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Estimating the number of unseen species is an important problem
in many scientific endeavors. Its most popular formulation, in-
troduced by Fisher et al. [Fisher RA, Corbet AS, Williams CB (1943)
J Animal Ecol 12(1):42−58], uses n samples to predict the number
U of hitherto unseen species that would be observed if t ·n
new samples were collected. Of considerable interest is the
largest ratio t between the number of new and existing samples
for which U can be accurately predicted. In seminal works, Good
and Toulmin [Good I, Toulmin G (1956) Biometrika 43(102):45−63]
constructed an intriguing estimator that predicts U for all t≤1. Sub-
sequently, Efron and Thisted [Efron B, Thisted R (1976) Biometrika
63(3):435−447] proposed a modification that empirically predicts U
even for some t> 1, but without provable guarantees. We derive a
class of estimators that provably predict U all of the way up to
t∝ logn. We also show that this range is the best possible and
that the estimator’s mean-square error is near optimal for any t.
Our approach yields a provable guarantee for the Efron−Thisted
estimator and, in addition, a variant with stronger theoretical
and experimental performance than existing methodologies on
a variety of synthetic and real datasets. The estimators are sim-
ple, linear, computationally efficient, and scalable to massive
datasets. Their performance guarantees hold uniformly for all
distributions, and apply to all four standard sampling models
commonly used across various scientific disciplines: multinomial,
Poisson, hypergeometric, and Bernoulli product.
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Species estimation is an important problem in numerous
scientific disciplines. Initially used to estimate ecological

diversity (1–4), it was subsequently applied to assess vocab-
ulary size (5, 6), database attribute variation (7), and pass-
word innovation (8). Recently, it has found a number of bio-
science applications, including estimation of bacterial and
microbial diversity (9–12), immune receptor diversity (13), com-
plexity of genomic sequencing (14), and unseen genetic varia-
tions (15).
All approaches to the problem incorporate a statistical model,

with the most popular being the “extrapolation model” introduced
by Fisher, Corbet, and Williams (16) in 1943. It assumes that n
independent samples Xn≜X1, . . . ,Xn were collected from an un-
known distribution p, and calls for estimating

U ≜U
�
Xn,Xn+m

n+1

�
≜
���Xn+m

n+1

��fXng��,
the number of hitherto unseen symbols that would be observed if
m additional samples Xn+m

n+ 1 ≜Xn+1, . . . ,Xn+m were collected from
the same distribution.
In 1956, Good and Toulmin (17) predicted U by a fascinating

estimator that has since intrigued statisticians and a broad
range of scientists alike (18). For example, in the Stanford
University Statistics Department brochure (19), published in
the early 1990s and slightly abbreviated here, Bradley Efron
credited the problem and its elegant solution with kindling his
interest in statistics. As we shall soon see, Efron, along with
Ronald Thisted, went on to make significant contributions to
this problem.

This example evaluates the Good−Toulmin estimator for the
special case where the original and future samples are of equal
size, namely m= n. To describe the estimator’s general form, we
need only a modicum of nomenclature.

Preliminaries
The prevalence Φi ≜ΦiðXnÞ of an integer i≥ 0 in Xn is the number
of symbols appearing i times in Xn. For example, for X7 = ba-
nanas, Φ1 = 2 and Φ2 =Φ3 = 1, and, in Corbet’s table, Φ1 = 118

In the early 1940s, naturalist Corbet had spent 2 y trapping
butterflies in Malaya. At the end of that time, he con-
structed a table (see below) to show how many times he had
trapped various butterfly species. For example, 118 species
were so rare that Corbet had trapped only one specimen of
each, 74 species had been trapped twice each, etc.

Frequency 1 2 3 4 5 . . . 14 15
Species 118 74 44 24 29 . . . 12 6

Corbet returned to England with his table, and asked
R. A. Fisher, the greatest of all statisticians, how many new
species he would see if he returned to Malaya for another
2 y of trapping. This question seems impossible to answer,
because it refers to a column of Corbet’s table that doesn’t
exist, the “0” column. Fisher provided an interesting an-
swer that was later improved on [by Good and Toulmin
(17)]. The number of new species you can expect to see in
2 y of additional trapping is

118− 74+ 44− 24+ . . . − 12+ 6= 75.

