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Abstract—This paper presents a non-asymptotic study of the
minimax estimation of high-dimensional mean and covariance
matrices. Based on the convex geometry of finite-dimensional
Banach spaces, we develop a unified volume ratio approach for
determining minimax estimation rates of unconstrained mean
and covariance matrices under all unitarily invariant norms. We
also establish the rate for estimating mean matrices with group
sparsity, where the sparsity constraint introduces an additional
term in the rate whose dependence on the norm differs completely
from the rate of the unconstrained counterpart .

I. INTRODUCTION

Driven by contemporary applications such as functional
genomics, network analysis, machine learning, etc., there has
been a recent surge in the study of estimating large-scale mean
matrices and covariance matrices. See, for instance, [1, 2, 3, 4].
The difficulty of a high-dimensional estimation problem can
be captured by the minimax rate, a function of the model
parameters which is within absolute constant factors of the
exact minimax risk. There are two major challenges arising
from high-dimensional matrix estimation problems:
1) The matrix to be estimated is a finite but high dimensional

object. In many contexts the size of the matrix can far
exceed the sample size or the signal-to-noise ratio.

2) Different applications require the use of different ma-
trix norms as the loss function other than the traditional
quadratic loss (i.e., Frobenius norm loss). For example,
Bickel and Levina [1, 2] considered spectral norm loss
for covariance matrix estimation; Rohde and Tsybakov [4]
used Schatten norm loss in the study of trace regression.

As pointed out in [5], the minimax rates of these matrix
problems can depend critically on the choice of norms in the
loss function. In the literature, such dependence has so far
been explored mostly on a case-by-case basis. Determining
the minimax rates under general matrix norm losses calls for
new machinery. It turns out that many of the commonly used
norms in loss functions are unitarily invariant (see Section II
for definition), e.g., Frobenius norm, spectral norm, and, more
generally, the classes of Ky Fan norms and Schatten norms
[6]. In this paper, we establish minimax rates in several matrix
estimation problems for all unitarily invariant norm losses via
a unified approach. The results depend crucially on the convex
geometry of finite-dimensional Banach spaces.

Z. Ma is with the Department of Statistics, The Wharton School,
University of Pennsylvania, Philadelphia, PA 19104, USA. Email:
zongming@wharton.upenn.edu. Y. Wu is with Department of Elec-
trical and Computer Engineering, University of Illinois Urbana-Champaign,
Urbana, IL 61801, USA. Email: yihongwu@illinois.edu.

In many matrix estimation problems, the parameter of
interest belongs to (or is well approximable by) a space of
much lower dimension than the size of the matrix. Examples
include bandable matrices [1], sparse matrices [2], (nearly) low
rank matrices [3], etc. We call this lower-dimensional space the
support of the parameter. The minimax rates in such structured
problems can usually be expressed as the sum (or equivalently,
the maximum) of two terms (e.g., [7, 8, 9]): one oracle risk
term arising from estimation error of an oracle estimator which
knows the support, and the other excess risk term originating
from the uncertainty about the support and approximation. In
some cases, one term can dominate the other in certain regime
of the parameter space.

As a prelude to studying structured problems, we first focus
on the minimax estimation of a mean or covariance matrix
without structural assumptions. Such investigation yields a
legitimate lower bound to the related structured problem via an
oracle argument by assuming knowledge of the support, and
provides insights on how the statistical difficulty depends on
the interplay between the metric and the statistical structures.
These “unstructured” problems are non-trivial due to the
generality of loss functions induced by unitarily invariant
norms. To the best of our knowledge, even for estimating
a covariance matrix with independent normal samples, the
minimax rate under the squared Frobenius norm is not known
for all sample size, dimension, and spectral radius.

The oracle lower bounds are obtained by an application of
Fano’s lemma to a local Kullback-Leibler (KL) neighborhood,
followed by an estimate of the packing number via volume
estimates. The standard strategy (see, e.g., [10, 11, 12]) is to
turn the estimation problem into a multiple hypothesis testing
problem by choosing an ε-packing set (with respect to the loss
function) of the parameter space. If the log-cardinality of the
set is sufficiently larger than the maximal mutual information,
then the hypotheses cannot be discriminated reliably, which
then incurs an estimation error at least ε. Capitalizing on the
finite-dimensionality and the volume measure on the Euclidean
space, we take this standard approach one step further by lower
bounding the packing number using the volume ratio:

vol(KL neighborhood)

vol(norm ball)
.

