
Fundamental Limits of Almost Lossless Analog
Compression

Yihong Wu
Department of Electrical Engineering

Princeton University
Princeton, NJ 08544, USA

Email: yihongwu@princeton.edu

Sergio Verdú
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Abstract—In Shannon theory, lossless source coding deals with
the optimal compression of discrete sources. Compressed sensing
is a lossless coding strategy for analog sources by means of
multiplication by real-valued matrices. In this paper we study
almost lossless analog compression for analog memoryless sources
in an information-theoretic framework, in which the compressor
is not constrained to linear transformations but it satisfies
various regularity conditions such as Lipschitz continuity. The
fundamental limit is shown to be the information dimension
proposed by Rényi in 1959.

I. INTRODUCTION

The “Bit” is the universal currency in lossless source coding
theory [1], where Shannon entropy is the fundamental limit of
compression rate for sources modeled by stochastic processes.
As probability is concentrated on a set of exponentially small
cardinality as blocklength grows, by encoding this subset data
compression is achieved if we tolerate a positive, though
arbitrarily small, block error probability.

Compressed sensing ([2], [3]) has recently emerged as
an approach to lossless encoding of analog sources by real
numbers rather than bits. The formulation of the problem
is reminiscent of traditional lossless data compression in the
following sense:

• Source sparsity (a subset of dimensions is assumed to
be zero) is exploited to achieve effective compression by
taking fewer number of linear measurements.

• Block error probability, instead of distortion, is the perfor-
mance benchmark, in contrast to lossy data compression.

• The central problem is to determine how many com-
pressed measurements are sufficient / necessary for recov-
ery with vanishing block error probability as blocklength
tends to infinity ([2], [3], [4]).

• Random coding is employed to show the existence of
“good” linear encoders.

On the other hand, there are also significantly different in-
gredients in compressed sensing that differ from information
theoretic setups, such as:

• Sources are not modeled probabilistically, and the fun-
damental limits are on a worst-case basis rather than on
average. Moreover, block error probability is with respect
to the distribution of the encoding random matrices.

• Real-valued sparse vectors are encoded by real numbers
instead of bits.

• The encoder is confined to be linear, while generally in
information-theoretical problems such as lossless source
coding we have the freedom to choose the best possible
coding scheme.

Departing from the compressed sensing literature, we study the
fundamental limits of lossless source coding for real-valued
memoryless sources within an information theoretic setup.

• Sources are modeled by random processes. This method
is more flexible to describe source redundancy, which
encompasses, but is not limited to, sparsity. For example,
a mixed discrete-continuous distribution is suitable for
characterizing linearly sparse vectors, i.e. those with
a number of nonzero components proportional to the
blocklength with high probability and whose nonzero
components are distributed according to some continuous
distribution on the support.

• Block error probability is evaluated with respect to the
source distribution.

• Encoders/decoders are subject to more general regularity
conditions than linearity.

It turns out that under several important regularity condi-
tions, the fundamental limit is the information dimension of
the source, an information measure for random vectors in Eu-
clidean space proposed by Alfréd Rényi in 1959. It character-
izes the rate of growth of the information given by successively
finer discretizations of the space. Although a fundamental
information measure, it is far less well-known than either the
Shannon entropy or the Rényi entropy. Rényi showed in [5]
that under certain conditions for an absolutely continuous n-
dimensional random vector the information dimension is n.
Hence he remarked that “... the geometrical (or topological)
and information-theoretical concepts of dimension coincide for
absolutely continuous probability distributions”. However, the
operational role of Rényi information dimension has not been
addressed before except in the work of Kawabata and Dembo
[6], which relates it to the rate-distortion function. In this
paper we give a new operational characterization of Rényi
information dimension as the fundamental limit of almost
lossless data compression for analog sources under various



regularity constraints of the encoder/decoder.
The rest of the paper is organized as follows. Section II

gives an overview of Rényi information dimension and a new
interpretation in terms of entropy rate. Section III states the
main definitions and results in the paper, and discusses its
implications. Section IV concludes the paper. Due to space
limitations, all proofs are referred to [7].

II. RÉNYI INFORMATION DIMENSION

In [5], Rényi defined the information dimension of a prob-
ability distribution as follows:

Definition 1 (Information Dimension): Let X be a real-
valued random variable. Denote for a positive integer m the
quantized version of X:

〈X〉m =
bmXc
m

. (1)

Define

d(X) = lim inf
m→∞

H (〈X〉m)
logm

(2)

and

d(X) = lim sup
m→∞

H (〈X〉m)
logm

, (3)

where d(X) and d(X) are called lower and upper information
dimensions of X respectively. If d(X) = d(X), the common
value is called the information dimension of X , denoted by
d(X).