Significance

Many scientific applications ranging from ecology to genetics
use a small sample to estimate the number of distinct elements,
known as ”species,” in a population. Classical results have
shown that n samples can be used to estimate the number of
species that would be observed if the sample size were dou-
bled to 2n. We obtain a class of simple algorithms that extend
the estimate all the way to n  log  n samples, and we show that
this is also the largest possible estimation range. Therefore,
statistically speaking, the proverbial bird in the hand is worth
log n in the bush. The proposed estimators outperform existing
ones on several synthetic and real datasets collected in
various disciplines.
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and Φ2 = 74. Let t≜m=n be the ratio of the number of future and
past samples so that m= tn. Good and Toulmin estimated U by
the surprisingly simple formula

UGT ≜ UGTðXn, tÞ≜ −
X∞
i=1

ð−tÞiΦi. [1]

They showed that, for all t≤ 1, UGT is nearly unbiased, and that,
although U can be as high as nt,*

E
�
UGT −U

�2 K nt2;

hence, in expectation, UGT approximates U to within just
ffiffiffi
n

p
t.

Fig. 1 shows that, for the ubiquitous Zipf distribution, UGT

indeed approximates U well for all t≤ 1. Naturally, it is desir-
able to predict U for as large a t as possible. However, as t> 1
increases, UGT grows as ð−tÞiΦi for the largest i such that
Φi > 0. Hence, whenever any symbol appears more than once,
UGT grows superlinearly in t, eventually far exceeding U that
grows at most, linearly in t. Fig. 1 also shows that, for the same
Zipf distribution, for t> 1, indeed, UGT does not approximate
U at all.
To predict U for t> 1, Good and Toulmin (17) suggested using

the Euler transform (20) that converts an alternating series into
another series with the same sum, and heuristically often con-
verges faster. Interestingly, Efron and Thisted (5) showed that,
when the Euler transform of UGT is truncated after k terms, it
can be expressed as another simple linear estimator,

UET ≜
Xn
i=1

hETi ·Φi, [2]

where

hETi ≜ −ð−tÞi ·P
	
Bin
	
k,

1
1+ t



≥ i


,

and
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k,

1
1+ t



≥ i


=

8<
:
Xk

j=i

 
k

j

!
tk−j

ð1+ tÞk
i≤ k,

0 i> k,

is the binomial tail probability that decays with i, thereby mod-
erating the rapid growth of ð−tÞi.
Over the years, UET has been used by numerous researchers in

a variety of scenarios and a multitude of applications. However,

despite its widespread use and robust empirical results, no
provable guarantees have been established for its performance
or that of any related estimator when t> 1. The lack of theoretical
understanding has also precluded clear guidelines for choosing the
parameter k in UET.

Methodology and Results
We construct a family of estimators that provably predict U op-
timally not just for constant t> 1 but all of the way up to t∝ log n;
this shows that, per each observed sample, we can infer properties
of log n yet unseen samples. The proof technique is general and
provides a disciplined guideline for choosing the parameter k for
UET as well as a better-performing modification of UET.

Smoothed Good−Toulmin Estimator. To obtain a new class of es-
timators, we too start with UGT, but, unlike UET that was derived
from UGT via analytical considerations aimed at improving the
convergence rate, we take a probabilistic view that controls the
bias and variance of UGT and balances the two to obtain a more
efficient estimator.
Note that what renders UGT inaccurate when t> 1 is not its

bias but its high variance due to the exponential growth of the
coefficients ð−tÞi in [1]; in fact UGT is the unique unbiased es-
timator for all t and n in the closely related Poisson sampling
model (SI Appendix, section 1.2). Therefore, it is tempting to
truncate the series [1] at the ℓth term and use the partial sum
estimator

U ℓ ≜ −
Xℓ
i=1

ð−tÞiΦi. [3]

However, as Lemma 2 shows, as long as t> 1, regardless of the
choice of ℓ, there exist certain distributions so that most of the
symbols typically appear ℓ times and, hence, the last term in [3]
dominates, resulting in a large bias and inaccurate estimates.
To resolve this problem, we propose the Smoothed Good−

Toulmin (SGT) estimator that truncates [1] at an independent
random location L and averages over the distribution of L,

UL ≜EL

"
−
XL
i=1

ð−tÞiΦi

#
.

The key insight is that, because the bias of U ℓ typically alternates
signs with ℓ, averaging over different cutoff locations can signif-
icantly reduce the bias by taking advantage of the cancellation.
Furthermore, the SGT estimator can also be expressed simply as
a linear combination of prevalences

UL =EL

"
−
X
i≥1

ð−tÞiΦi1L≥i

#
=−

X
i≥1

ð−tÞiPðL≥ iÞΦi.

