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Abstract—Minimax prediction of binary sequences is investi-
gated for cases in which the predictor is forced to issue a piecewise
constant prediction. The minimax strategy is characterized for
Hamming loss whereas, for logarithmic loss, an asymptotically
minimax strategy, in the sense that the main asymptotic redun-
dancy term equals the main asymptotic term of the minimax
redundancy, is proposed. The average redundancy case is also
analyzed for i.i.d. distributions.

I. INTRODUCTION

Consider a game in which, as a predictor observes a binary
sequence xn = x1x2 · · ·xn, it makes causal predictions on
each bit xt+1, t = 0, 1, · · · , n−1, based on the observed prefix
xt. These predictions take the form of probability assignments
pt+1(a|xt), a ∈ {0, 1}. Once xt+1 is revealed, the predictor
incurs a loss, e.g., − log pt+1(xt+1|xt) in the data compression
problem, or 1− pt+1(xt+1|xt) for (expected) Hamming loss,
which accumulates over time. The goal of the predictor is to
approach the cumulative loss of the best constant predictor
for xn (determined in hindsight, with full knowledge of xn,
termed Bayes envelope), which is the empirical entropy of
xn in the data compression problem, or min(n0(x

n), n1(x
n))

for Hamming loss, where na(x
n) denotes the number of

occurrences of a ∈ {0, 1} in xn. In one version of the
game, the goodness of the predictor is assessed by its excess
loss over the Bayes envelope (termed regret, or redundancy
in the data compression case) for the worst case sequence
(maximum regret), the best strategy is thus termed minimax,
and the corresponding maximum regret is the minimax regret.
Notice that the minimax strategy (and the minimax regret) may
depend on the horizon n of the game.

Now, imagine a situation in which the predictor is forced
to “freeze” its prediction for a number of prediction rounds.
In the simplest such scenario, for a given block length T ,
the probability assignments piT+1, piT+2, · · · , p(i+1)T , i =
0, 1, · · · ,m − 1, must all coincide, where we assume that
n = mT for some positive integer m. Thus, piT+j , j =
1, 2, · · · , T , can only depend on xiT and, in particular, must
be independent of xiT+1, xiT+2, · · · , xiT+j−1. The question
arises: How badly can the minimax regret be affected by the
constraint of piecewise constant prediction? This question is
of practical importance in scenarios in which the benefits of a
small minimax regret are offset by the cost of computing the
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minimax strategy for each round of the game. For example, as
argued in [1], in an energy-constrained environment in which
the role of data compression is to save storage or transmission
power, the assessment of the benefit of data compression
should take into account the implementation cost of the
data compression algorithm. Savings in this cost obtained by
“freezing” the adaptation of the algorithm within a block may
thus be beneficial despite the corresponding compression loss
due to piecewise constant restriction.

The binary prediction problem was first studied in the
framework of the sequential decision problem [3]. The min-
imax strategy for Hamming loss was devised by Cover [4],
whereas for data compression it is given by the Normal-
ized Maximum-Likelihood (NML) code, due to Shtarkov [5].
Cover’s minimax scheme yields the same regret over all
sequences, its main asymptotic term being

√
n/(2π). For

data compression, the main asymptotic term of the redun-
dancy of the NML code is (1/2) log n in the binary case. A
horizon-independent, simpler to implement approximation of
this minimax strategy, which achieves the leading term of the
asymptotic minimax redundancy, is given by the Krichevskii-
Trofimov (KT) probability assignment [6].