Definition 1 can be readily extended to random vectors,
where the floor function b·c is taken componentwise. With
Shannon entropy replaced by Rényi entropy of order α in (2
– 3), the generalized notion of dimension of order α is defined
similarly, denoted by dα(X), dα(X) and dα(X).

Note that the lower and upper information dimension of a
random variable are finite if and only if the mild condition
E log(|X|+ 1) <∞ is satisfied, as the following proposition
shows:

Proposition 1: If E log(|X|+ 1) <∞, then

0 ≤ d(X) ≤ d(X) ≤ 1. (4)

If E log(|X|+ 1) =∞, then

d(X) = d(X) =∞. (5)

It can be shown that to calculate the information dimension,
it is sufficient to restrict to the exponential subsequence
m = 2l in (2) and (3). This observation leads to an entropy-
rate interpretation of the information dimension. Define the
quantization operator [·]l = 〈·〉2l and (x)l = 2l([x]l − [x]l−1).
Consider X ∈ [0, 1) a.s. The binary expansion of X can be
written as

X(ω) =
∞∑
j=1

(X)j(ω)2−j , (6)

where each (X)j is a binary random variable. Note that
[X]i(ω) =

∑i
j=1(X)j(ω)2−j is in one-to-one correspondence

with ((X)1, . . . , (X)i), therefore

d(X) = lim inf
i→∞

H ((X)1, . . . , (X)i)
i

, (7)

d(X) = lim sup
i→∞

H ((X)1, . . . , (X)i)
i

. (8)

In general, if the information dimension of a real-valued
random variable d(X) is finite, it coincides with the entropy
rate of of any M -ary expansion of the fractional part of X .

By the Lebesgue Decomposition Theorem [8], any probabil-
ity distribution can be uniquely represented as the mixture of a
discrete, an absolutely continuous and a singular (with respect
to Lebesgue measure) probability measure. The information
dimension for discrete-continuous mixture can be determined
as follows:

Theorem 1 ([5]): Let X be a random variable such that
H(bXc) is finite. Assume the distribution of X can be repre-
sented as ν = (1−ρ)νd +ρνc, where νd is a discrete measure,
νc is an absolutely continuous measure and 0 ≤ ρ ≤ 1. Then

d(X) = ρ. (9)

Therefore, when X has a discrete-continuous mixed distri-
bution, the information dimension of X is exactly the weight
of the continuous part. When the distribution of X has a
singular component, its information dimension does not admit
a simple formula in general. In fact [5] if X has a singular
distribution, it is possible that d(X) < d(X). However, for
the important class of self-similar singular distributions, the
information dimension can be explicitly determined [9], [6].
For example, the Cantor distribution [10] has information
dimension log3 2.

III. DEFINITIONS AND MAIN RESULTS

This section presents a unified framework for lossless data
compression and our main results in the form of coding
theorems under various regularity conditions.

A. Lossless Data Compression

Let the source {Xi : i ∈ N} be a stochastic process on
(XN,F⊗N), with X denoting the source alphabet and F a
σ-algebra over X . Let (Y,G) be a measurable space, where
Y is called the code alphabet. The main objective of lossless
data compression is to find efficient representations for source
realization xn ∈ Xn by a string yk ∈ Yk.

Definition 2: A (n, k)-code for {Xi : i ∈ N} over the code
space (Y,G) is a pair of mappings:

1) Encoder: fn : Xn → Yk that is measurable relative to
Fn and Gk.

2) Decoder: gn : Yk → Xn that is measurable relative to
Gk and Fn.



For an (n, k)-code, its codebook is denoted as the collection
of codewords corresponding to source realizations that are
correctly decoded, i.e.,

Cn = {fn(xn) : xn ∈ Xn, gn(fn(xn)) = xn} ⊂ Yk. (10)

And the block error probability is P {gn(fn(Xn)) 6= Xn}.
The fundamental limit in lossless source coding is:
Definition 3 (Lossless Data Compression): Let {Xi : i ∈

N} be a stochastic process on (XN,F⊗N). Define the mini-
mum ε-achievable rate r(ε) to be the infimum of r > 0 such
that there exists a sequence of (n, brnc)-codes (fn, gn) over
the code space (Y,G), such that

P {gn(fn(Xn)) 6= Xn} ≤ ε (11)

holds for all sufficiently large n.
If X is countable and Y is finite, equipped with discrete σ-

algebras 2X and 2Y respectively, the measurability of encoder
and decoder are trivially satisfied. This is one of the reasons
why in conventional lossless coding theory we only consider
how to choose a subset of source symbols of small cardinality
and large probability, regardless of how they are mapped
to each codeword as long as the mapping is injective. The
fundamental limit of lossless compression is

Theorem 2 ([1]): Let X be countable and Y finite. {Xi :
i ∈ N} is an i.i.d. X -valued process with common distribution
P . Then for any finite code alphabet

r(ε) =


log |X |
log |Y| , ε = 0
H(P )
log |Y| , 0 < ε < 1,

0, ε = 1.