This abstract approach allows us to sidestep the explicit
construction of packing sets used in Fano’s inequality. Exploit-
ing the connections between Gaussian measures and volume
estimates in convex geometry, we further bound the volume of
the KL neighborhood and the norm ball from below and above



using Urysohn’s inequality and inverse Santaló’s inequality
[13], respectively. Consequently, the Gaussian width of the
norm ball plays a key role in the oracle lower bounds. Surpris-
ingly, the oracle minimax rates in both mean and covariance
estimation depend on the norm only through the value of the
norm on the identity matrix.

For structured problem, we need to further determine the
excess risk, which can depend on the norm in a different way
from the oracle risk. For the problem of orthogonal regression
with group sparsity [8], we show that the excess risk depends
on any unitarily invariant norm only through its (restricted)
Lipschitz constant defined in Section II. In contrast, the oracle
risk only depends on the norm of the identity matrix. See
Section V and [14] for details.

Our lower bound techniques are closely related to the
minimax results of Yang and Barron [12] and Birgé [11],
which are obtained for general models under conditions on
the loss function and the growth of the metric entropy. In this
paper, we impose minimal technical conditions since we focus
on concrete matrix models. Moreover, we note the following
distinctions which render the results from [12, 11] not directly
applicable: First, [12] gives the optimal rate for minimax
estimation over massive parameter sets, whose metric entropy
(with respect to the KL divergence) grows super polynomially,
such as those infinite-dimensional spaces used in nonpara-
metric function estimation. However, their lower bound is
known to be loose for finite-dimensional spaces [12, Section
7], while the matrices we are interested in are finite-but-high-
dimensional objects. Second, while the minimax lower bound
in [12, Theorem 1] applies to arbitrary losses satisfying a weak
triangle inequality, it is only shown to be tight for the KL
loss L(θ, θ′) = D(Pθ ||Pθ′) or its equivalent under suitable
entropy growth conditions. On the other hand, the results in
[11] are dedicated to squared Hellinger loss. In contrast, our
method is applicable to any norm loss under the matrix models
considered in the current paper, and, in particular, optimal for
all unitarily invariant norm losses.

II. PRELIMINARIES

For a positive integer p, [p] denotes the set {1, 2, ..., p}. For
any set I , |I| denotes its cardinality. For any square matrix
A = (aij), denote its trace by Tr(A) =

∑
i aii. Denote by

Sk (resp. S+
k ) the set of k× k symmetric (resp. positive semi-

definite) matrices. We use 1 to denote the all-one vector.
For any real number a and b, set a∨b = max{a, b}, a∧b =

min{a, b} and a+ = a∨ 0. For any sequences {an} and {bn}
of positive numbers, we write an � bn if an

bn
are bounded

from below and above by absolute positive constants.

A. Unitarily invariant norms

On a Hilbert space, the dual norm of a norm ‖ ·‖ is defined
as ‖x‖∗ = sup‖y‖≤1 〈x, y〉. Two Hilbert spaces are of interest:
1) the Euclidean space Rd with inner product 〈x, y〉 = x′y,
and 2) the space Rk×m of k×m matrices, with inner product
〈A,B〉 = Tr(A′B). By definition, we have 〈x, y〉 ≤ ‖x‖‖y‖∗.

We need the notion of symmetric gauge to define unitarily
invariant norms. A function τ : Rd → [0,∞) is called a
symmetric gauge function if it is a norm on Rd which is
invariant with respect to sign changes and permutations [6].

Lemma 1. Let τ be a symmetric gauge function on Rd. Then
1) τ is monotone: τ(x1, x2, . . . , xd) ≥ τ(x′1, x2, . . . , xd) for

any |x1| ≥ |x′1| and any x2, . . . , xd;
2) The dual norm τ∗ is also a symmetric gauge function and

satisfies τ∗(1)τ(1) = d.