A variant of this problem which, as we shall see, is quite
related to the piecewise constant setting, was proposed in [2].
In this variant, the predictor has access to a delayed version
of the sequence, or is forced to make inferences on the
observations a number of instants in advance. Such situations
may arise when the application of the prediction is delayed
relative to the observed sequence due to, e.g., computational
constraints. The delay d, which is assumed known, affects the
prediction strategy in that pt+1 is now based on x1x2 · · ·xt−d
only. It is shown in [2] that, in the delayed prediction setting,
the minimax strategy consists of sub-sampling the data at
a 1/(d + 1) rate, and applying the (non-delayed) minimax
strategy to each of the d+1 sub-sampled sub-sequences. Since
the sum of the Bayes envelopes corresponding to each sub-
sequence is not larger than the Bayes envelope of the entire
sequence, it is easy to see that the regret of this strategy is
upper-bounded by d+1 times the minimax regret for sequences
of length n/(d + 1). The proof that this regret is indeed the
(delayed) minimax regret uses an auxiliary piecewise constant
strategy (constructed from any given delayed strategy) and, for
the data compression case, a convexity argument.

One can consider more general prediction games, in which



the sequence of observations belongs to some finite alphabet
A, and the player causally assigns probability distributions to
a corresponding sequence of actions b1b2 · · · bn, taken from an
action space B. The observation and action incur an expected
loss. Notice that the piecewise constant binary prediction game
with block length T and Hamming loss can be cast as an
unconstrained game over a sequence of length n/T , in which
the observation alphabet is A = {0, 1}T , the action space is
B = {0T , 1T }, and the loss function is Hamming. Thus, a
general minimax solution for the unconstrained game would
include a solution to our problem. Unfortunately, minimax
strategies for the general game cannot be characterized as
easily as Cover’s scheme for the binary case with Hamming
loss [7].

In this paper, we start by characterizing, in Section II, the
piecewise constant minimax strategy for Hamming loss, under
the assumption that n = mT for a given block length T . The
(piecewise constant) minimax regret turns out to be T times
the minimax regret for horizon m. Since the minimax regret
grows as the square root of the sequence length, the asymptotic
penalization due to the piecewise constant constraint is a
multiplicative factor

√
T . In contrast to the delayed prediction

setting, the fact that the above quantity is a lower bound
on the piecewise constant minimax regret is easy to see,
whereas the characterization of the minimax strategy is far
more complex. Indeed, since there is an obvious one-to-one
correspondence between piecewise constant prediction strate-
gies on sequences of length n, and unconstrained prediction
strategies on sequences of length m, the lower bound follows
easily from considering piecewise constant sequences xn. The
upper bound, on the other hand, requires to recursively build
up the minimax strategy, whereas in the delayed prediction
setting it suffices to simply sub-sample the unconstrained
minimax strategy.

In Section III we study the piecewise constant binary data
compression problem. While the argument leading to a lower
bound extends to this case, yielding a multiplicative factor T
as asymptotic penalization, we are unable to give a complete
characterization of the minimax strategy. However, we prove
that a simple variant of the KT probability assignment [6],
in which the estimate is obtained by adding T/2 (instead
of 1/2 as in the usual KT estimate) to the counts of 0’s
and 1’s, is asymptotically piecewise constant minimax. Thus,
the main asymptotic term of the piecewise constant minimax
redundancy takes the form (T/2) log n. Again, the analysis
of the upper bound is significantly more involved than in the
delayed data compression setting.

In Section IV we study the piecewise constant data com-
pression problem in a probabilistic setting, in which the
observations are assumed to be drawn from an (unknown) i.i.d.
distribution, where again, for simplicity, we assume binary
sequences. The goal here is to minimize the average (rather
than the maximum) redundancy, for which lower and upper
bounds with main term (1/2) log n are well known for the un-
constrained case (i.e., respectively, Rissanen’s lower bound [8],
holding for all distributions except for a set of measure zero,

and the KT probability assignment, which is asymptotically
optimal for every distribution). The question then is: Does
the piecewise constant constraint affect the achievable average
redundancy? It is interesting to notice that the answer to the
counterpart question in the delayed data compression setting
is straightforward. Indeed, for i.i.d. distributions, the expected
loss incurred at time t for a delayed strategy (with delay d) is
the same as the expected loss that the predictor would incur,
without delay, at time t−d. Therefore, ignoring the delay and
assigning at time t the same probability that a non-delayed
compression strategy would have assigned at time t − d, we
incur for the sequence xnd+1 the same loss as, without delay,
for the sequence xn−d. Hence, in contrast to the minimax
scenario, the delay is asymptotically inconsequential.

