y) , E [Xi|Yi = y] =
fi(y)

gi(y)
(118)

where

fi(y) ,
∫
xhi(x, y)PX|Y (dx|y). (119)

Then the optimal estimator for X based on Y is given by

X̂(y) , E [X|Y = y] =

∫
xPX|Y (dx|y) = α1f1(y)+α2f2(y)

(120)
since α1h1 + α2h2 ≡ 1.

By the orthogonality principle and α1g1 + α2g2 ≡ 1,

m(α1PX1Y1 + α2PX2Y2)− α1m(PX1Y1)− α2m(PX2Y2)

= mmse(X|Y )−mmse(X|Y,B) (121)

= E
[
(E [X|Y,B]− E [X|Y ])2

]
(122)

= α1 E

[(
f1

g1
− X̂

)2

(Y )
∣∣∣B = 1

]

+ α2 E

[(
f2

g2
− X̂

)2

(Y )
∣∣∣B = 2

]
(123)

= α1α2

∫
(f1g2 − f2g1)2

g1g2
PY (dy) (124)

= α1α2 E
[
g1(Y )g2(Y )(X̂1(Y )− X̂2(Y ))2

]
. (125)

This proves the desired equality (10).

APPENDIX B
PROOF OF THEOREM 2

Proof: The concavity follows from Corollary 1. To prove
strict concavity, it is sufficient to consider snr = 1. Suppose
that for Xi with distribution Pi (i = 1, 2) and 0 < α < 1, we
have

mmse(αP1 + (1− α)P2, 1) = αmmse(P1, 1)+

(1− α)mmse(P2, 1). (126)

Denote Yi = Xi+NG and X̂i(y) = E[Xi|Yi = y] for i = 1, 2.
Then by (14),

X̂1(y) = X̂2(y) (127)

holds for Lebesgue-a.e. y ∈ R.
The density of Yi is given by:

fYi(y) = E [ϕ(y −Xi)] =
1√
2π

E
[
exp

(
−1

2
(y −Xi)

2

)]
,

(128)
which is the Weierstrass transform [7] of Pi. Define the
likelihood ratio as

li(y) =
fYi(y)

ϕ(y)
= E

[
exp

(
−X

2
i

2
+ yXi

)]
. (129)

The following properties of the log-likelihood ratio are proved
in [43] and [44, Property 3] respectively:

d

dy
log li(y) = X̂i(y), (130)

d2

dy2
log li(y) = var(Xi|Yi = y). (131)

The solution of (130) is

li(y) = li(0) exp

(∫ y

0

X̂i(t)dt

)
, (132)

hence in view of (127), we have for all y ∈ R,

l1(y)

l1(0)
=
l2(y)

l2(0)
. (133)

Next we show that P1 = P2. For i = 1, 2, define a probability
measure Qi according to

EQi [f(X)] =
E[f(Xi) exp(−X2

i /2)]

E[exp(−X2
i /2)]

(134)
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for each positive Borel function f . From (129), we observe that
li(y)
li(0) is the Laplace transform of Qi. By (133), we conclude
that Q1 = Q2. Then

E[f(X1)] = l1(0)EQ1
[f(X) exp(−X2/2)] (135)

= l2(0)EQ2
[f(X) exp(−X2/2)] (136)

= E[f(X2)], (137)

where (136) follows from

l1(0) =
1

EQ1
[exp(X2/2)]

=
1

EQ2
[exp(X2/2)]

= l2(0).

(138)
By (137) and the arbitrariness of f , we conclude that P1 = P2.
In view of (8), the strict concavity of PX 7→ I(X, snr) follows.

APPENDIX C
PROOF OF THEOREM 4

Proof of Theorem 4: Note that

snr ·mmse(X,N, snr) = mmse(
√
snrX|

√
snrX +N) (139)

= mmse(N |
√
snrX +N) (140)

= mmse
(
N,X, snr−1

)
. (141)

Therefore it is equivalent to prove the upper semi-continuity
of PX 7→ mmse(N,X, snr−1). Without loss of generality we
shall assume that snr = 1.

Let PXk be a sequence of distributions converging to PX0

weakly. By the Skorohod’s representation [45, Theorem 25.6],
there exist a sequence of random variables {Xk}k≥0 with
distributions {PXk} respectively, such that Xk

a.s.−−→ X0. Let
N be a random variable defined on the same probability space
and independent of {Xk}.