A matrix norm ‖ · ‖ is called a unitarily invariant norm if
for any A ∈ Rk×m and any orthogonal matrices U and V ,
‖A‖ = ‖UAV ‖. A fundamental result due to von Neumann
states that for any unitarily invariant norm ‖ · ‖ on Rk×m,
there exists a symmetric gauge function τ on Rk∧m such that
‖A‖ = τ(σ(A)), where σ(A) = (σ1(A), . . . , σk∧m(A))′ con-
sists of singular values of A in decreasing order. Henceforth
we denote a unitarily invariant norm by ‖ · ‖τ with τ the
associated symmetric gauge. On the space of k×m matrices,
the dual norm of ‖ · ‖τ is the unitarily invariant norm ‖ · ‖τ∗ ,
induced by τ∗, the dual of τ on Rk∧m [6, Proposition IV.2.11].
The Lipschitz constant of τ is

Lτ = sup
x 6=y

|τ(x)− τ(y)|
‖x− y‖2

= sup
x 6=0

τ(x)

‖x‖2
, (1)

where ‖x‖2 is the Euclidean norm of x.
We now introduce two important classes of unitarily invari-

ant matrix norms: Schatten q-norms and Ky Fan `-norms. For
any q ∈ [1,∞], the Schatten q-norm of A = (aij) ∈ Rk×m is

‖A‖Sq
= (
∑k∧m
i=1 σqi (A))1/q. (2)

The dual norm of ‖·‖Sq
is ‖·‖Sq∗

, where 1/q+ 1/q∗ = 1. For
any ` ∈ [k ∧m], the Ky Fan `-norm of A is

‖A‖(`) =
∑`
i=1 σi(A). (3)

We note the following special cases: 1) Frobenius norm:
‖A‖S2

= (
∑
i σ

2
i (A))1/2 = (

∑
i,j a

2
ij)

1/2, also denoted by
‖A‖F; 2) Spectral (operator) norm: ‖A‖S∞ = ‖A‖(1) =
σ1(A), also denoted by ‖A‖op; 3) Nuclear norm: ‖A‖S1

=

‖A‖(k∧m) =
∑k∧m
i=1 σi(A).

B. Volume ratio of convex bodies

Recall that K is a symmetric convex body in Rd if K is a
compact convex set with non-empty interior such that K =
−K. In particular, norm balls are symmetric convex bodies.
Let Bd‖·‖(ε) = {x ∈ Rd : ‖x‖ ≤ ε} be the norm ball of radius ε
centered at zero, and Bd2 and Bk×m2 be the unit Euclidean ball
and Frobenius ball at zero in Rd and Rk×m, respectively. We
omit the superscript of dimension when no confusion arises.

For a convex body K, K◦ =
{
y ∈ Rd : supx∈K 〈x, y〉 ≤ 1

}
is its polar, which is also convex. The Minkowski functional of
a symmetric convex body K is defined as ‖x‖K = inf{r > 0 :
x ∈ rK}. Note that if K = {x : ‖x‖ ≤ 1} is some unit norm
ball, then ‖ · ‖K = ‖ · ‖. Moreover, ‖·‖K◦ = supx∈K 〈x, ·〉.



The following result reveals a deep connection between the
volume of a convex body and the Gaussian measure.

Lemma 2 (Urysohn’s Inequality [13, p.7]). Let K be a
symmetric convex body in Rd. Then(

vol(K)

vol(B2)

) 1
d

≤ 1√
d
E sup
y∈K
〈G, y〉 , (4)

where G ∼ N(0, Id) is standard Gaussian. The expectation
of the supremum on the right-hand side of (4) is called the
Gaussian width of K.

Moreover, for any symmetric convex body K ⊂ Rd,

1

2
≤
(

vol(K)vol(K◦)

vol(Bd2 )2

) 1
d

≤ 1. (5)

The upper bound is known as Santaló’s inequality [13, p. 100].
The lower bound is due to [15]. The product vol(K)vol(K◦)
is called the Mahler volume of K. In view of (5) and the fact
that vol(Bd2 )

1
d =

√
π

Γ( d
2 +1)

1
d
� 1√

d
, applying Lemma 2 to the

polar K◦ yields the following lemma which is useful in lower
bounding the volume of a convex body.

Lemma 3 (Inverse Santaló’s inequality). There exists a uni-
versal constant c0, such that for any symmetric convex body
K in Rd,

vol(K)
1
d ≥ c0

E ‖G‖K
. (6)

For the space of k × m matrices, Lemmas 2 and 3 hold
with d = km and G a k ×m Gaussian random matrix with
iid N(0, 1) entries. Both lemmas can be further generalized to
the convex bodies in the space of symmetric matrices, Sk, with
d replaced by the dimension dk = k(k+1)/2, and G replaced
by G+G′

2 , the Gaussian Orthogonal Ensemble GOE(k). Note
that the volume on the linear subspace Sk is defined by the
usual Jacobian determinant formula.