The conclusion in the piecewise constant scenario turns
out to be similar, but the analysis is far less straightforward.
By a nonstandard application of Rissanen’s lower bound, we
show that applying any asymptotically optimal (unconstrained)
strategy so that the probability assigned at time iT + 1 is
“frozen” for the entire i-th block, the average redundancy
achieves Rissanen’s lower bound for all distributions, except
possibly for a set of vanishing volume. In fact, for such
a general result, an exception set is unavoidable: indeed,
we also demonstrate the existence of asymptotically optimal
(unconstrained) strategies for which this approach cannot yield
optimal average redundancy for every distribution. However,
we further show that if we specialize this approach to the
(asymptotically optimal) KT probability assignment, then no
exception set is needed, and the frozen scheme is asymptoti-
cally optimal for all distributions.

Throughout the sequel, for fixed positive integers T (block
size) and m (number of blocks), we shall formally define a
piecewise constant probability assignment p̂ with block size
T and horizon n = mT as a probability distribution on
binary sequences xn whose conditional probabilities satisfy
p̂t+1(·|xt) = p̂Tbt/Tc+1(·|xTbt/Tc) for all t. Thus, the con-
ditional probabilities are constant over blocks of size T , and,
therefore, such an assignment is completely determined by the
conditional probabilities p̂iT+1(·|xiT ), for i = 0, . . . ,m − 1.
The set of all piecewise constant probabilities with block size
T and horizon n(= mT ) shall be denoted by PT,n.

II. PIECEWISE CONSTANT MINIMAX PREDICTION

In this section, we study piecewise constant minimax predic-
tion of binary sequences under Hamming loss. The (expected)
Hamming loss of a piecewise constant predictor corresponding
to a p̂ ∈ PT,m′T on a sequence xm

′T ∈ {0, 1}m′T is given
by L(p̂, x) =

∑m′T
i=1 (1 − p̂t(xt|xt−1)). Fixing throughout

the horizon n = mT , let B(`) , min(`, n − `) denote
the Bayes envelope for a sequence of length n containing
` ones. For a given sequence xkT , 0 ≤ k ≤ m and subset
Y ⊆ {0, 1}(m−k)T , define

Rk,T (x
kT ,Y) = min

p̂∈PT,(m−k)T

max
y∈Y

{
L(p̂,y)−B(n1(x

kTy))

}



where xkTy denotes the concatenation of the
sequences xkT and y. We are interested in the cases
Rk,T (x

kT ) , Rk,T (x
kT , {0, 1}(m−k)T ) and R′k,T (x

kT ) ,
Rk,T (x

kT , {0T , 1T }m−k). Notice that the difference between
R′k,T and Rk,T is in the inner maximization: in the former,
y is constrained to be piecewise constant, while in the latter
it is unconstrained. The domains of Rk,T and R′k,T are
both unconstrained binary sequences of length kT . Notice
also that these quantities depend on xkT only through the
Bayes envelope of the concatenation of xkT and y (which in
turn affects the maximizing sequence y and the minimizing
strategy p̂(m−k)). By definition, R0,T is the minimax regret
for piecewise constant strategies (the object of the study in
this section), whereas R′0,T is T times the minimax regret for
unconstrained strategies with horizon m.

Theorem 1. For all k, 0 ≤ k ≤ m, and xkT ∈ {0, 1}kT ,
Rk,T (x

kT ) = R′k,T (x
kT ).