Choosing different smoothing distributions for L yields dif-
ferent linear estimators, where the tail probability PðL≥ iÞ
compensates for the exponential growth of ð−tÞi, thereby stabi-
lizing the variance. Surprisingly, although the motivation and
approach are quite different, SGT estimators include UET in
[2] as a special case corresponding to binomial smoothing
L∼Bin

�
k, 1

1+ t

�
; this provides an intuitive probabilistic interpre-

tation of UET, originally derived via Euler’s transform and ana-
lytic considerations. In Main Results, we show that this inter-
pretation leads to a theoretical guarantee for UET as well as
improved estimators.

Main Results. Because 0≤U ≤ nt, we evaluate an estimator UE by
its worst-case normalized mean-square error (NMSE),

Fig. 1. UGT as a function of t for two random samples of size n= 5,000
generated by a Zipf distribution pi ∝ 1=ði+ 10Þ for 1≤ i≤ 10,000.

*For positive sequences an,bn, denote an Kbn or bn J an if for some constant c, an=bn ≤ c
for all n≥n0. Denote an≍bn if both an Kbn and an Jbn.
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En,t
�
UE�≜ sup

p
Ep

	
UE −U

nt


2

.

This criterion conservatively evaluates the estimator on the worst
possible distribution. The trivial estimator that always predicts
nt=2 new symbols achieves NMSE 1=4, and we would like to
construct estimators with vanishing NMSE that estimate U up
to an error that diminishes with n, regardless of the data-gener-
ating distribution; in particular, we are interested in the largest t
for which this is possible.
Relating the bias and variance of UL to the moment gener-

ating function and the exponential generating function of L (see
Theorem 3 and SI Appendix, section 2.3), we obtain the following
performance guarantee for SGT estimators with appropriately
chosen smoothing distributions.
Theorem 1. For Poisson or binomially distributed L with the

parameters given in Table 1, for all t≥ 1 and n∈N,

En,t
�
UL�K 1

n1=t
.

Theorem 1 provides a principled way for tuning the parameter k
for the Efron−Thisted estimator UET and a provable guarantee for
its performance, shown in Table 1. It also shows that a modification
of UET with q= 2

t+ 2 enjoys even faster convergence rate and, as
emperically demonstrated in Experiments, outperforms the original
version of UET as well as other state-of-the-art estimators.
Furthermore, SGT estimators are essentially optimal as wit-

nessed by the following matching minimax lower bound.
Theorem 2. There exist universal constants c, c′, such that, for all

t≥ c, n∈N, and any estimator UE,

En,t
�
UE�J 1

nc′=t
.

Theorems 1 and 2 determine the limit of predictability up to
a constant factor.
Corollary 1. For all δ> 0,

max
�
t : En,t

�
UE�< δ     for   some UE�≍ log n

log 1
δ

.

Concurrent to this work, ref. 21 proposed a linear pro-
gramming algorithm to estimate U; however, their NMSE is
O
�

t
log n

�
, which is exponentially weaker than the optimal result

Oðn−1=tÞ in Theorem 1. Furthermore, the computational cost far
exceeds those of our linear estimators.
The rest of the paper is organized as follows. We first describe

the four statistical models commonly used across various sci-
entific disciplines, namely, the multinomial, Poisson, hyper-
geometric, and Bernoulli product models. Among the four
models, Poisson is the simplest to analyze, for which we outline
the proof of Theorem 1. In SI Appendix, we prove similar results

for the other three statistical models and also prove the lower
bound for the multinomial and Poisson models. Finally, we
demonstrate the efficiency and practicality of our estimators on a
variety of synthetic and data sets.

Statistical Models
The extrapolation paradigm has been applied to several statistical
models. In all of them, an initial sample of size related to n is col-
lected, resulting in a set Sold of observed symbols. We consider col-
lecting a new sample of size related to m that would result in a yet
unknown set Snew of observed symbols, and we would like to estimate��SnewnSold��,
the number of unseen symbols that will appear in the new
sample. For example, for the observed sample bananas and fu-
ture sample sonatas, Sold = fa,b,n,sg, Snew = fa,n,o,s,tg, and��SnewnSold��= jfo,tgj= 2.
Four statistical models have been commonly used in the lit-

erature (cf. survey in refs. 3 and 4), and our results apply to all of
them. The first three statistical models are also referred to as the
abundance models, and the last one is often referred to as the
incidence model in ecology (4).