III. ORACLE MINIMAX RATES FOR MEAN MATRICES

As pointed out in the introduction, understanding the mini-
max rates in unconstrained matrix estimation problems is the
first step toward deriving the rates in those with structural
constraints. In this section, we derive tight minimax rates for
the unconstrained mean matrix estimation problem under all
unitarily invariant norms.

Consider the following Gaussian mean problem, where we
observe the k ×m matrix

Y = M + Z. (7)

Here M ∈ Rk×m is the mean matrix we want to estimate, and
Z is the noise matrix with i.i.d. N(0, 1) entries.

Note that we can always vectorize the Y,M and Z matrices
in (7), reducing the model to a d-dimensional Gaussian mean
problem with d = km. In addition, any matrix norm on Rk×m
induces a vector norm on Rd. In view of such a connection,
we derive below a general lower bound for estimating a mean

vector in Rd from observations contaminated by Gaussian
white noises.

First, we establish the connection between minimax lower
bounds and volume ratios in the following proposition, which
is a variant of Fano’s lemma [10, Lemma 5.1, p. 356].

Proposition 1. Let Θ ⊂ Rd and ‖·‖ be a norm on Rd.
Let {Pθ : θ ∈ Θ} a collection of probability measures.
Define the Kullback-Leibler diameter of T by dKL(T ) ,
supθ,θ′∈T D(Pθ ||Pθ′). Then

inf
θ̂

sup
θ∈Θ

Eθ‖θ̂(X)−θ‖2 ≥ sup
T⊂Θ

sup
ε>0

ε2

4

1− dKL(T ) + log 2

log vol(T )
vol(B‖·‖(ε))

 .

The specialization of Proposition 1 to Gaussian measures,
together with Lemma 2, leads to the following result for
Gaussian location model.

Theorem 1 (General norm). For any d ∈ N, consider the
Gaussian location model Y = θ + Z, where θ ∈ Rd and
Z ∼ N(0, Id) is a d-dimensional white noise vector. Then for
any norm ‖ · ‖ on Rd,

log 2

2048

d2

(E‖Z‖∗)2
≤ inf

θ̂
sup
θ∈Rd

Eθ‖θ̂(Y )− θ‖2 ≤ E‖Z‖2, (8)

where ‖ · ‖∗ is the dual norm of ‖ · ‖.

Remark 1. Recall from Lemma 2 that the Gaussian width
of a symmetric convex body K ⊂ Rd is Emaxx∈K 〈x, Z〉.
By the definition of the dual norm, the quantity E‖Z‖∗ in the
lower bound (8) is equal to the Gaussian width of the unit ball
in Rd equipped with the norm ‖ · ‖ used in the loss function.

Proof: The upper bound is obtained by taking the specific
estimator θ̂ = Y and the triangle inequality. To prove the lower
bound, note that the Kullback-Leibler divergence of the normal
mean model is given by

D(N(θ, Id) ||N(θ′, Id)) =
1

2
‖θ − θ′‖22, (9)

where ‖ · ‖2 denotes the `2-norm on Rd. Let T = B2(δ) =
{θ ∈ Rd : ‖θ‖2 ≤ δ} denote the Euclidean ball of radius δ
centered at the origin. Then dKL(T ) ≤ 4δ2. Moreover,

vol(B2(δ))

vol(B‖·‖(ε))
=

δdvol(B2(1))

εdvol(B‖·‖(1))
≥

(
δ
√
d

εE‖Z‖∗

)d
, (10)

where the last inequality follows from Lemma 2. Now we
choose δ =

√
d log 2

2
√

2
and ε = δ

√
d

4E‖Z‖∗ =
√

log 2d

8
√

2E‖Z‖∗
. Applying

Proposition 1 and using d ≥ 1, we obtain the following lower
bound

inf
θ̂

sup
θ∈Θ

Eθ‖θ̂(Y )− θ‖2 ≥
(

3

4
− 1

2d

)
ε2

4
=

d2 log 2

2048(E‖Z‖∗)2
.

Turning back to the matrix Gaussian location model (7), we
are now in the position of establishing the minimax rates for
estimating M with respect to all unitarily invariant norms.



Note that any matrix norm on the space Rk×m induces a
vector norm on Rd for d = km. In view of Theorem 1, it
suffices to upper bound both E‖Z‖∗ and E‖Z‖2, provided that
the resulting lower and upper bounds agree up to a constant
factor. It turns out that this can indeed be achieved, resulting
in the following theorem.