Denote Yk = Xk + N . Let gk(y) = E[N |Yk = y]. By the
denseness of C0 in L2, for all ε > 0, there exists ĝ ∈ C0 such
that

∥∥g0(Y0)− ĝ(Y0)
∥∥

2
< ε. Then

lim sup
k→∞

√
mmse(N,Xk, 1)

≤ lim sup
k→∞

∥∥N − ĝ(Yk)
∥∥

2
(142)

≤ ‖N − g(Y0)‖2 +
∥∥g(Y0)− ĝ(Y0)

∥∥
2

+ lim sup
k→∞

∥∥ĝ(Y0)− ĝ(Yk)
∥∥

2
(143)

≤
√
mmse(N,X0, 1) + ε, (144)

where (142) is due to the suboptimality of ĝ and (144) follows
from the dominated convergence theorem. By the arbitrariness
of ε, the proof for upper semi-continuity is complete, and it
remains to show

lim inf
k→∞

mmse(N,Xk, 1) ≥ mmse(N,X0, 1) (145)

under the assumption that N has a continuous and bounded
density fN . For every positive integer m define the following
continuous and compactly supported function

hm(x) =


x |x| ≤ m
m(1 +m− |x|) m < |x| ≤ m+ 1

0 |x| > m+ 1

. (146)

Denote the density of Yk by pk(y) , E [fN (y −Xk)]. For
fixed m > 0, define

vk(y) , var(hm(N)|Yk = y) (147)

= E[h2
m(N)|Yk = y]− (E[hm(N)|Yk = y])2, (148)

where

E[hm(N)|Yk = y] =
E [hm(y −Xk)fN (y −Xk)]

E [fN (y −Xk)]
, (149)

E[hm(N)2|Yk = y] =
E
[
h2
m(y −Xk)fN (y −Xk)

]
E [fN (y −Xk)]

. (150)

Since fN is continuous and bounded, x 7→ hm(x)fN (x) and
x 7→ h2

m(x)fN (x) are both continuous and bounded functions.
Therefore {vkpk} is a sequence of nonnegative measurable
functions converging pointwise to v0p0. By Fatou’s lemma,

lim inf
k→∞

mmse(hm(N)|Yk) = lim inf
k→∞

∫
R
vk(y)pk(y)dy (151)

≥
∫
R
v0(y)p0(y)dy (152)

= mmse(hm(N)|Y0). (153)

Note that var(hm(N)) ≤ var(N) for any m. By Lemma 1,
for any k,

|mmse(N |Yk)−mmse(hm(N)|Yk)|
≤ 2

√
var(N) ‖N − hm(N)‖2 (154)

≤ 2
√

var(N)E
[
N21{|N |≥m}

]
. (155)

Plugging (155) into (153) yields

lim inf
k→∞

mmse(N |Yk) ≥ mmse(N |Y0)−

2
√

var(N)E
[
N21{|N |≥m}

]
, (156)

which, upon sending m→∞, gives the desired (145).

APPENDIX D
PROOF OF THEOREM 5

First we prove an upper bound on the conditional variance,
which improves the estimate in [46, Proposition 1.2]:

Lemma 4. Let Y =
√
snrX + NG, where NG ∼ N (0, 1) is

independent of X . If varX <∞, then for any y ∈ R,

var(X|Y = y)

≤ 2

snr

(
1 + log

y2 + snr varX

2
√

2πfY (y)

)
(157)

≤ 2

snr

(
1 + log

y2 + snr varX

2
+
y2 + snr varX

2

)
, (158)

where fY (y) = E
[
ϕ(y −

√
snrX)

]
is the probability density

function of Y .
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Proof: Without loss of generality we assume that E [X] =
0. Fix A > 0. Then

E
[
N2

G|Y = y
]

=
E
[
(y −

√
snrX)2ϕ(y −

√
snrX)

]
fY (y)

(159)

≤ AE
[
(y −

√
snrX)2

]
+ (160)

E
[

(y −
√
snrX)2ϕ(y −

√
snrX)

fY (y)
1{ϕ(y−

√
snrX)>AfY (y)}

]
≤ A(y2 + snr varX) + 2 log

1√
2πAfY (y)