(12)

Using codes over an infinite alphabet, any discrete source
can be compressed with zero rate and zero block error prob-
ability.

Proposition 2: Let X be countable and Y countably infi-
nite. {Xi : i ∈ N} is an X -valued random process. Then for
0 ≤ ε ≤ 1,

r(ε) = 0. (13)

B. Lossless Analog Compression with Regularity Conditions

In this subsection we consider the problem of encoding
analog sources with analog symbols, that is, (X ,F) = (R,B)
and (Y,G) = (R,B) or ([0, 1],B) if bounded encoders
are required, where B denotes the Borel σ-algebra. As in
Proposition 2, we see that, without constraints on the encoding
or decoding method, zero rate is achievable even for zero block
error probability, because the cardinality of Rn is the same
for any n [11]. This conclusion holds even if we require the
encoder/decoder to be Borel measurable, because according
to Kuratowski’s theorem [12, Remark (i), p. 451] every un-
countable standard Borel space is isomorphic to ([0, 1],B) .
Therefore a single real number has the capability of encoding
a real vector, or even a real sequence, with a coding scheme
that is both universal and deterministic.

However, the rich structure of R equipped with a metric
topology (e.g., that induced by Euclidean distance) enables us
to probe the problem further. If we seek the fundamental limits
of not only lossless coding but “graceful” lossless coding,
the result is not trivial anymore. This is our primary goal
throughout the paper. In this spirit, our various definitions
share the basic information-theoretic setup where a random
vector is encoded with a function fn : Rn → RbRnc and
decoded with gn : RbRnc → Rn with R ≤ 1 such that fn and
gn satisfy certain regularity conditions and the probability of
incorrect reproduction vanishes as n→∞.

Regularity in encoder and decoder is imposed for the sake
of both less complexity and more robustness. For example,
although the surjection g from [0, 1] to Rn is capable of
lossless encoding, its irregularity requires specifying uncount-
ably many real numbers to determine this mapping. However,
if g is continuous, the Stone-Weierstrass theorem states that
g can be uniformly approximated by polynomials, hence
countably many coefficients will be sufficient to characterize g.
Moreover, regularity in encoder/decoder is crucial to guarantee
noise resilience of the coding scheme. This may be beneficial
even in the discrete world [13]. For instance, if the encoder
(decoder resp.) is L-Lipschitz with respect to the `0 distance,
then changing one entry of the data (codeword resp.) will result
in changes of at most L positions in the encoder (decoder
resp.) output, which is a desirable feature in some source
coding applications.

Definition 4: Let {Xi : i ∈ N} be a stochastic process
on (RN,B⊗N). Define the minimum ε-achievable rate to be
the infimum of R > 0 such that there exists a sequence of
(n, bRnc)-codes (fn, gn) , such that 1

lim sup
n→∞

P {gn(fn(Xn)) 6= Xn} ≤ ε (14)

and the encoder fn and decoder gn are constrained according
to Table I. Except for linear encoding where Y = R, it is
assumed that Y = [0, 1].

TABLE I
REGULARITY CONDITIONS OF ENCODER/DECODERS AND

CORRESPONDING NOTATIONS FOR MINIMUM ε-ACHIEVABLE RATES.

Encoder Decoder Minimum ε-achievable rate

Borel Continuous R0(ε)

Continuous Continuous R̃(ε)

Linear Continuous R∗(ε)

Borel Lipschitz R(ε)

Borel ∆-stable R(ε,∆)

In Definition 4 we have used the following definitions:
Definition 5 ((L,∆)-stable): Let (U, dU ) and (V, dV ) be

metric spaces and T ⊂ U . g : U → V is called (L,∆)-stable
on T if for all x, y ∈ T

dU (x, y) ≤ ∆⇒ dV (g(x), g(y)) ≤ L∆. (15)

And we say g is ∆-stable if g is (1,∆)-stable.

1Definition 14 applies to 0 < ε ≤ 1; for ε = 0, we require that
gn(fn(Xn)) = Xn with probability 1 for all but a finite number of n.



