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Abstract—Compressed sensing deals with efficient recovery
of analog signals from linear encodings. This paper presents a
statistical study of compressed sensing by modeling the input
signal as an i.i.d. random process. Three classes of encoders
are considered, namely, optimal nonlinear, optimal linear and
random linear encoders. Focusing on optimal decoders, we
investigate the fundamental tradeoff between measurement rate
and reconstruction fidelity gauged by the noise sensitivity. The
optimal phase-transition threshold is determined as a functional
of the input distribution and compared to suboptimal thresholds
achieved by popular reconstruction algorithms. In particular,
we show that Gaussian sensing matrices incur no penalty on
the phase-transition threshold with respect to optimal nonlinear
encoding. Our results also provide a rigorous justification of
previous results based on replica heuristics in the weak-noise
regime.

I. INTRODUCTION

Compressed sensing [?], [?] is a signal processing tech-
nique that compresses analog vectors by means of a linear
transformation. By leveraging prior knowledge of the signal
structure (e.g., sparsity) and by designing efficient nonlinear
reconstruction algorithms, effective compression is achieved
by taking a much smaller number of measurements than the
dimension of the original signal.

Most of the compressed sensing literature focuses on the
setup where
a) performance is measured on a worst-case basis with respect

to the n-dimensional input vector.
b) the encoder is constrained to be a linear mapping character-

ized by a k×n matrix, called the sensing or measurement
matrix, which is usually assumed to be random, and known
at the decoder.

c) the decoder is a low-complexity algorithm which is robust
with respect to observation noise, for example, decoders
based on convex optimizations such as `1-minimization
[?] and `1-penalized least-squares (i.e. LASSO) [?], greedy
algorithms such as matching pursuit [?], graph-based itera-
tive decoders such as approximate message passing (AMP)
[?].

In contrast, in this paper we formulate an information-
theoretic fundamental limit in the following setup:
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a) the input vector is random with a known distribution and
performance is measured on an average basis. Similar
Bayesian modeling is followed in some of the compressed
sensing literature, for example, [?], [?], [?], [?].

b) three different encoder classes are considered: optimal
nonlinear, optimal linear and random linear encoders.

c) the decoder is the optimal Bayes procedure.
The overarching goal is to investigate the fundamental

tradeoff between reconstruction fidelity and measurement rate
k
n as n→∞, as a functional of the signal and noise statistics.

When the measurements are noiseless, the goal is to re-
construct the original signal in the sense of driving the error
probability to zero as the ambient dimension, n, grows. For
many input processes (e.g., i.i.d. ones), it turns out that there
exists a threshold for the measurement rate, above which
it is possible to achieve a vanishing error probability and
below which the error probability will eventually approach
one for any sequence of encoder-decoder pairs. Such a phe-
nomenon is known as phase transition in statistical physics. In
information-theoretic parlance, we say that the strong converse
holds.

We introduced the framework of almost-lossless analog
compression in [?] as a Shannon-theoretic formulation of
noiseless compressed sensing. Under regularity conditions
such as linearity of the encoder and Lipschitz continuity of the
decoder, [?] derives various coding theorems for the minimal
measurement rate involving the Rényi information dimension
of the input distribution [?]. See also [?, Section III] for a
non-asymptotic exposition.

The focus of this paper is the case where the measurements
are corrupted by additive noise. Exact analog signal recovery
is obviously impossible and we gauge reconstruction fidelity
by the noise sensitivity, defined as the ratio between the mean-
square reconstruction error and the noise variance. Similar to
the behavior of error probability in the noiseless case, there
exists a phase-transition threshold of measurement rate, which
only depends on the input statistics, above which the noise
sensitivity is bounded for all noise variances, and below which
the noise sensitivity blows up as the noise variance tends to
zero.

In Section II we consider three formulations of noise sen-
sitivity: optimal nonlinear, optimal linear and random linear
(with i.i.d. entries) encoder and the associated optimal decoder.
For memoryless sources, we show that for any input distri-
bution, the phase-transition threshold for optimal encoding
is given by the input information dimension. Moreover, this
result also holds for discrete-continuous mixtures with optimal



linear encoders and Gaussian random measurement matrices.
The fact that randomly chosen sensing matrices turn out to
incur no penalty in phase-transition threshold with respect
to optimal nonlinear encoders lends further importance to
the conventional compressed sensing setup. In addition, we
compare the optimal phase-transition threshold to the subop-
timal threshold of several practical reconstruction algorithms
under various input distributions. In particular, in Section III
we demonstrate that the thresholds achieved by the LASSO
decoder and the AMP decoder [?] lie far from the optimal
boundary, especially in the highly sparse regime, which is most
relevant to compressed sensing applications.