Corollary 1. The minimax regret RT (mT ) for the piecewise
constant prediction problem with Hamming loss, block length
T , and horizon mT , satisfies RT (mT ) = TR1(m), where
R1(m) denotes Cover’s (unconstrained) minimax prediction
regret with horizon m.

The fact that RT (mT ) ≥ TR1(m) is straightforward for
more general prediction settings, including data compression.
Indeed, the loss of a piecewise constant strategy over a
piecewise constant sequence equals T times the loss of a
corresponding (unconstrained) strategy on sequences of length
m, obtained by sub-sampling the original sequences. By
definition of minimax regret, there exists a sequence xm for
which the latter loss is at least R1(m) plus the Bayes envelope
of xm. The desired inequality then follows by noticing that a
T -fold replication of xm increases its Bayes envelope by a
factor of T . As claimed in Corollary 1, the case of binary
prediction with Hamming loss is special in that the lower
bound holds with equality.

Proof of Theorem 1: The proof will proceed by backward
induction, with base case k = m. Each induction step will also
include a proof of the following auxiliary claims: R′k,T (x

kT )

depends on xkT only through N = n1(x
kT ), is a convex

function of (integer) N , and for all nonnegative integers N ,
with a slight abuse of notation, |R′k,T (N+1)−R′k,T (N)| ≤ 1.

For the base case, from the above definitions, it is immediate
that R′m,T (x

mT ) = Rm,T (x
mT ) = −B(n1(x

mT )), and from
the definition of B, it is immediate that the claimed (auxiliary)
properties of R′m,T hold. For the induction step, we have

Rk−1,T (x
(k−1)T ) = min

p̂∈PT,(m−k+1)T

max
z∈{0,1}T

y∈{0,1}(m−k)T{
L(p̂, zy)−B(n1(x

(k−1)T zy))

}
.

Notice that a causal strategy p̂∈PT,(m−k+1)T can be viewed
as a fixed predictor p̂1 = p for the first block z, which incurs
a loss p(T−n1(z))+pn1(z) (where p=1−p), followed by a

causal strategy p̂∈PT,(m−k)T , the choice of which can depend
on z, for the remaining blocks y, incurring a loss L(p̂,y).
Clearly, this dependency can be expressed by switching the
maximum on z with the minimum on p̂∈PT,(m−k)T , yielding

Rk−1,T (x
(k−1)T ) = min

p∈[0,1]
max

z∈{0,1}T

{
p(T−n1(z))+pn1(z)+

min
p̂∈PT,(m−k)T

max
y∈{0,1}(m−k)T

{
L(p̂,y)−B(n1(x

(k−1)T zy))

}}

= min
p∈[0,1]

max
z∈{0,1}T

{
p(T−n1(z))+pn1(z)+Rk,T (x(k−1)T z)

}
(1)

= min
p∈[0,1]

max
z∈{0,1}T

{
p(T−n1(z))+pn1(z)+R′k,T (x(k−1)T z)

}
where the last equality follows by the induction hypothesis that
Rk,T = R′k,T . By the induction hypothesis that R′k,T depends
on x(k−1)T z through n1(x(k−1)T )+n1(z), we further have

Rk−1,T (x
(k−1)T ) = min

p∈[0,1]
max

z∈{0,1}T

{
p(T−n1(z))+pn1(z)

+R′k,T (n1(x
(k−1)T )+n1(z))

}
(2)

= min
p∈[0,1]

max

{
pT+R′k,T (n1(x

(k−1)T )),

pT+R′k,T (n1(x
(k−1)T )+T )

}
(3)

where (3) follows by the convexity (in n1(z)) of the expression
in the maximization in (2) (implying that the maximum occurs
at one of the extremes), which, in turn, follows from the
auxiliary induction hypothesis that R′k,T (N) is convex in
N . Now, starting from R′k−1,T (x

(k−1)T ), the same chain of
equalities leading to (1) can be followed, with the maximiza-
tion constrained to piecewise constant sequences. Clearly, the
result would be the expression in the right-hand side of (3).
Therefore, by (3), R′k−1,T (x

(k−1)T )=Rk−1,T (x
(k−1)T ), es-

tablishing the induction step for the main claim, as well as the
fact that R′k−1,T depends on x(k−1)T through n1(x(k−1)T ).

