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Abstract—We show that the minimum mean-square error
(MMSE) of estimating the input based on the channel output is
a concave functional of the input-output joint distribution, and
its various regularity properties are explored. In particular, the
MMSE in Gaussian channels is shown to be weakly continuous
in the input distribution and Lipschitz continuous with respect
to the quadratic Wasserstein distance for peak-limited inputs.
Regularity properties of mutual information are also obtained
and some connections with rate-distortion theory are also drawn.

I. INTRODUCTION

Monotonicity, convexity and infinite differentiability of the
minimum mean square error (MMSE) in Gaussian noise as
a function of SNR have been shown in [1]. In contrast, this
paper deals with the functional aspects of MMSE, i.e., as a
function of input-output joint distribution, and in particular, as
a function of the input distribution when the channel is fixed.
We devote special attention to additive Gaussian channels.

The MMSE is a functional of the input-output joint distri-
bution PXY , or equivalently of of the pair (PX , PY |X): Define

m(PXY ) = m(PX , PY |X) (1)
= mmse(X|Y ) (2)

= E[(X − E[X|Y ])2]. (3)

These notations will be used interchangeably. When Y is
related to X through an additive-noise channel with gain

√
snr,

i.e., Y =
√

snrX+N where N is independent of X , we denote

mmse(X,N, snr) = mmse(X|
√

snrX +N), (4)
mmse(X, snr) = mmse(X,NG, snr), (5)

where NG is standard Gaussian distributed.
In Section II we study various concavity properties of the

MMSE functional defined in (3) – (5). Unlike the mutual
information I(PX , PY |X), which is concave in PX , convex in
PY |X but neither convex nor concave in PXY , the MMSE
functional m(PXY ) is concave in the joint distribution PXY ,
hence concave individually in PX when PY |X is fixed and in
PY |X when PX is fixed. However, m(PX , PY |X) is neither
concave nor convex in the pair (PX , PY |X).

In Section III we discuss the data processing inequality
associated with MMSE, which implies mmse(X,N, snr) is
decreasing in snr for N with a stable distribution, e.g.,
Gaussian.

In Section IV we present relevant results on the extrem-
ization of the MMSE functional with Gaussian inputs and/or
Gaussian noise. In terms of MMSE, while the least favor-
able input for additive Gaussian channels is Gaussian, the
worst channel for Gaussian inputs is not additive-Gaussian
(but the reverse channel is). Moreover, it coincides with the
optimal forward channel achieving the Gaussian rate-distortion
function. Nonetheless, the worst additive-noise channel is still
Gaussian.

Various regularity properties of MMSE are explored in
Section V.
• We show that mmse(X,N, snr) is weakly lower semi-

continuous (l.s.c.) in PX but not continuous in general.
• When N has a continuous and bounded density, PX 7→

mmse(X,N, snr) is weakly continuous.
• When N is Gaussian and X is peak-limited, PX 7→

mmse(X, snr) is Lipschitz continuous with respect to the
quadratic Wasserstein distance [2].

Via the I-MMSE relationship1 [3]

I(X, snr) =
1
2

∫ snr

0

mmse(X, γ)dγ, (6)

where I(X, snr) = I(X;
√

snrX+NG), regularities of MMSE
are inherited by the mutual information when the input
power is bounded. This enables us to gauge the gap between
the Gaussian channel capacity and the mutual information
achieved by a given input by computing its Wasserstein
distance to the Gaussian distribution.

Due to space limitations, several technical proofs are re-
ferred to [4].

II. CONCAVITY

Theorem 1. m(PXY ) is a concave functional in PXY .

Proof: Fix arbitrary PX1Y1 and PX2Y2 . Define a random
variable B on {1, 2} with P {B = 1} = p. Then (XB , YB)
has joint distribution αPX1Y1 + (1− α)PX2Y2 . Therefore

m(αPX1Y1 + (1− α)PX2Y2)
= mmse(XB |YB) (7)
≥ mmse(XB |YB , B) (8)
= α mmse(X1|Y1) + (1− α) mmse(X2|Y2) (9)

1Throughout the paper natural logarithms are adopted and information units
are nats.