Theorem 2. For any k,m ∈ N and any unitarily invariant
norm ‖ · ‖τ , where τ is a symmetric gauge function on Rk∧m,
the minimax rate for estimating M under (7) with respect to
the loss ‖ · ‖2τ satisfies

inf
M̂

sup
M∈Rk×m

E‖M̂ −M‖2τ � (k ∨m)τ2(1), (11)

where 1 denotes the all-one vector in Rk∧m.

Remark 2 (Dependence on τ ). Theorem 2 reveals the fol-
lowing remarkable fact: The minimax rate under the unitarily
invariant norm ‖·‖τ depends on the symmetric gauge function
τ only through its value at the all-one vector. On the one hand,
τ(1) appears in the lower bound because it governs the volume
asymptotics of a unit ball under the ‖·‖τ norm in Rk×m. On
the other hand, since the noise matrix has i.i.d. entries, all of
its singular values scale with the dimensions at the same rate.
Hence, the risk achieved by the observation is also proportional
to τ2(1). In addition, such a dependence pattern also suggests
that the least-favorable prior on M should concentrate on
those matrices in general position, i.e., having full rank and
bounded condition number. This is intuitively natural because
neither the unitarily invariant norm nor the noise singular value
spectrum favor any specific direction.

Remark 3. Theorem 2 also provides a rigorous justification
of the following intuitive fact: If both the noise and the
loss function are sufficiently symmetric, then there is nothing
significantly better than estimating by the raw observation,
which is the maximum likelihood estimator under the Gaussian
assumption. Of course, the caveat is that such a claim crucially
depends on the choice of the loss function. For example, if
the loss function is given by L(M̂,M) = ρ(‖M̂ − M‖F),
where ρ(x) = x2 + (k ∨m)41{x≤1}, then estimating by the
observation is clearly rate-suboptimal. Instead, the minimax
estimator can be obtained by shrinkage toward zero.

Proof of Theorem 2: Note that τ∗ is also a symmetric
gauge function. By the monotonicity of symmetric gauge
functions (cf. Lemma 1), we have for η = τ or τ∗,

‖Z‖η = η(σ(Z)) ≤ η(σ1(Z)1) = σ1(Z)η(1). (12)

For the lower bound, (12) leads to ‖Z‖τ∗ ≤ σ1(Z)τ∗(1) =
σ1(Z)(k∧m)

τ(1) , where the last equality is due to the second claim
of Lemma 1. Applying Theorem 1, we have

inf
M̂

sup
M∈Rk×m

E‖M̂ −M‖2 ≥ ck2m2

(E‖Z‖τ∗)2
≥ c(k ∨m)2τ2(1)

(Eσ1(Z))2

≥c(k ∨m)2τ2(1)

(
√
k +
√
m)2

≥ c(k ∨m)τ2(1),

where we have used Gordon’s inequality Eσ1(Z) ≤
√
k+
√
m;

cf. [16].
For the upper bound, in view of (12), it suffices to bound

Eσ1(Z)2. To this end, note that the Davidson–Szarek bound
[16] implies that for any a > 1,

P(σ1(Z) > a(
√
k +
√
m)) ≤ e−(a−1)2(

√
k+
√
m)2/2.

Integrating the above with respect to a leads to Eσ1(Z)2 ≤
(5 +

√
π)(k ∨m). In view of Theorem 1 and (12), we obtain

the desired upper bound.

IV. ORACLE MINIMAX RATES FOR COVARIANCE MATRICES

In this section we switch to the problem of estimating
covariance matrices and show that the volume approach de-
veloped in Section III can be successfully imported here to
derive optimal minimax rates. Let X denote the observed
n×k data matrix, whose rows X1∗, . . . , Xn∗ are independently
drawn from N(0,Σ). A sufficient statistic for Σ is the sample
covariance matrix S = 1

nX
′X .

Without assuming additional covariance structure, we con-
sider the following parameter space for Σ:

Ξ(k, λ) = {Σ ∈ S+
k : ‖Σ‖op ≤ λ}, (13)

which is simply the operator norm ball of radius λ in the space
of k × k positive semi-definite matrices.

We have the following analogous result to Theorem 2 for
covariance matrices. The main difference is that instead of (9),
the KL divergence in the covariance model is given by

D(N(0, Σ̂) ||N(0,Σ)) =
1

2
Tr(Σ−1Σ̂− I)− 1

2
log

det Σ̂

det Σ
.

Therefore the KL neighborhood in the covariance model is not
a Frobenius ball, which requires additional volume estimates
via the inverse Santaló inequality in the lower bound argument.
The detailed proof can be found in [14, Section 5].