An even stronger condition than (L,∆)-stability is Lipschitz
continuity, in that we have the following characterization of
Lipschitz functions as in Proposition 3.

Definition 6 (Hölder and Lipschitz continuity): Let
(U, dU ) and (V, dV ) be metric spaces. g : U → V is
called (L, γ)-Hölder continuous if there exists L, γ ≥ 0 such
that for any x, y ∈ U ,

dV (g(x), g(y)) ≤ LdU (x, y)γ . (16)

g is called L-Lipschitz if g is (L, 1)-Hölder continuous.
Proposition 3: g : U → V is L-Lipschitz if and only if g

is (L,∆)-stable for every ∆ > 0.
We first give a general theorem about the ordering of various

minimum ε-achievable rates introduced in Definition 4:
Theorem 3:

0 = R0(ε) ≤ R̃(ε) ≤ R∗(ε) ≤ R(ε) (17)

holds for any sources and any 0 < ε ≤ 1.
The first equality, corresponding to the case where the

decoder is constrained to be continuous but the encoder is
only assumed to be Borel measurable, is a consequence of
the Hahn-Mazurkiewicz theorem in topology [14]. The last
inequality is a surprising result, which asserts that a Lipschitz
constraint at the decompressor results in less efficient com-
pression than a linearity constraint at the compressor. The rest
of the inequalities in (17) follow from Definition 4.

Now we proceed to give results for each of the minimum
ε-achievable rates for memoryless sources. In view of com-
pressed sensing theory, it is interesting to consider the case
where the encoder is restricted to be linear.

Theorem 4 (Linear encoding: general achievability): For
memoryless sources,

R∗(ε) ≤ d̂(X) = lim
α↑1

dα(X) (18)

holds for all 0 < ε < 1. Moreover,
1) For Lebesgue-a.e. linear encoder, block error probability

ε is achievable with a uniformly continuous decoder.
2) The decoder can be chosen to be β-Hölder continuous

for all 0 < β < R−d̂(X)
R , where R > d̂(X) is the

compression rate.
Theorem 5 (Linear encoding: discrete-continuous mixture):

For memoryless sources, if X has a discrete-continuous mixed
distribution, then for 0 < ε < 1,

R∗(ε) = d(X). (19)

Next we drop the restriction that the encoder is linear,
allowing very general encoding rules. Requiring both the
encoder and the decoder to be continuous, we give two
achievability results as follows:

Theorem 6 (Continuous encoder and decoder): For mem-
oryless sources and 0 < ε < 1,

1)
R̃(ε) ≤ lim

α↑1
dα(X). (20)

2) Furthermore, if the source has a discrete-continuous
mixed distribution, then

R̃(ε) ≤ d(X). (21)

Theorems 7 - 9 deal with Lipschitz decoding in Euclidean
spaces.

Theorem 7 (Lipschitz decoding: general converse): For
memoryless sources, and 0 < ε < 1, if d(X) <∞, then

R(ε) ≥ d(X). (22)

Theorem 8 (Lipschitz decoding: discrete/continuous mixture):
For memoryless sources, if X has a discrete-continuous mixed
distribution, then for 0 < ε < 1,

R(ε) = d(X). (23)

For sources with a singular distribution, in general there
is no simple answer due to their fractal nature. For an
important class of singular measures, namely self-similar
measures generated from i.i.d. digits (e.g. generalized Cantor
distributions [10]), the information dimension turns out to be
the fundamental limit for lossless compression with Lipschitz
decoder, which can be constructed using finitary homomor-
phism theorems in ergodic theory.

Theorem 9 (Lipschitz decoding: self-similar measures):
Let the distribution of X be a self-similar measure generated
by i.i.d. M -ary digits with common distribution P . Then for
0 < ε < 1,

R(ε) = d(X) =
H(P )
logM

. (24)

Moreover, if P is equiprobable on its support, then

R(0) = d(X). (25)

Remark 1: The proofs of Theorems 3 – 7 all hinge upon the
lossless Minkowski dimension compression theory developed
in [7], which is a counterpart of the conventional lossless data
compression.

Remark 2: As an example, we consider the setup in The-
orem 9 with M = 3 and P = {p, 0, q}, where p + q = 1.
The associated invariant set is the middle third Cantor set C
[10] and X is supported on C. The distribution of X , denoted
by µ, is called the generalized Cantor distribution [15]. In
the ternary expansion of X , each digit is independent with
probability p being 0 and q being 2. Then by Theorem 9, for
any ε ∈ (0, 1), R(ε) = h2(p)

log 3 . Furthermore, when p = 1/2,
µ coincides with the ‘uniform’ distribution on C, i.e., the
standard Cantor distribution. Hence (25) implies a stronger
result that R(0) = log3 2 ≈ 0.63, i.e., information dimension
achieves exact lossless compression with Lipschitz continuous
decompressor.