Corollary 1. m(PX , PY |X) is individually concave in each
of its arguments when the other one is fixed.

Remark 1. MMSE is not concave in the pair (PX , PY |X).
We illustrate this point by the following example: for i =
1, 2, let Yi = Xi + Ni, where X1 and N1 are independent
and equiprobable Bernoulli, X2 and N2 are independent and
equiprobable on {8, 10} and {4, 6} respectively. Let Y = X+
N , where the distribution of X (resp. N ) is the equal mixture
of those of X1 and X2 (resp. N1 and N2). Then

mmse(X|Y ) =
1
4

[mmse(X1|Y1) + mmse(X2|Y2)] (10)

<
1
2

[mmse(X1|Y1) + mmse(X2|Y2)], (11)

because mmse(X1|Y1) = 1
8 and mmse(X2|Y2) = 1

2 .

Remark 2 (Non-strict concavity). In general MMSE is not
strictly concave. It can be shown that m(αPXY + (1 −
α)QXY ) = αm(PXY ) + (1 − α)m(QXY ) holds for all
0 < α < 1 if and only if

EP [X|Y = y] = EQ[X|Y = y] (12)

holds for PY -a.e. and QY -a.e. y. Therefore, the non-strict
concavity can be established by constructing two distributions
which give rise to the same optimal estimator.

1) PXY 7→ m(PXY ) is not strictly concave: consider Y =
X+N where X and N are i.i.d. By symmetry, E[X|Y =
y] = E[N |Y = y]. Then since E[X|Y = y] + E[N |Y =
y] = y, the optimal estimator is given by E[X|Y = y] =
y/2, regardless of the distribution of X .

2) There exists PX such that the mapping PY |X 7→
m(PX , PY |X) is not strictly concave: consider X and
N that are i.i.d. and standard Gaussian. Let PXY be the
joint distribution of (X,

√
snrX + N) and QXY be that

of (X, snr+1√
snr
X). Then the optimal estimator of X under

PXY and QXY are both X̂(y) = snr√
snr+1

y.
3) There exists PY |X such that the mapping PX 7→

m(PX , PY |X) is not strictly concave: consider an additive
binary noise channel model Y = X + 2πN , where N is
independent of X and equiprobable Bernoulli. Consider
two densities of X:

fX1(x) = ϕ(x), (13)
fX2(x) = ϕ(x)(1 + sinx), (14)

where ϕ denotes the standard normal density. It can be
shown that the optimal estimators for (13) and (14) are
the same:

X̂(y) = y − 2πϕ(y − 2π)
ϕ(y) + ϕ(y − 2π)

, (15)

hence the MMSE functional for this channel is the same
for any mixture of (13) and (14).

Despite the non-strict concavity for general channels, the
MMSE in the special case of additive Gaussian channels is

indeed a strictly concave functional of the input distribution,
as shown next. The proof exploits the relationship between the
optimal estimator in Gaussian channels and the Weierstrass
transform [5] of the input distribution.

Theorem 2. For fixed snr > 0, PX 7→ mmse(X, snr) is strictly
concave.

In view of (6) and the continuity of snr 7→ I(X, snr), we
have the following result:

Corollary 2. For fixed snr > 0, PX 7→ I(X, snr) is strictly
concave.

III. DATA PROCESSING INEQUALITY

In [6] it is pointed out that MMSE satisfies a data processing
inequality similar to the mutual information. We state it below
together with a necessary and sufficient condition for equality
to hold.

Theorem 3. If2 X − Y − Z, then

mmse(X|Y ) ≤ mmse(X|Z) (16)

with equality if and only if E[X|Y ] = E[X|Z] a.e.

The monotonicity of mmse(X, snr) in snr is a consequence
of Theorem 3, because for any X and snr1 ≥ snr2 > 0,
X −

(
X + 1√

snr1
NG

)
−
(
X + 1√

snr2
NG

)
forms a Markov

chain. Using the same reasoning we can conclude that, for
any N with a stable law3, mmse(X,N, snr) is monotonically
decreasing in snr for all X .