Multinomial. This is Good and Toulmin’s original model where
the samples are independently and identically distributed (i.i.d.),
and the initial and new samples consist of exactly n and m
symbols, respectively. Formally, Xn+m =X1, . . . ,Xn+m are gen-
erated independently according to an unknown discrete dis-
tribution of finite or even infinite support, Sold = fXng, and
Snew = fXn+m

n+ 1g.
Hypergeometric. This model corresponds to a sampling-without-
replacement variant of the multinomial model. Specifically, Xn+m

are drawn uniformly without replacement from an unknown
collection of symbols that may contain repetitions, for example,
an urn with some white and black balls. Again, Sold = fXng and
Snew = fXn+m

n+ 1g.
Poisson. As in the multinomial model, the samples are also i.i.d.,
but the sample sizes, instead of being fixed, are Poisson distrib-
uted. Formally, N ∼ poiðnÞ,M ∼ poiðmÞ, and XN+M are generated
independently according to an unknown discrete distribution,
Sold = fXNg, and Snew = fXN+M

N + 1 g.
Bernoulli Product. In this model, we observe signals from a col-
lection of independent processes over subset of an unknown set
X. Every x∈X is associated with an unknown probability
0≤ px ≤ 1, where the probabilities do not necessarily sum to 1.
Each sample Xi is a subset of X where symbol x∈X appears with
probability px and is absent with probability 1− px, independently
of all other symbols. Sold =∪n

i=1Xi and Snew =∪n+m
i=n+ 1Xi.

Table 1. NMSE of SGT estimators for three smoothing
distributions

Smoothing distribution Parameters En,tðULÞK
Poisson ðrÞ r = 1

2tloge
nðt+ 1Þ2
t − 1 n−1=t

Binomial ðk,qÞ k=
�
1
2log2

nt2
t − 1

k
, q= 1

t + 1 n−log2ð1+1=tÞ

Binomial ðk,qÞ k=
�
1
2log3

nt2
t − 1

k
, q= 2

t + 2 n−log3ð1+2=tÞ

Because, for any t ≥1, log3ð1+ 2=tÞ≥ log2ð1+ 1=tÞ≥ 1=t, binomial smooth-
ing with q=2=ð2+ tÞ yields the best convergence rate.

A B

Fig. 2. Approximation of 1−e−2y by (A) ℓ-term Taylor approximation and (B)
averages of 10- and 11-term Taylor approximation.
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We close this section by discussing two problems that are closely
related to the extrapolation model, support size estimation and
missing mass estimation that correspond to m=∞ and m= 1, re-
spectively. The probability that the next sample is new is precisely
the expected value of U for m= 1, which is the goal in the basic
Good−Turing problem (22–25). On the other hand, any estimator
UE for U can be converted to a (not necessarily good) support size
estimator by adding the number of observed symbols. Estimating
the support size of an underlying distribution has been studied by
both ecologists (1–3) and theoreticians (26–28); however, to make
the problem nontrivial, all statistical models impose a lower bound
on the minimum nonzero probability of each symbol, which is as-
sumed to be known to the statistician. We discuss the connections
and differences to our results in SI Appendix, section 5.

Theory
We present the construction of estimators and the analysis for
the Poisson model. Extensions to other models are given in
SI Appendix.

General Linear Estimators. Following ref. 5, we consider linear
estimators of the form

Uh =
X∞
i=1

Φi · hi, [4]

where h1, h2, . . . can be identified with a formal power series
hðyÞ=P∞

i=1
hiyi

i! . For example, UGT in [1] corresponds to the func-
tion hðyÞ= 1− e−yt. Lemma 1 (proved in SI Appendix, section 2.1)
bounds the bias and variance of an arbitrary linear estimator Uh

using properties of the function h. This result will later be par-
ticularized to the SGT estimator. Let Φ+ ≜

P∞
i=1Φi denote the

number of observed symbols.
Lemma 1. The bias of Uh is

E
�
Uh −U



=
X
x

e−λx
�
hðλxÞ−

�
1− e−tλx

��
,

where λx ≜ npx, and its variance satisfies

Var
�
Uh −U

�
≤E½Φ+� · sup

i≥1
h2i +E½U�.

Lemma 1 enables us to reduce the estimation problem to a
task on approximating functions. Specifically, the goal is to ap-
proximate 1− e−yt by a function hðyÞ all of whose derivatives at
zero have small magnitude.