Invoking the results in [?], in Section II-F we show that
the calculation of the reconstruction error with random mea-
surement matrices based on heuristic replica methods in [?]
predicts the correct phase-transition threshold. These results
also serve as a rigorous verification of the replica calculations
in [?] in the high-SNR regime (up to o(σ2) as the noise
variance σ2 vanishes).

Omitted proofs can be found in [?].

II. NOISY COMPRESSED SENSING

A. Setup

The basic setup of noisy compressed sensing is the joint
source-channel coding problem shown in Fig. 1, where we

Encoder
fn: Rn→Rk +

σNk

Decoder
gn: Rk→Rn

Xn Y k Ŷ k X̂n

Fig. 1: Noisy compressed sensing setup.

assume that
• The source Xn consists of i.i.d. copies of a real-valued

random variable X with unit variance.
• The channel is memoryless with additive Gaussian noise
σNk where Nk ∼ N (0, Ik).

• The measurement rate, i.e., the dimensionality compres-
sion ratio, is given by R = k

n .
• Unit average power constraint of on the encoded signal:

1
kE[‖fn(Xn)‖22] ≤ 1.

• The reconstruction error is gauged by the per-symbol
MSE distortion: d(xn, x̂n) = 1

n‖x̂
n − xn‖22.

In this setup, the fundamental question is: For a given noise
variance and measurement rate, what is the lowest reconstruc-
tion error? For a given encoder f , the corresponding optimal
decoder g is the MMSE estimator of the input Xn given the
channel output Ŷ k = f(Xn) + σNk. Therefore the optimal
distortion achieved by encoder f is mmse(Xn|f(Xn)+σNk),
where mmse(U |V ) , E

[
‖U − E [U |V ] ‖22

]
.

B. Signal model

Sparse vectors, supported on a subspace with dimension
smaller than n, play an important role in signal processing and

statistical models. A stochastic model that captures sparsity is
the following mixture distribution [?], [?], [?]:

PX = (1− γ)δ0 + γ Pc, (1)

where δ0 denotes a unit mass at 0, Pc is an absolutely
continuous (with respect to Lebesgue measure) distribution
from which the non-zero entries are drawn, and 0 ≤ γ ≤ 1
parametrizes the signal sparsity. This model corresponds to the
regime of proportional (or linear) sparsity, because Xn drawn
independently from (1) has approximately γn non-zeros.

Generalizing (1), we henceforth consider discrete-
continuous mixed distributions:

PX = (1− γ)Pd + γPc, (2)

where Pd is a discrete probability measure and Pc is an abso-
lutely continuous probability measure. In addition to sparsity,
there are other signal structures that have been previously
explored in the compressed sensing literature, which fit the
model in (2). For example, the so-called simple signal in
infrared absorption spectroscopy [?, Example 3, p. 914] is
such that each entry of of the signal vector is constrained to
lie in the unit interval, with most of the entries saturated at
the boundaries (0 or 1) (see Section III for its probabilistic
model). Although most of the results in the present paper
hold for arbitrary input distributions, with no practical loss of
generality, we focus on discrete-continuous mixtures because
of their relevance to compressed sensing applications.

C. Distortion-rate tradeoff

For a fixed noise variance, we define three distortion-rate
functions that correspond to optimal encoding, optimal linear
encoding and random linear encoding respectively.

1) Optimal encoder: The minimal distortion achieved by
the optimal encoding scheme is given by:

D∗(X,R, σ2) , lim sup
n→∞

1

n
inf
f

{
mmse(Xn|f(Xn) + σNk) :

E[‖f(Xn)‖22] ≤ Rn
}
. (3)

The asymptotic optimization problem in (3) can be solved
by applying Shannon’s joint source-channel coding separation
theorem for memoryless channels and sources [?, Section XI],
which states that the lowest rate, R, that achieves distortion
D is given by

R =
RX(D)

C(σ2)
, (4)

where RX(·) is the rate-distortion function of X under the
mean-square error distortion and C(σ2) = 1

2 log(1 + σ−2)
is the AWGN channel capacity. By the monotonicity of the
rate-distortion function, we have

D∗(X,R, σ2) = R−1X

(
R

2
log(1 + σ−2)

)
. (5)

In general, optimal joint source-channel encoders are nonlin-
ear.