It should be noted that unlike the data processing inequality
for mutual information, equality in (16) does not imply that
Z is a sufficient statistic of Y for X . Consider the following
example of a multiplicative channel: Let U, V, Z be indepen-
dent square integrable random variables with zero mean. Let
Y = ZU and X = Y V . Then X − Y − Z and

E[X|Y ] = E[Y V |Y ] = Y E[V |ZU ] = Y EV = 0. (17)

Similarly E[X|Z] = 0. By Theorem 3, mmse(X|Z) =
mmse(X|Y ) = varX . However, X − Z − Y does not hold.

IV. EXTREMIZATIONS

Unlike mutual information, the MMSE functional does
not have a saddle-point behavior. Nonetheless, in view of
Corollary 1, for fixed input (channel resp.) it is meaningful
to investigate the worst channel (input resp.).

Theorem 4 ([1, Proposition 12]). Let N ∼ N (0, σ2
N ) inde-

pendent of X ,

max
PX :varX≤σ2

X

mmse(X|X +N) =
σ2
Nσ

2
X

σ2
N + σ2

X

, (18)

2X −Y −Z means that X and Z are conditionally independent given Y ,
i.e., (X, Y, Z) is a Markov chain.

3A distribution is called stable if for X1, X2 independent identically
distributed according to P , for any constants a, b, the random variable
aX1 + bX2 has the same distribution as cX + d for some constants c and
d [7, Chapter 1].



where the maximum is achieved if and only if X ∼ N (a, σ2
X)

for some a ∈ R.

Theorem 5.

max
PY |X :E[(Y−X)2]≤D

mmse(X|Y ) = min{varX,D}, (19)

holds for any X , where it is understood that varX = ∞ if
E
[
X2
]

=∞.

Proof of Theorem 5: (Converse)

mmse(X|Y ) = mmse(Y −X|Y ) (20)
≤ min{varX, var(Y −X)} (21)
≤ min{varX,D}. (22)

(Achievability) If D ≥ varX , mmse(X|Y ) = varX is
achieved by any Y independent of X with EY 2 = D − σ2

X .
If D < varX , we choose the channel according as follows:

let Z =
√

snrX + NG with NG independent of X and snr
chosen such that mmse(X, snr) = D. Such an snr always
exists because mmse(X, snr) is a decreasing function in snr
which vanishes as snr → ∞. Moreover it can be shown that
mmse(X, snr) → varX as snr → 0, even if varX = ∞.
Let Y = E[X|Z]. Then E[(X − Y )2] = mmse(X|Y ) =
mmse(X, snr) = D.

Through the I-MMSE relationship (6), Theorem 4 provides
an alternative explanation for optimality of Gaussian inputs in
Gaussian channels, because the integrand in (6) is maximized
pointwise. Consequently, to achieve a mutual information near
the capacity, it is equivalent to find X whose MMSE profile
approximates the Gaussian MMSE in the L1 norm. This
observation will be utilized in Section VI to study how discrete
inputs approach the Gaussian channel capacity.

It is interesting to analyze the worst channel for Gaussian
input X ∼ N (0, σ2

X). When D < σ2
X , the maximal MMSE

is achieved by

Y =
(

1− D

σ2
X

)
X +

√
D − D2

σ2
X

NG, (23)

which coincides with the minimizer of

RX(D) = max
PY |X :E(Y−X)2≤D

I(X;Y ) (24)

=
1
2

log+

(
σ2
X

D

)
(25)

hence the reverse channel Y → X is a Gaussian channel
with noise variance D. Nonetheless, the worst additive-noise
channel is still Gaussian, i.e.,

max
PN :varN≤D

mmse(X|X +N) =
σ2
XD

σ2
X +D

, (26)

because when N is independent X , by (20), the problem
reduces to the situation in Theorem 4 and the same expression
applies.