(161)

where (161) follows from that {ϕ(y −
√
snrX) > α} =

{(y −
√
snrX)2 < 2 log 1√

2πα
}. Minimizing the upper bound

in (161) by choosing A = 2
y2+snr varX , we have

E
[
N2

G|Y = y
]

≤ 2

(
1 + log

y2 + snr varX

2
√

2πfY (y)

)
(162)

≤ 2

(
1 + log

y2 + snr varX

2
+
y2 + snr + varX

2

)
, (163)

where (163) follows from Jensen’s inequality:

√
2πfY (y) = E

[
exp

(
− (y −

√
snrX)2

2

)]
(164)

≥ exp

(
−y

2 + snr varX

2

)
. (165)

The proof of (157) and (158) is completed by observing that

var(X|Y = y) =
1

snr
var(NG|Y = y) ≤ 1

snr
E
[
N2

G|Y = y
]
.

(166)

Proof of Theorem 5: Let X and Z be jointly distributed
according to their optimal coupling so that

‖X − Z‖2p = W2p(PX , PZ). (167)

Let X̂(y) = E
[
X|
√
snrX +NG = y

]
. In view of (130)

and (131), X̂ is an increasing differentiable function with
derivative

0 ≤ X̂ ′(y) =
√
snr var(X|

√
snrX +NG = y) (168)

≤ 2√
snr

(y2 + snr varX), (169)

where the upper bound follows from further weakening (158)
by applying the inequality log(1 + x) ≤ x. Then√

mmse(Z, snr)

≤
∥∥∥Z − X̂(

√
snrZ +NG)

∥∥∥
2

(170)

≤
∥∥∥X − X̂(

√
snrX +NG)

∥∥∥
2

+ ‖X − Z‖2

+
∥∥∥X̂(
√
snrX +NG)− X̂(

√
snrZ +NG)

∥∥∥
2

(171)

=
√

mmse(X, snr) + ‖X − Z‖2 +∥∥∥X̂(
√
snrX +NG)− X̂(

√
snrZ +NG)

∥∥∥
2

(172)

where (170) follows from the suboptimality of Ẑ for estimat-
ing X .

Next we upper bound the third term in (172): fix w ∈ R
and let f(x) = X̂(

√
snrx+ w). Then for any x, z ∈ R,

|X̂(
√
snrx+ w)− X̂(

√
snrz + w)|

=

∣∣∣∣∫ x

z

f ′(y)dy

∣∣∣∣ (173)

≤ 2

∣∣∣∣∫ x

z

(y2 + snr varX)dy

∣∣∣∣ (174)

≤ 2

3
|x3 − z3|+ 2 snr varX|x− z|, (175)

where (174) follows from (169). Therefore∥∥∥X̂(
√
snrX +NG)− X̂(

√
snrZ +NG)

∥∥∥
2

≤ 2

3

∥∥X3 − Z3
∥∥

2
+ 2 snr varX ‖X − Z‖2 . (176)

Since∥∥X3 − Z3
∥∥2

2
= E

[
(X3 − Z3)2

]
(177)

≤ 9

2
E
[
(X − Z)2(X4 + Z4)

]
(178)

≤ 9

2
E
[
(X − Z)2p

] 1
p E
[
(X4 + Z4)q

] 1
q (179)

≤ 9

2
‖X − Z‖22p (‖X‖44q + ‖Z‖44q). (180)

where
• (178): by (u2 + v2 + uv)2 ≤ 9

4 (u2 + v2)2 ≤ 9
2 (u4 + v4).

• (179): by Hölder’s inequality with 1 ≤ p, q ≤ ∞ and
1
p + 1

q = 1.
Taking square root on both sides of (180) before applying it
to (176), we have∥∥∥X̂(

√
snrX +NG)− X̂(

√
snrZ +NG)

∥∥∥
2

≤
√

2 ‖X − Z‖2p (‖X‖24q + ‖Z‖24q) + 2 snr varX ‖X − Z‖2 .
(181)

Substituting (167) and (181) into (172) and using the fact that
mmse(X, snr) ≤ varX , we obtain

mmse(Z, snr)−mmse(X, snr)√
varX +

√
varZ

≤
√

2 ‖X − Z‖2p (‖X‖24q + ‖Z‖24q)+
(1 + 2 snr varX) ‖X − Z‖2 , (182)

which implies (28) since ‖X − Z‖2 ≤ ‖X − Z‖2p =
W2p(PX , PZ).