2



2) Optimal linear encoder: To analyze the fundamental
limit of conventional noisy compressed sensing, we restrict
the encoder f in (3) to be a linear mapping represented by
a matrix H ∈ Rk×n, and denote the left-hand side of (3)
by D∗L(X,R, σ2). Since Xn are i.i.d. with zero mean and
unit variance, the input power constraint in (3) simplifies to
‖H‖2F ≤ Rn, where ‖·‖F denotes the Frobenius norm.

3) Random linear encoder: We consider the ensemble per-
formance of a sequence of k×n random measurement matrices
An with i.i.d. entries of zero mean and variance 1

n and define
DL(X,R, σ2) as in (3) with f replaced by An. Note that
the power constraint holds on average: E[‖An‖2F] = k. By
definition, we have 0 ≤ D∗ ≤ D∗L ≤ DL ≤ 1.

D. Phase transition of noise sensitivity

A key objective of compressed sensing with noisy ob-
servations is to achieve robust reconstruction, obtaining a
reconstruction error proportional to the noise variance. To
quantify robustness, we analyze the noise sensitivity, namely,
the ratio between the mean-square error and the noise variance,
as a function of R and σ2. As a succinct characterization
of robustness, we focus particular attention on the worst-case
noise sensitivity:

Definition 1. The worst-case noise sensitivity of optimal
encoding is defined as

ζ∗(X,R) = sup
σ2>0

D∗(X,R, σ2)

σ2
. (6)

For linear encoding, ζ∗L and ζL are analogously defined with
D∗ replaced by D∗L and DL, respectively.

The phase-transition threshold of the noise sensitivity is
defined as the minimal measurement rate R such that the noise
sensitivity is bounded for all σ2:

Definition 2. For optimal encoding, define

R∗(X) , inf {R > 0 : ζ∗(X,R) <∞} . (7)

For linear encoding, R∗L(X) and RL(X) are analogously
defined with ζ∗ in (7) replaced by ζ∗L and ζL, respectively.

Alternatively, we can consider the asymptotic noise sensitiv-
ity by replacing the supremum in (6) with the limit as σ2 → 0,
denoted by ξ∗, ξ∗L and ξL respectively, which are finite if and
only if the corresponding suprema are finite. Therefore, the
phase-transition thresholds can also be defined as the minimum
measurement rate for which the reconstruction error vanishes
according to O(σ2) as σ2 → 0.

By definition, the phase-transition thresholds are ordered
naturally as 0 ≤ R∗(X) ≤ R∗L(X) ≤ RL(X) ≤ 1. It
can be shown that Gaussian input XG ∼ N (0, 1) maximizes
D∗, D∗L and DL simultaneously under the variance constraint
with explicit formulae given in [?], which yield the following
phase-transition threshold:

R∗(XG) = R∗L(XG) = RL(XG) = 1. (8)

The equality of the three phase-transition thresholds turns
out to hold well beyond the Gaussian signal model. In the
next subsection, we formulate and prove the existence of the
phase thresholds for all three distortion-rate functions and
discrete-continuous mixtures, which turn out to be equal to
the information dimension of the input distribution.

E. Main results

In this subsection, we give bounds and exact characteri-
zations of the three phase-transition thresholds introduced in
Definition 2 in terms of the input information [?] and MMSE
dimension [?], defined as follows.

Definition 3. Let X be a real-valued random variable. Let
m ∈ N. The information dimension of X is defined as

d(X) = lim
m→∞

H (bmXc)
logm

. (9)

The MMSE dimension of X is defined as

D(X) = lim
snr→∞

snr ·mmse(X, snr), (10)

where mmse(X, snr) , mmse(X|
√
snrX +N).

The lim inf and lim sup in (9) (resp. (10)) are called
lower and upper information (resp. MMSE) dimensions of X ,
denoted by d(X) and d(X) (resp. D(X) and D(X)).

It is shown in [?, Theorem 8] that the information dimen-
sions are sandwiched between the MMSE dimensions:

0 ≤ D(X) ≤ d(X) ≤ d(X) ≤ D(X) ≤ 1. (11)

For discrete-continuous mixtures (2), the MMSE dimension
coincides with the information dimension [?, Theorem 15]:

D(X) = d(X) = γ. (12)

It is possible that the MMSE dimension does not exist and
the inequalities in (11) are strict (e.g., Cantor distributed X
[?, Theorem 16]).