Theorem 3. For any n, k ∈ N, any λ > 0, and any unitarily
invariant norm ‖ · ‖τ , where τ is a symmetric gauge function
on Rk,

inf
Σ̂

sup
Σ∈Ξ(k,λ)

E‖Σ̂− Σ‖2τ �
(
k

n
∧ 1

)
λ2τ2(1). (14)

Analogous to the discussion of Theorem 2 in Remark 2,
the minimax rate in Theorem 3 is also proportional to τ2(1),
which suggests that the worst-case prior are in general posi-
tion. Note that it is natural that the minimax rate in Theorem 3
is proportional to the squared spectral radius λ2. The reasons
are two-fold: First, since the the covariance model is a scale
model, the Kullback-Leibler divergence is scaling invariant.
On the other hand, the loss in terms of squared norm scales
quadratically with λ2. Second, the magnitude of the “effective
noise” matrix S −Σ also scales with the spectral norm of Σ.

It is interesting to compare Theorem 3 to the classical results
focusing on the exact minimax risk of estimating the covari-
ance matrices in the low-dimensional regime. Using invariance



theory, Stein [17] proved that if k ≤ n, any constant multiple
of the sample covariance matrix is not minimax with respect
to the KL loss; He also obtained the exact minimax estimator
for this problem. In contrast, our focus here is to investigate
the minimax rate, the non-asymptotic characterization of the
minimax risk modulo constants. In particular, we see that
the sample covariance matrix is minimax rate-optimal for
all triples (k, n, λ) and all unitarily invariant norms. This
conclusion, even in the simplest setting of quadratic loss
(squared Frobenius norm), seems to be new in the literature.

V. MEAN MATRIX ESTIMATION UNDER GROUP SPARSITY

To illustrate how the choice of norm influences the minimax
rates in structured problem, consider the following mean
matrix estimation problem under group sparsity [8]. For any
matrix M , let supp(M) be the index set of nonzero rows of
M . Suppose we observe a p×m matrix

Y = M + Z, (15)

where Z = (zij) with zij
i.i.d.∼ N(0, 1) and M belongs to the

parameter space F0(k, p,m) = {M ∈ Rp×m : |supp(M)| ≤
k}, that is, at most k(≤ p) rows of M contain nonzero entries.
We are interested in estimating M . If the oracle knowledge
of supp(M) were given, the problem would reduce to the
unstructured mean estimation problem studied in Section III.

To describe the minimax rate of (15), we introduce the
following notations. Let ‖ · ‖τ be an arbitrary unitarily in-
variant norm on Rp×m, given by a symmetric gauge τ on
Rp∧m. Denote by τ |k the restriction of τ on Rk∧m, i.e.,
τ |k(x1, . . . , xk∧m) = τ(x1, . . . , xk∧m, 0, . . . , 0). Then τ |k is
a symmetric gauge on Rk∧m, whose Lipschitz constant Lτ |k
is defined according to (1).

Theorem 4. For any unitarily invariant norm ‖ · ‖τ , the
minimax rate for estimating M under model (15) is

inf
M̂

sup
F0(k,p,m)

E‖M̂−M‖2τ � (τ |k)2(1)(k∨m)+L2
τ |k k log

ep

k
.

Example 1 (Schatten norm). For the Schatten q-norm (2) with
q ∈ [1,∞], τ |k(1) = r1/q and Lτ |k = r(1/q−1/2)+ , where
r = k ∧m. Then, Theorem 4 gives the rate

(k ∧m)2/q(k ∨m) + (k ∧m)(2/q−1)+ k log
ep

k
.

Example 2 (Ky Fan norm). For the Ky Fan `-norm (3) with
l ∈ [k ∧m], τ |k(1) = `, Lτ |k =

√
`, and so the rate is

`2(k ∨m) + `k log
ep

k
.

The minimax rate in Theorem 4 consists of two parts: the
oracle risk, which is the minimax risk if one knows supp(M)
a priori, and the excess risk, which is due to the combinatorial
uncertainty of the support set. The two terms depend on τ and
hence the norm in very different ways: the oracle risk depends
on τ via τ |k(1) and the excess risk via Lτ |k . The oracle risk
follows from Theorem 2. To lower bound the excess risk, we
construct a least favorable configuration from the worst-case

matrix attaining the Lipschitz constant Lτ |k . For details of the
lower bound and the estimating procedure, see [14].
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