V. REGULARITY

In general the functional m(PXY ) is not weakly semi-
continuous. To see this, consider (Xn, Yn) = (X,X/n),
which converges in distribution to (X,Y ) = (X, 0). Therefore
mmse(X|Y ) = varX . However, mmse(Xn|Yn) = 0 for each
n. Thus, whenever varX > 0, m(PXY ) is not upper semi-
continuous (u.s.c.):

mmse(X|Y ) > lim sup
n→∞

mmse(Xn|Yn). (27)

On the other hand, consider Yn = Y = 0 and

Xn =

{
0 w.p. 1− 1

n

n w.p. 1
n

(28)

Then Xn
D−→X = 0. Since mmse(X|Y ) = varX = 0 and

mmse(Xn|Yn) = varXn = n − 1, it holds that m(PXY ) is
not l.s.c.:

mmse(X|Y ) < lim inf
n→∞

mmse(Xn|Yn). (29)

Nevertheless, under the assumptions of bounded input or
additive-noise channel, MMSE is indeed a weakly u.s.c. func-
tional.

Theorem 6. Let E ∈ BR2 be such that {x : (x, y) ∈ E}
is bounded. Denote the collection of all Borel probability
measures on E by M(E). Then PXY 7→ m(PXY ) is weakly
u.s.c. on M(E).

Proof: Variational representation proves an effective tool
in proving semi-continuity and convexity of information mea-
sures (for example relative entropy [8], Fisher information [9],
etc). Here we follow the same approach by using the following
variational characterization of MMSE:

m(PXY )

= inf
{
E[(X − f(Y ))2] : f ∈ B(R),E[f2(Y )] <∞

}
(30)

= inf
{
E[(X − f(Y ))2] : f ∈ Cb(R)

}
(31)

where B(R) and Cb(R) denote the collection of all real-valued
Borel and continuous bounded functions on R respectively,
and (31) is due to the denseness of Cb in L2.

For a fixed estimator f ∈ Cb(R),

E[(X − f(Y ))2] =
∫∫

(x− f(y))2PXY (dx,dy) (32)

is weakly continuous in PXY . This is because (x, y) 7→ (x−
f(y))2 ∈ Cb(R2) since E is bounded in x. Therefore by (31),
m(PXY ) is weakly u.s.c. because it is the pointwise infimum
of weakly continuous functions. In view of the counterexample
in (29), we see that the boundedness assumption on E is not
superfluous.

Theorem 7. For fixed snr > 0 and N ∈ L2(Ω), PX 7→
mmse(X,N, snr) is weakly u.s.c. If in addition the density of
N is continuous and bounded. Then PX 7→ mmse(X,N, snr)
is weakly continuous.



Proof: Note that

snr ·mmse(X,N, snr) = mmse(
√

snrX|
√

snrX +N) (33)

= mmse(N |
√

snrX +N) (34)

= mmse
(
N,X, snr−1

)
. (35)

Therefore it is equivalent to prove the upper semi-continuity
of PX 7→ mmse(N,X, snr−1). Without loss of generality we
shall assume that snr = 1.

Let PXk
be a sequence of distributions converging to PX0

weakly. By the Skorohod’s representation [10, Theorem 25.6],
there exist random variables with distribution {PXk

} and PX
respectively, such that Xk

a.s.−−→X0. Let N be a random variable
defined on the same probability space and independent of X
and {Xk}.

Denote Yk = Xk + N and gk(y) = E[N |Yk = y]. By the
denseness of Cb in L2, for all ε > 0, there exists ĝ ∈ Cb such
that

∥∥g(Y0)− ĝ(Y0)
∥∥

2
< ε. Then

lim sup
k→∞

√
mmse(N,Xk, 1)

≤ lim sup
k→∞

∥∥N − ĝ(Yk)
∥∥

2
(36)

≤ ‖N − g(Y0)‖2 +
∥∥g(Y0)− ĝ(Y0)

∥∥
2

(37)

+ lim sup
k→∞

∥∥ĝ(Y0)− ĝ(Yk)
∥∥

2
(38)

≤
√

mmse(N,X0, 1) + ε, (39)

where the last inequality follows from the dominated conver-
gence theorem. By the arbitrariness of ε, the proof for upper
semi-continuity is complete.