The phase-transition threshold for optimal encoding is given
by the upper information dimension of the input:

Theorem 1. For any X , R∗(X) = d(X).

The next result shows that random linear encoders with i.i.d.
Gaussian coefficients also achieve information dimension for
any discrete-continuous mixtures, which, in view of Theorem
1, implies that, at least asymptotically, (random) linear en-
coding suffices for robust reconstruction as long as the input
distribution contains no singular component.

Theorem 2. Assume that X has a discrete-continuous mixed
distribution as in (2) with H(Pd) <∞. Then

R∗(X) = R∗L(X) = RL(X) = d(X) = D(X) = γ. (13)

Moreover, (13) holds for any noise distribution with finite non-
Gaussianness (defined as its relative entropy with respect to a
Gaussian distribution with the same mean and variance).
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F. Results relying on replica heuristics

Based on the statistical-physics approach in [?], [?], the
decoupling principle results in [?] were imported into the
compressed sensing setting in [?] to postulate the following
formula for DL(X,R, σ2). Note that this result is based on
replica heuristics currently lacking a rigorous justification.

Replica Symmetry Postulate ([?, Corollary 1, p.5]).

DL(X,R, σ2) = mmse(X, ηRσ−2), (14)

where 0 < η < 1 satisfies η−1 = 1 + σ−2mmse(X, ηRσ−2).
In the case of multiple solutions, η is chosen to minimize the
free energy I(X;

√
ηRσ−2X +N) + R

2 (η − 1− log η).

Assuming the validity of the replica symmetry postulate, it
can be shown that the phase-transition threshold for random
linear encoding is always sandwiched between the lower and
the upper MMSE dimensions of the input. The relationship
between the MMSE dimension and the information dimension
in (11) plays a key role in analyzing the minimizer of the free
energy.

Theorem 3. Assume that the replica symmetry postulate holds
for X . Then for any i.i.d. random measurement matrix whose
entries have zero mean and variance 1

n ,

D(X) ≤ RL(X) ≤ D(X). (15)

Therefore if D(X) exists, we have

RL(X) = D(X) = d(X), (16)

and in addition, DL(X,R, σ2) = d(X)
R−d(X)σ

2(1 + o(1)).

The general result in Theorem 3 holds for any input distribu-
tion but relies on the conjectured validity of the replica sym-
metry postulate. For the special case of discrete-continuous
mixtures in (2), in view of (12), Theorem 3 predicts (with the
caveat of the validity of the replica symmetry postulate) that
the phase-transition threshold for random linear encoding is
γ, which agrees with the rigorously proven result in Theorem
2. Therefore, the only added benefit of Theorem 3 is to allow
singular components in the input distribution.

The achievability proof of RL(X) in Theorem 3 is a direct
application of the noiseless result in [?], where it is shown
that there exists a sequence of Lipschitz decompressors with
bounded Lipschitz constants and vanishing block error prob-
ability. The noiseless Lipschitz decompressor as a suboptimal
estimator achieves finite noise sensitivity. This achievability
strategy applies to any noise with finite variance, without
requiring that the noise be additive, memoryless or that it have
a density. In contrast, replica-based results rely crucially on the
fact that the additive noise is memoryless Gaussian.

III. COMPARISONS TO LASSO AND AMP ALGORITHMS

In this section, we compare the phase transition thresholds
of LASSO and AMP achieved in the Bayesian setting to
the optimal thresholds for the following families of input
distributions considered in [?, p. 18915], indexed by χ = ±,+
and � respectively, which all belong to the mixture form (2):

± sparse signals (1);
+ sparse non-negative signals (1) with the continuous

component Pc supported on R+.
� simple signals (see Section II-B): PX = (1 −

γ)
(

1
2δ0 + 1

2δ1

)
+γ Pc, where Pc is some absolutely

continuous distribution supported on the unit interval.
We consider the AMP decoder [?] and the LASSO decoder:

g̃λ(y) = argmin
x∈Rn

1

2
‖y −Ax‖22 + λ ‖x‖1 , (17)

where λ > 0 is a regularization parameter. For Gaussian sens-
ing matrices and Gaussian observation noise, the asymptotic
mean-square error achieved by LASSO can be determined as
a function of (PX , λ, σ