Why Truncated Good−Toulmin Does Not Work. Before we discuss the
SGT estimator, we show that the naive approach of truncating the
GT estimator described earlier in [3] leads to poor prediction when
t> 1. The GT estimator corresponds to the perfect approximation

hGTðyÞ= 1− e−yt;

however, supi≥1
��hGT

i

��=maxft, limm→∞tmg, which is infinity if t> 1
and leads to large variance. To avoid this situation, a natural ap-
proach is to use the ℓ-term Taylor expansion of 1− e−yt at 0, namely,

hℓðyÞ=−
Xℓ
i=1

ð−ytÞi
i!

, [5]

which corresponds to the estimator U ℓ defined in [3]. Then
supi≥1

��hℓi��= tℓ, and, by Lemma 1, the variance is, at most, nðtℓ + tÞ.
Hence if ℓ≤ logt  m, the variance is, at most, nðm+ tÞ. However, note
that the ℓ-term Taylor approximation is a degree-ℓ polynomial that
eventually diverges and deviates from 1− e−yt as y increases, thereby
incurring a large bias. Fig. 2A illustrates this phenomenon by plot-
ting the function 1− e−yt and its Taylor expansion with 5, 10, and 20
terms. Indeed, the next result, proved in SI Appendix, establishes the
inconsistency of truncated GT estimators.
Lemma 2. For some constant c> 0, for all ℓ≥ 0, t> 1, and n∈N,

En,t
�
U ℓ
�
≥
cðt− 1Þ5

t4
.

Smoothing by Random Truncation. As we saw in Why Truncated
Good−Toulmin Does Not Work, the ℓ-term Taylor approximation,
where all of the coefficients beyond the ℓth term are set to zero
results in a high bias. Instead, one can choose a weighted average
of several Taylor series approximations, whose biases may cancel
each other leading to significant bias reduction; this is the main
idea of smoothing. As an illustration, in Fig. 2B, we plot

wh10 + ð1−wÞh11

for various value of weight w∈ ½0,1�. Notice that, for instance, w= 0.6
leads to better approximation of 1− e−yt than both h10 and h11.

A B

C D

E F

Fig. 3. Comparisons of unseen species estimates as a function of t for six
distributions (A) uniform, (B) distributions with 2 steps 1

2k×
k
2 ∪

​ 3
2k×

k
2, (C) Zipf

distribution with parameter 1
�
pi ∝ 1

i

�
, (D) Zipf distribution with parameter

1=2
�
pi ∝ 1

i1=2
�
, (E) Dirichlet-1 prior, (F) Dirichlet-1=2 prior. All experiments have

distribution support size 106, n= 5 · 105, and are averaged over 100 itera-
tions. The true value is shown in black, and estimated values are colored,
with the solid line representing their means and the shaded band corre-
sponding to one SD. The parameters of the SGT estimators are chosen based
on Table 1.
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A natural generalization of the above argument entails taking
the weighted average of various Taylor approximations with re-
spect to a given probability distribution over the set of non-
negative integers Z+ ≜ f0,1,2, . . .g. For a Z+-valued random
variable L, consider the power series

hLðyÞ=
X∞
ℓ=0

PðL= ℓÞ· hℓðyÞ,

where hℓ is defined in [5]. Rearranging terms,

hLðyÞ=
X∞
ℓ=0

PðL= ℓÞ
Xℓ
i=1

−ð−ytÞi
i!

=−
X∞
i=1

ð−ytÞi
i!

PðL≥ iÞ.

Thus, the linear estimator with coefficients

hLi =−ð−tÞiPðL≥ iÞ [6]

is precisely the SGT estimator UL. Specific choices of smoothing
distributions include the following:

L=∞: the original Good−Toulmin estimator [1] without
smoothing;

L= ℓ deterministically: this leads to the estimator U ℓ in [3]
corresponding to the ℓ-term Taylor approximation; and

L∼Binðk, 1=ð1+ tÞÞ: the Efron−Thisted estimator [2], where
k is a tuning parameter to be chosen.

Our main results use Poisson and binomial smoothing. To
study the performance of the corresponding estimators, we first
upper bound the bias and variance for any smoothing distribu-
tion. The following key result is proved in SI Appendix.
Theorem 3. For any random variable L over Z+ and t≥ 1,

E

h�
UL −U

�2i≤E½Φ+�·E2�tL
+E½U�+ ðE½Φ+�+E½U�Þ2ξLðtÞ2,

where Φ+ is the number of distinct observed symbols and

ξLðtÞ≜ max
0≤s<∞

�����E
"
ð−sÞL
L!