To prove the remaining auxiliary induction steps, we note
that (3) can be solved (by equating the two terms in the
maximum) to yield that the minimizing p takes the form

p∗ =
1

2
+
R′k,T (n1(x

(k−1)T )+T )−R′k,T (n1(x(k−1)T ))
2T

(4)

which satisfies p∗∈[0, 1] by the Lipschitz condition induction
hypothesis that |R′k,T (N+1)−R′k,T (N)| ≤ 1. Substituting (4)
into (3) yields

R′k−1,T (n1(x
(k−1)T )) =

T

2
+
R′k,T (n1(x

(k−1)T )+T ) +R′k,T (n1(x
(k−1)T ))

2
(5)



from which the convexity and Lipschitz condition induction
steps both readily follow from the respective induction hy-
potheses.

We notice that (4) and (5) explicitly characterize the piece-
wise constant minimax strategy for Hamming loss.

III. PIECEWISE CONSTANT MINIMAX DATA COMPRESSION

In this section, we consider the piecewise constant binary
data compression problem in a minimax setting. For simplicity,
we maintain the assumption that n=mT , although we notice
that the results hold in more generality. As observed in Sec-
tion II, the minimax piecewise constant redundancy, defined
as

R̃T (n) = min
p̂∈PT,n

max
xn∈{0,1}n

[
log

1

p̂(xn)
− nĤ(xn)

]
(6)

where Ĥ(xn) denotes the empirical entropy of xn, satisfies

R̃T (n) ≥ TR̃1(m) . (7)

As discussed in Section I, R̃1(n), attained by the NML
code [5] for each n, satisfies the following asymptotics

R̃1(n) =
1

2
log n+O(1), n→∞, (8)

where the leading term in (8) is achieved by the KT probability
assignment [6]. The main result of this section is given by the
following theorem.

Theorem 2. The minimax piecewise constant redundancy
satisfies R̃T (n) = T

2 log n + O(1),1 the right-hand side
of which is attained by the piecewise constant probability
assignment specified by

p̂U,iT+1(1|xiT ) , p̂iT+1(1|xiT ) =
n1(x

iT )+T/2

iT+T
(9)

0 ≤ i < m (add-T2 estimator).

Proof: In view of the lower bound (7) and the definition
of minimax redundancy (6), it suffices to show that, for every
sequence xmT , we have

p̂U(x
mT ) ≥ 1

2
(mT )−

T
2 2−mTĤ(xmT ) . (10)

To this end, we show that, for any xmT , with n1(x
mT ) = a

and n0(xmT ) = b = mT − a,

p̂U(x
mT ) ≥ 1

2
(mT )−

T
2

( a

mT

)a( b

mT

)b
. (11)

We proceed by induction on m. For m = 1, p̂U(xT ) = 2−T ≥
1
2T
−T

2 for all T ≥ 1. Next, assume that (11) holds for m.
Let n1(x(m+1)T ) = a + c and n0(x

(m+1)T ) = b + d, with
c+d = T, 0 ≤ c, d ≤ T . By the probability assignment in (9),

p̂U(x
(m+1)T ) = p̂U(x

mT )

(
a+ T

2

(m+ 1)T

)c(
b+ T

2

(m+ 1)T

)d
.

1We suppress a possible dependence on T in the O(1) term.