2) by applying [?, Corollary 1.6]. For
sparse X distributed according to (1), the following minimax
expression for the worst-case (or asymptotic) noise sensitivity
of LASSO under the least favorable prior with optimized λ is
proposed in [?, Proposition 3.1(1.a)] and proved by [?]:

ζ̃(X,R) = ξ̃(X,R) =

{
R±(γ)

R−R±(γ) R > R±(γ)

∞ R ≤ R±(γ)
(18)

with

R±(γ) = min
τ≥0

γ(1 + τ2) + c(1− γ)((1 + τ2)Φ(−τ)− τϕ(τ))

(19)

and c = 2. Analogously, the LASSO decoder (17) can be
adapted to other signal structures (see for example [?, Sec.
VI-A]), resulting in the phase-transition threshold R+(γ) for
sparse positive signals given by (19) with c = 1 and R�(γ) =
γ+1
2 for simple signals. Furthermore, (18) also applies to the

AMP algorithm [?]. The suboptimal thresholds are plotted
in Fig. 2 along with the optimal threshold obtained from
Theorem 2 which is γ. In the gray area below the diagonal
in the (γ,R)-phase diagram, the noise sensitivity blows up
for any sequence of sensing matrices and decoders. Moreover,
we observe that the LASSO and AMP decoders are severely
suboptimal unless γ is close to one. In the highly sparse regime
which is most relevant to compressed sensing problems, it
follows from [?, Theorem 3] that for sparse signals (χ = ± or
+), Rχ(γ) = 2γ loge

1
γ (1 + o(1)), as γ → 0, which implies

that Rχ has infinite slope at γ = 0. Therefore when γ � 1, the
LASSO and AMP decoders require on the order of 2s loge

n
s

measurements to successfully recover the unknown vector with
s nonzero components. In contrast, s measurements suffice
when using an optimal decoder (or `0-minimization decoder).
The LASSO or AMP decoders are also highly suboptimal for
simple signals, since R�(γ) converges to 1

2 instead of zero as
γ → 0. Interestingly, the phase-transition thresholds of block
error probability in the noiseless case are identical to Fig. 2,
as observed in [?, Sec. 5.1].

For sparse signals of the form (1) with γ = 0.1, Fig. 3
compares the asymptotic noise sensitivity of the LASSO (and
AMP) decoder to the optimal noise sensitivity predicted by
Theorem 3 based on replica heuristics. Note that the phase-
transition threshold of LASSO is approximately 3.3 times the
optimal.
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Fig. 2: Suboptimal thresholds obtained with LASSO and AMP
v.s. optimal threshold for the three signal models in Section III.
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Fig. 3: Asymptotic noise sensitivity of the optimal decoder
and the LASSO decoder exhibiting phase transitions: sparse
signal model (1) with γ = 0.1.

IV. CONCLUDING REMARKS

As opposed to a worst-case (Hamming) approach, in this
paper we adopt a statistical (Shannon) framework for com-
pressed sensing by modeling input signals as random processes
rather than individual sequences. As customary in information
theory, it is advisable to initiate the study of fundamental
limits assuming independent identically distributed informa-
tion sources with known distributions. Naturally, this entails
substantial loss of practical relevance, so generalization to
sources with memory is left for future work. We have obtained
the phase-transition thresholds (minimum measurement rate)
of normalized MMSE with noisy observations achievable
by optimal nonlinear, optimal linear, and random linear en-
coders combined with the corresponding optimal decoders.
For discrete-continuous mixtures, the optimal phase-transition
threshold is shown to be the information dimension of the
input. The phase-transition thresholds of popular decoding
algorithms (e.g., LASSO or AMP decoders) turn out to be
far from the optimal boundary. In a recent preprint [?], it is
shown that using sensing matrices constructed from spatially
coupled error-correcting codes and the corresponding AMP
decoder, information dimension and MMSE dimension are
respectively achievable in both noiseless and noisy cases under
mild conditions, which are optimal in view of the results in

[?].
One of our main findings is Theorem 2 which shows that

Gaussian sensing matrices achieve the same phase-transition
threshold as optimal nonlinear encoding, for any discrete-
continuous mixture. This result is universal in the sense
that it holds for arbitrary noise distributions with finite non-
Gaussianness. Moreover, the fundamental limit depends on
the input statistics only through the weight of the analog
component, regardless of the specific discrete and continu-
ous components. The universal optimality of random sensing
matrices with non-Gaussian i.i.d. entries in terms of phase-
transition thresholds remains open.
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