The Wr-Lipschitz continuity of mmse(·, snr) follows from
setting r = 2p. Since Wr-distance is finite on Ps for s ≥ r,
we require 4q = 4r

r−2 ≥ r, i.e., 2 ≤ r ≤ 6.

APPENDIX E
PROOF OF LEMMA 3

Proof: Let λ =
√
snr√

snr+1
and

Zsnr = λX + (1− λ)N. (183)
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In view of (44), we define a reference probability density q
on R by

q(x) =
1∫

R e−ψ(|x|)dx
e−ψ(|x|). (184)

Then

I(X,N, snr)

= h(
√
snrX +N)− h(N) (185)

= E
[
log

1

q(Zsnr)

]
+ log(1 +

√
snr)−D(pZsnr || q)− h(N)

(186)

≤ E [ψ(λ|X|+ (1− λ)|N |)] + log(1 +
√
snr)+

log

(∫
R

e−ψ(|x|)dx

)
− h(N) (187)

≤ aλE [ψ(|X|)] + bλE [ψ(|N |)] + cλ + log(1 +
√
snr)

+ log

(∫
R

e−ψ(|x|)dx

)
− h(N) (188)

<∞, (189)

where
• (187): by the monotonicity of ψ and the nonnegativity of

relative entropy;
• (188): by (45).
• (189): by (44), (46) and (47).
Next we establish the continuity of snr 7→ I(X,N, snr)

on R+. In view of the weak lower-semicontinuity of relative
entropy [8], we have

lim inf
γ→snr

I(X,N, γ) ≥ I(X,N, snr). (190)

Hence it remains to show

lim sup
γ→snr

I(X,N, γ) ≤ I(X,N, snr). (191)

By (186), we have

I(X,N, γ) = E [ψ(|Zγ |)] + log(1 +
√
snr)− h(N)+

= log

(∫
R

e−ψ(|x|)dx

)
−D(pZγ || q). (192)

For any5 γ ∈ (snr − ε, snr + ε),

ψ(|Zγ |) ≤ ψ

(√
γ |X|+ |N |
√
γ + 1

)
≤ max

{
ψ

(√
snr − ε |X|+ |N |√

snr − ε+ 1

)
,

ψ

(√
snr + ε |X|+ |N |√

snr + ε+ 1

)}
. (193)

As reasoned to obtain (188), the right-hand side of (193) is
integrable. By the continuity of ψ and the reverse Fatou’s
lemma,

lim sup
γ→snr

E [ψ(|Zγ |)] ≤ E [ψ(|Zsnr|)] . (194)

By the lower semicontinuity of relative entropy, we have

lim inf
γ→snr

D(pZγ || q) ≥ D(pZsnr || q). (195)

Plugging (194) and (195) into (192) yields the desired (191).

5If snr = 0, replace snr − ε by 0.
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Minimum Mean-Square Error in Gaussian Channels,” IEEE Trans. Inf.
Theory, vol. 51, no. 4, pp. 1261 – 1283, Apr. 2005.

[6] V. M. Zolotarev, One-dimensional Stable Distributions. Providence,
RI: American Mathematical Society, 1986.

[7] Y. A. Brychkov and A. P. Prudnikov, Integral Transforms of Generalized
Functions. New York, NY: Gordon and Breach Science Publishers,
1989.

[8] P. Dupuis and R. S. Ellis, A Weak Convergence Approach to the Theory
of Large Deviations. Wiley-Interscience, 1997.

[9] P. J. Huber, Robust Statistics. New York, NY: Wiley-Interscience, 1981.
[10] G. L. Wise, “A Note on a Common Misconception in Estimation,”

Systems and Control Letters, vol. 5, pp. 355–0356, Apr. 1985.
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[14] S. T. Rachev and L. Rüschendorf, Mass Transportation Problems: Vol.
I: Theory. Berlin, Germany: Springer-Verlag, 1998.

[15] Y. Wu, “Shannon theory for compressed sensing,” Ph.D. dissertation,
Department of Electrical Engineering, Princeton University, 2011.

[16] D. Guo, S. Shamai (Shitz), and S. Verdú, “The interplay between
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