Thus, by the induction hypothesis,

p̂U(x
(m+1)T ) ≥ 1

2
(mT )−

T
2

( a

mT

)a( b

mT

)b
×

(
a+T

2

(m+1)T

)c(
b+T

2

(m+1)T

)d

=
1

2
((m+1)T )−

T
2

(
a+c

(m+1)T

)a+c(
b+d

(m+1)T

)b+d
×
(
1+

1

m

)(m+ 1
2 )T
(
a+T

2

a+c

)c(
a

a+c

)a(b+T
2

b+d

)d(
b

b+d

)b
(12)

where the equality follows by a simple reordering of the terms.
Now, let G(m) ,

(
1 + 1

m

)m+ 1
2 . It can be shown that G is

strictly decreasing on (0,∞), so that G(m) ≥ G(∞) = e (we
omit the proof due to space limitations). Also, let F (a, c) ,(
a+T

2

a+c

)c (
a
a+c

)a
, which can be shown to be a decreasing

function of a on (0,∞) (again, we omit the proof). Therefore,
F (a, c) ≥ F (∞, c) = e−c and, similarly, F (b, d) ≥ e−d. It
then follows from (12) that

p̂U(x
(m+1)T ) ≥ 1

2
((m+1)T )−

T
2

×
(

a+c

(m+1)T

)a+c(
b+d

(m+1)T

)b+d
eT e−ce−d

=
1

2
((m+1)T )−

T
2

(
a+c

(m+1)T

)a+c(
b+d

(m+1)T

)b+d
which completes the induction step.

IV. PIECEWISE CONSTANT UNIVERSAL COMPRESSION:
AVERAGE CASE REDUNDACY

In this section, we consider the piecewise constant univer-
sal compression problem from an average redundancy point
of view. Recall that, given a compressor expressed as a
probability assignment p̂(xn) on sequences of length n, the
average case redundancy with respect to an i.i.d. source with
marginal p is defined as R̃avg(p̂, p) = D(p⊗n||p̂), where
p⊗n denotes the i.i.d. distribution on length n sequences
with marginal p. As discussed in Section I, it was observed
in [2] that the difference between the average code length
of any compression scheme and its delayed counterpart is
O(1). Thus, the average redundancy of the delayed version
of any compression scheme with average redundancy meeting
Rissanen’s lower bound of (1/2) log n + o(log n) (for binary
sources), also meets Rissanen’s lower bound. Theorem 3 below
is a counterpart of this result for the piecewise constant setting.

Given any probability assignment p̂ with R̃avg(p̂, p) =
(1/2) log n+ o(log n) for all p, and block length T , let p̂(T )

denote the T -piecewise constant version of p̂, defined via the
conditional probability assignments

p̂
(T )
t+1(·|xt) = p̂Tbt/Tc+1(·|xTbt/Tc).

Thus, p̂(T )
t+1(·|xt) is fixed throughout each block of indices

iT, iT+1, . . . , iT+T−1, with i being a nonnegative integer,



to be the conditional probability that p̂ would have induced at
the start of the block.

Theorem 3. Given any probability assignment p̂ with
maxp R̃avg(p̂, p) = (1/2) log n + o(log n), the T -piecewise
constant version p̂(T ) satisfies R̃avg(p̂(T ), p) = (1/2) log n+
o(log n) for Lebesgue almost all p.

Proof: In analogy to p̂(T ), for δ = 0, 1, . . . , T − 1, we can
define the (T, δ)-piecewise constant versions of p̂ as

p̂
(T,δ)
t+1 (·|xt) = p̂Tb(t−δ)/Tc+δ+1(·|xTb(t−δ)/Tc+δ)

with p̂t(·|·) = 1/2 for t ≤ δ. Thus, p̂(T,δ)t+1 (·|xt) is fixed over
blocks as above, but the blocks are offset by δ with respect to
those defining p̂(T ). Note that p̂(T,0) coincides with p̂(T ).