#�����e−s=t.
We have therefore reduced the problem of controlling the

mean-squared loss to that of bounding the moment generat-
ing function and the exponential generating function of the
smoothing distribution. Applying Theorem 3 to Poisson smooth-
ing, L∼ poiðrÞ,

E
�
tL


= e−r

X∞
ℓ=0

ðrtÞℓ
ℓ!

= erðt−1Þ.

Furthermore,

E

"
ð−sÞL
L!

#
= e−r

X∞
ℓ=0

ð−srÞℓ
ðℓ!Þ2 = e−rJ0

�
2
ffiffiffiffi
sr

p �
,

where J0 is the Bessel function of the first kind. It is well-known
that J0 takes values in ½−1,1� (cf. ref. 20, equation 9.1.60), hence

ξLðtÞ≤ e−r .

Substituting these bounds and optimizing over r yields the upper
bound for Poisson smoothing previously announced in Table 1. Re-
sults for the binomial smoothing (including the ET estimator) can be
obtained using similar but more delicate analysis (SI Appendix).

Experiments
We demonstrate the efficacy of our methods by comparing their perfor-
mance with that of several state-of-the-art support size estimators: Chao−Lee
estimator (1, 2), Abundance Coverage Estimator (ACE) (29), and the jack-
knife estimator (30), all three combined with the Shen−Chao−Lin method
(31) of converting support size estimation to unseen species estimation.

We consider both synthetic data generated from various natural distri-
butions and real data. Starting with the former, Fig. 3 shows the species
discovery curve, the estimation of U as a function of t for various distribu-
tions. Note that the Chao−Lee and ACE estimators are designed specifically
for uniform distributions, and, hence, in Fig. 3A, they coincide with the true
value; however, for all other distributions, SGT estimators have the best
overall performance.

Among the proposed estimators, the binomial-smoothing estimator with
parameter q= 2

2+ t has the strongest theoretical guarantee and empirical
performance. Hence, for real data experiments, we only plot it to compare
with the state of the art. We test the estimators on three real datasets where
the samples size n ranges from a few hundreds to a million. For all these
datasets, our estimator outperforms the existing procedures.

Corpus Linguistics. Fig. 4A shows the first real-data experiment of predicting
the vocabulary size based on partial text. Shakespeare’s play Hamlet consists
of ntotal = 31,999 words, of which 4,804 are distinct. We randomly sample n
of the ntotal words without replacement, predict the number of unseen
words in the remaining ntotal −n ones, and add it to those observed. The
results shown are averaged over 100 trials. Observe that the new estimator
outperforms existing ones and that merely 20%of the data already yields an
accurate estimation of the total number of distinct words. Fig. 4B repeats
the experiment simply using the first n consecutive words in lieu of random
sampling, in which case the SGT estimator also outperforms other schemes in
a similar fashion.

Biota Analysis. Fig. 4C estimates the number of bacterial species on the hu-
man skin. Gao et al. (12) considered the forearm skin biota of six subjects.
They identified ntotal = 1,221 clones consisting of 182 different species-level
operational taxonomic units (SLOTUs). As before, we select n out of the ntotal

clones without replacement and predict the number of distinct SLOTUs
found. Again the SGT estimate is more accurate than those of existing es-
timators and is reasonably accurate already with 20% of the data.

Census Data. Finally, Fig. 4D considers the 2000 United States Census (32),
which lists all US last names corresponding to at least 100 individuals. With

A

C

B

D

Fig. 4. Estimates for number of (A) distinct words in Hamlet with random
sampling, (B) distinct words in Hamlet with consecutive sampling, (C) SLOTUs
on human skin, and (D) last names, as a function of fraction of seen data.
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these many repetitions, even a small fraction of the data will contain almost
all names. To make the estimation task nontrivial, we first subsample the data
ntotal = 106 and obtain a list of 100,328 distinct last names. As before, we es-
timate this number using n randomly sampled names, and the SGT estimator
yields significantly more accurate estimations than the state of the art.

Observations. As argued in ref. 33, it is often useful for species estimators to
be monotone and concave in the extrapolation ratio t, which, however,
need not be satisfied by linear estimators such as Good−Toulmin or SGT
estimators. In SI Appendix, section 6, we propose a simple modification of

the SGT estimator that is both monotone and concave, which retains the
good empirical performance of the original estimator.
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