For stable decoding the fundamental limit is given by the
following tight result:



Theorem 10 (∆-Stable decoding): Let the underlying met-
ric be the `∞ distance. Then for memoryless sources, and
0 < ε < 1,

lim sup
∆↓0

R(ε,∆) = d(X), (26)

that is, the minimum ε-achievable rate such that for all
sufficiently small ∆ there exists a ∆-stable coding strategy
is given by d(X).

C. Connections with Compressed Sensing

Robust reconstruction is of great importance in compressed
sensing, since noise resilience is an indispensable property for
decompressing sparse signals from real-valued measurements.
For example, consider the following robustness result:

Theorem 11 ([16]): Suppose we wish to recover a vector
x0 ∈ Rn from k noisy compressed linear measurements y =
Ax0 + e, where A ∈ Rk×n, e, y ∈ Rk and ‖e‖2 ≤ ε. Let x#

be a solution of the following `1-regularization problem

min ‖x‖1
s.t. ‖Ax− y‖2 ≤ ε.

(27)

Assume that ‖x0‖0 = S satisfies δ3S + 3δ4S ≤ 2, where δS
is the S-restricted isometry constant δS of matrix A, defined
as the smallest positive number such that

(1− δS) ‖u‖22 ≤ ‖Au‖
2
2 ≤ (1 + δS) ‖u‖22 (28)

holds for all T ⊂ {1, . . . , n} with |T | ≤ S and for all u in
Rn supported on T . Then∥∥x# − x0

∥∥
2
≤ CSε, (29)

where CS may only depend on δ4S .
By Theorem 11, using (27) as the decoder, the `2 norm of

the decoding error is upper bounded proportionally to the `2
norm of the noise.

In our framework a stable or Lipschitz continuous coding
scheme also implies robustness with respect to noise added at
the input of the decompressor, which could result from quan-
tization, finite wordlength or other inaccuracies. For example,
suppose that the encoder output yk = fn(xn) is quantized by
a q-bit uniform quantizer, resulting in ỹk. With a 2−q-stable
coding strategy, we can use the following decoder: denote the
following nonempty set

D(ỹk) =
{
zk ∈ Cn :

∥∥zk − ỹk∥∥∞ ≤ 2−q
}
. (30)

where Cn denotes the codebook. Pick any zk in D(ỹk) and
output x̂n = gn(zk). Then by the stability of gn, we have

‖x̂n − xn‖∞ ≤ 2−q, (31)

i.e., each component in the decoder output will suffer at most
the inaccuracy of the decoder input. Similarly, an L-Lipschitz
coding scheme with respect to `∞ distance incurs an error no
greater than L2−q .

IV. CONCLUDING REMARKS

In this paper we have proposed an information theoretic
framework for lossless analog compression of analog sources
under regularity conditions of the coding schemes. It could
also be viewed as a probabilistic dimension reduction prob-
lem with smooth embedding. In this framework, obtaining
fundamental limits requires tools quite different from those
used in traditional information theoretical problems, calling
for machineries from dimension theory, geometric measure
theory and ergodic theory. As seen in Theorems 4 – 10,
Rényi’s information dimension plays a fundamental role in
the associated coding theorems.

In the important case of discrete-continuous mixed sources,
we have shown that the fundamental limit is Rényi information
dimension, which coincides with the weight on the continu-
ous part in the source distribution. In the memoryless case,
this corresponds to the percentage of analog symbols in the
source realization. This might suggest that the mixed discrete-
continuous nature of the source is of fundamental importance
in the analog compression framework; sparsity is just one
manifestation of a mixed distribution.

ACKNOWLEDGMENT

The authors would like to thank Mung Chiang and Jouni
Luukkainen for stimulating discussions.

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, pp. 379 – 423, 623–656, 1948.

[2] D. Donoho, “Compressed sensing,” IEEE Transactions on Information
Theory, vol. 52, no. 4, pp. 1289 – 1306, April 2006.

[3] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,”
IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489 –
509, February 2006.

[4] M. Wainwright, “Information-theoretic bounds on sparsity recovery in
the high-dimensional and noisy setting,” in Proceedings of 2007 IEEE
International Symposium on Information Theory, Nice, France, June
2007.
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