We claim that

1

T

T−1∑
δ=0

R̃avg(p̂
(T,δ), p) = R̃avg(p̂, p) +O(1). (13)

Indeed, by the i.i.d. nature of the source and the defini-
tion of p̂(T,δ), we can rewrite the left-hand side of (13)
in terms of conditional probabilities and regroup terms,
with the O(1) error term arising from a few terms at the
boundaries of the sequence. It follows from (13) that, if
R̃avg(p̂, p) = (1/2) log n+o(log n) and, for some ε>0 and in-
finitely many values of n, R̃avg(p̂(T ), p)>(1/2) log n+ε log n,
then R̃avg(p̂

(T,δ), p) < (1/2) log n − ε log n + o(log n), for
some δ and infinitely many values of n. However, by Ris-
sanen’s lower bound [8], this can only happen for p in
a set of Lebesgue measure zero. Since δ is finite-valued
(countable would suffice), it follows, therefore, that for p̂
with the properties assumed in the theorem, R̃avg(p̂(T ), p) =
(1/2) log n+o(log n), except possibly for p in a set of
Lebesgue measure zero.

The following example (for T = 2) shows that the measure
zero exception set in Theorem 3 can arise. Consider p̂ defined
as follows. For odd t, let

p̂t(1|xt−1) =
n1(x

t−1)+1

t+1
(14)

whereas, for even t, let

p̂t(1|xt−1) =
p̂(xt−11)

p̂(xt−1)

=

[
(t+1)

(
t

n1(xt−1)+1

)]−1
+ 1(xt−1=1)[

t
(

t−1
n1(xt−1)

)]−1
+ 1(xt−1 = 1) + 1(xt−1=0)

(15)

where 1(xt−1 = 1) (resp. 1(xt−1 = 0)) is 1 (resp. 0) if
xt−1 is all 1’s (resp. 0’s) and 0 otherwise. Notice that (14)
corresponds to Laplace’s estimator while (15) corresponds to
the conditional probability distribution induced by an equal
mixture of the Laplace probability assignment (corresponding
to the Dirichlet-1 mixture of product distributions) and the
respective deterministic distributions of all 1’s and all 0’s.

For p 6= 0, 1, the above p̂ coincides with the Laplace
estimator after the first occurrence of a bit differing from x1.

The probability of this event taking i symbols to occur falls
off exponentially in i, and the code length difference between
both estimators is O(log i) in the worst case. Therefore, the
excess redundancy over the Laplace estimator is O(1). Since
the latter is well known to attain an average redundancy of
(1/2) log n+o(log n), it follows that p̂ does so as well (for
p 6= 0, 1). For p = 0, 1, on the other hand, a simple calcu-
lation shows that the redundancy arising from odd samples
is (1/2) log n+o(log n), while the redundancy arising from
even samples is o(log n). Thus, p̂ meets the conditions of
Theorem 3. As for the corresponding p̂(2), it corresponds to
using the Laplace estimator conditional probabilities (14) over
each block of size 2 and again a simple calculation shows that
the average redundancy is log n+o(log n), for p = 0, 1. This
fact is inherently due to the known analogous redundancy for
the underlying Laplace estimator for these deterministic cases.

Our final result for piecewise universal compression under
average redundancy concerns the T -piecewise constant version
of the KT probability assignment, denoted by p̂KT. In this case,
we can prove the following result.

Proposition 1. For all p ∈ [0, 1] and all T , R̃avg(p̂
(T )
KT , p) =

1
2 log n+O(1).

Thus, in the context of the previous theorem, the T -
piecewise constant version of the KT probability assignment
turns out to attain Rissanen’s lower bound for all p. We omit
a complete proof of Proposition 1. The key idea is to show
that for any r > 0, with overwhelming probability,

E(log p̂KT,t(Xt|Xt−1)|XTbt/Tc)−
E(log p̂KT,Tbt/Tc+1(Xt|XTbt/Tc)|XTbt/Tc)<1/t2−r. (16)

The proof is completed by accounting also for the contribu-
tion to the average redundancy in the low-probability event
that (16) does not hold and then summing the result over t.
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