The proof of weak continuity when fN is continuous and
bounded is more technical [4]. Here we only give a proof under
the additional assumption that fN decays rapidly enough:
fN (z) = O

(
|z|−2

)
as |z| → ∞. Denote Vk = vk(Yk), where

vk(y) = var(N |Yk = y) = E[N2|Yk = y]− (E[N |Yk = y])2,
(40)

and

E[N |Yk = y] =
E [(y −Xk)fN (y −Xk)]

E [fN (y −Xk)]
, (41)

E[N2|Yk = y] =
E
[
(y −Xk)2fN (y −Xk)

]
E [fN (y −Xk)]

. (42)

By assumption, fN , x 7→ xfN (x) and x 7→ x2fN (x) are
all continuous and bounded functions. Therefore {vk} is
a sequence of nonnegative measurable functions converging
pointwise to v0. Also, the density fYk

(y) = E [fN (y −Xk)]
converges pointwise to fY (y) = E [fN (y −X)]. Applying
Fatou’s lemma yields the lower semi-continuity.

Remark 3. Theorem 7 cannot be extended to snr = 0, because
mmse(X,N, 0) = varX , which is weakly l.s.c. in PX but not
continuous, as the example in (28) illustrates. For snr > 0,
PX 7→ mmse(X,N, snr) need not be weakly continuous
if the sufficient conditions in Theorem 7 are not satisfied.
For example, suppose that X and N are both equiprobable
Bernoulli. Let Xk = qkX , where qk is a sequence of irrational

numbers converging to 1. Then Xk → X in distribution, and
mmse(Xk, N, 1) = 0 for all k, but mmse(X,N, 1) = 1

8 . This
also show that under the condition of Theorem 6, m(PXY )
need not to be weakly continuous in PXY .

Corollary 3. For fixed snr > 0, PX 7→ mmse(X, snr) is
weakly continuous.

In view of the representation of MMSE by the Fisher
information of the channel output with additive Gaussian noise
[3, (58)]:

snr ·mmse(X, snr) = 1− J(
√

snrX +NG), (43)

Corollary 3 implies the weak continuity of J(
√

snrX + NG)
in PX . While Fisher information is only l.s.c. [9, p. 79], here
the continuity is due to convolution with the Gaussian density.

Seeking a finer characterization of the modulus of conti-
nuity of PX 7→ mmse(X, snr), we introduce the quadratic
Wasserstein distance [2, Theorem 6.8].

Definition 1. The quadratic Wasserstein space on Rn is
defined as the collection of all Borel probability measures with
finite second moments, denoted by P2(Rn). The quadratic
Wasserstein distance is a metric on P2(Rn), defined for
µ, ν ∈ P2(Rn) as

W2(µ, ν) = inf {‖X − Y ‖2 : X ∼ µ, Y ∼ ν} , (44)

where the infimum is over all joint distributions of (X,Y ).

The W2 distance metrizes the topology of weak convergence
plus convergence of second-order moments. Because in gen-
eral convergence in distribution does not yield convergence
of moments, this topology is strictly finer than the weak-*
topology. Since convergence in W2 implies convergence of
variance, in view of Corollary 3, for all snr ≥ 0, PX 7→
mmse(X, snr) is continuous on the metric space (P2(R),W2).
Capitalizing on the Lipschitz continuity of the optimal esti-
mator for bounded inputs in Gaussian channel, we obtain the
Lipschitz continuity of PX 7→ mmse(X, snr) in this regime:

Theorem 8. For all snr ≥ 0, mmse(·, snr) is W2-continuous.
Moreover, if varX, varZ ≤ P and ‖X‖∞ , ‖Z‖∞ ≤ K, then

|mmse(X, snr)−mmse(Z, snr)|

≤ 2(1 +K2snr) min
{√

P ,
1√
snr

}
W2(PX , PZ). (45)

Corollary 3 guarantees that the MMSE of a random variable
can be calculated using the MMSE of its successively finer
discretizations, which paves the way for numerical calculating
MMSE for singular inputs (e.g., Cantor distribution) in [11].
However, one caveat is that to calculate the value of MMSE
within a given accuracy, the quantization level needs to grow
as snr grows (roughly as log snr in view of Theorem 8) such
that quantization error is much smaller than the noise.



VI. APPLICATIONS TO MUTUAL INFORMATION

In view of the lower semi-continuity of relative entropy
[8], I(X, snr) is weakly l.s.c. in PX but not continuous in
general, as the following example illustrates: Let PXk

= (1−
k−1)N (0, 1)+k−1N (0, exp(k2)), which converges weakly to
PX = N (0, 1). By the concavity of I(·, snr), I(Xk, snr)→∞
but I(X, snr) = 1

2 log 2.
Nevertheless, if the input power is bounded (but not nec-

essarily convergent), mutual information is indeed weakly
continuous in the input distribution. Applying Corollary 3 and
the dominated convergence theorem to (6), we obtain:

Theorem 9. If Xk
D−→X and sup varXk < ∞, then

I(Xk, snr)→ I(X, snr) for any snr ≥ 0.

By the W2-continuity of MMSE (in Theorem 8), I(·, snr)
is also W2-continuous. In fact W2-continuity also holds for
PX 7→ I(X;

√
snrX + N) whenever N has finite non-

Gaussianness

D(N) , D(PN || N (E[N ], varN)). (46)

This can be seen by writing

I(X;
√

snrX +N)

=
1
2

log
(

1 +
snr varX

varN

)
−D(

√
snrX +N) +D(N), (47)

Since variance converges under W2 convergence, upper semi-
continuity follows from the lower semi-continuity of relative
entropy.

As a consequence of Theorem 9, we can restrict inputs
to a weakly dense subset (e.g., discrete distributions) in the
maximization

C(snr) = max
E[X2]≤1

I(X, snr) =
1
2

log(1 + snr). (48)

It is interesting to analyze how the gap between C(snr) and
the maximal mutual information achieved by unit-variance
inputs taking m values, denoted by Cm(snr), closes as m
grows. The W2-Lipschitz continuity of mutual information
allows us to obtain an upper bound on the convergence
rate. It is known that the optimal W2 distance between a
given distribution and discrete distributions taking m values
coincides with the square root of the quantization error of the
optimal m-point quantizer [12], which scales according to 1

m
[13]. Choosing X to be the output of the optimal quantizer
and applying some truncation argument, we conclude that
C(snr)−Cm(snr) = O

(
1
m

)
. In fact, the gap vanishes at least

exponentially fast [14].
To conclude this section, we give an example where the

non-Gaussianness of a sequence of absolutely continuous
distributions does not vanish in the central limit theorem.
Consider the following example [15, 17.4]: let {Zk} be a
sequence of independent random variables, with

P {Zk = 1} = P {Zk = −1} =
1
2

(1− k−2), (49)

P {Zk = k} = P {Zk = −k} =
1
2
k−2. (50)

Define Xn = 1√
n

∑n
k=1 Zk. While varXn → 2, direct com-

putation of characteristic functions reveals that Xn
D−→N (0, 1).

Now let Yn = Xn+NG
D−→N (0, 2). Since {varYn} is bounded,

by Theorem 9, I(Xn;Xn + NG) → 1
2 log 2. In view of (47),

we have D(Yn)→ 1
2 log 3

2 .

VII. CONCLUSIONS

In this paper we explored various concavity and regularity
properties of the MMSE functional and its connections to
Shannon theory. Through the I-MMSE integral formula (6),
new results on mutual information are uncovered. In particular,
the Lipschitz continuity of MMSE in Theorem 8 measures how
fast a discrete input reaches the Gaussian channel capacity as
the the constellation cardinality grows, without evaluating the
mutual information numerically.
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