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1 Preliminaries

Throughout the paper, we use standard asymptotic notation. For positive sequences {an} and
{bn}, denote an = Θ(bn) or an � bn if 1/c ≤ an/bn ≤ c for some universal constant c > 0. Let 1A
denote the indicator random variable of an event A. Let Bin(n, p) denote the binomial distribution
with n trials and success probability p and let poi(λ) denote the Poisson distribution with mean λ.
All logarithms are with respect to the natural base unless otherwise specified.

1.1 The Poisson model

Let p be a probability distribution over a discrete set X , namely px ≥ 0 for all x ∈ X and∑
x∈X px = 1. Recall that for the Poisson model, the sample sizes are Poisson distributed: N ∼

poi(n), M ∼ poi(m), and t = m
n . We abbreviate the number of unseen symbols by

U , U (XN , XN+M
N+1 ),

and denote an estimator by UE , UE(XN , t).
Let Nx and N ′x denote the multiplicity of a symbol x in the current and future samples, respec-

tively. Let λx , npx. Then a symbol x appears Nx ∼ poi(λx) times, and for any i ≥ 0,

E[1Nx=i] = e−λx
λix
i!
.

Hence

E[Φi] = E

[∑
x

1Nx=i

]
=
∑
x

e−λx
λix
i!
.

A helpful property of Poisson sampling is that the multiplicities of different symbols are independent
of each other. Therefore, for any function f(x, i),

Var

(∑
x

f(x,Nx)

)
=
∑
x

Var(f(x,Nx)).

Many of our derivations rely on these three equations. For example,

E[U ] =
∑
x

E[1Nx=0] · E[1N ′x>0] =
∑
x

e−λx · (1− e−tλx),

and

Var(U) = Var

(∑
x

1Nx=0 · 1N ′x>0

)
=
∑
x

Var
(
1Nx=0 · 1N ′x>0

)
≤
∑
x

E
[
1Nx=0 · 1N ′x>0

]
= E [U ] .

Note that these equations imply that the standard deviation of U is at most
√
E[U ]� E[U ], hence

U highly concentrates around its expectation, and estimating U and E[U ] are essentially the same.
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1.2 Properties of the Good-Toulmin estimator

Before proceeding with general estimators, we prove a few properties of UGT. Under the Poisson
model, UGT is in fact the unique unbiased estimator for U .1

Lemma 3 ((8)). For any distribution,

E[U ] = E[UGT].

Proof.

E[U ] = E

[∑
x

1Nx=0 · 1N ′x>0

]
=
∑
x

e−λx ·
(

1− e−tλx
)

= −
∑
x

e−λx ·
∞∑
i=1

(−tλx)i

i!
= −

∞∑
i=1

(−t)i ·
∑
x

e−λx
λix
i!

= −
∞∑
i=1

(−t)i · E[Φi] = E[UGT].

Even though UGT is unbiased for all t, for t > 1 it has high variance and hence does not estimate
U well even for the simplest distributions.

Lemma 4. For any t > 1,

lim
n→∞

En,t(UGT) =∞.

Proof. Let p be the uniform distribution over two symbols a and b, namely, pa = pb = 1/2. First
consider even n. Since (UGT − U)2 is always nonnegative,

E[(UGT − U)2] ≥ P(Na = Nb = n/2)(2(−t)n/2)2 =

(
e−n/2

(n/2)n/2

(n/2)!

)2

4tn ≥ 4tn

e2n
,

where we used the fact that k! ≤ (ke )k
√
ke. Hence for any t > 1,

lim
n→∞

E[(UGT − U)2]

(nt)2
≥ lim

n→∞

4tn

e2n(nt)2
=∞.

The case of odd n can be shown similarly by considering the event Na = bn/2c, Nb = dn/2e.

2 Proofs for the Poisson model

In this section, we provide a performance guarantee for SGT estimators under the Poisson sampling
model. We first prove Lemma 1 and then show that the truncated GT estimators incur a high bias.
We then introduce the class of smoothed GT estimators obtained by averaging several truncated
GT estimators and bound their mean squared error in Theorem 3 for an arbitrary smoothing
distribution. We then apply this result to obtain NMSE bounds for Poisson and Binomial smoothing
in Corollaries 1 and 2 respectively, which imply the main result Theorem 1 for the Poisson model.

1To establish the uniqueness, suppose Û : NX → R is an unbiased estimator for U . Then E[Û(N1, . . . , Nk)] =∑
i∈NX Û(i)

∏
x∈X

e−λxλixx
ix!

=
∑
x e
−λx(1−e−tλx) =

∑
x e
−λx∑

i≥1−(−t)i λ
i
x
i!

=
∑
i∈NX

∑
x−(t)ix

∏
x∈X

e−λx
ix!

. Since

this holds for any λx ≥ 0, we have Û(i) =
∑
x−(t)ix , that is, Û is the GT estimator.
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2.1 Bounds for general linear estimators

We provide the proof of Lemma 1 in the main article.

Proof of Lemma 1. Note that

Uh − U =
∞∑
i=1

Φihi −
∑
x

1Nx=0 · 1N ′x>0

=
∞∑
i=1

∑
x

1Nx=i · hi −
∑
x

1Nx=0 · 1N ′x>0

=
∑
x

( ∞∑
i=1

1Nx=i · hi − 1Nx=0 · 1N ′x>0

)
.

For every symbol x,

E

[ ∞∑
i=1

1Nx=i · hi − 1Nx=0 · 1N ′x>0

]
=
∞∑
i=1

e−λx
λix
i!
· hi − e−λx · (1− e−tλx)

= e−λx

( ∞∑
i=1

λixhi
i!
− (1− e−tλx)

)
= e−λx

(
h(λx)− (1− e−tλx)

)
,

from which the bias result follows. For the variance, observe that for every symbol x,

Var

( ∞∑
i=1

1Nx=i · hi − 1Nx=0 · 1N ′x>0

)
≤ E

( ∞∑
i=1

1Nx=i · hi − 1Nx=0 · 1N ′x>0

)2


(a)
= E

[ ∞∑
i=1

1Nx=ih
2
i

]
+ E[1Nx=0] · E[1N ′x>0]

=
∞∑
i=1

E[1Nx=i] · h2i + E[1Nx=0] · E[1N ′x>0],

where (a) follows as for every i 6= j, E[1Nx=i1Nx=j ] = 0. Since the variance of a sum of independent
random variables is the sum of their variances,

Var(Uh − U) ≤
∑
x

∞∑
i=1

E[1Nx=i]h
2
i +

∑
x

E[1Nx=0] · E[1N ′x>0]

=
∞∑
i=1

E[Φi] · h2i + E[U ]

≤ E[Φ+] · sup
i≥1

h2i + E[U ].
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2.2 Negative result for truncated Good-Toulmin estimator

We provide the proof of Lemma 2 in the main article.

Proof of Lemma 2. To rigorously prove an impossibility result for the truncated GT estimator,
we demonstrate a particular distribution under which the bias is large. Consider the uniform
distribution over n/(` + 1) symbols, where ` is a non-zero even integer. By Lemma 1, for this
distribution the bias is

E[U − U `] =
∑
x

e−λx(1− e−λxt − h(λx))

=
n

`+ 1
e−(`+1)

(
1− e−(`+1)t +

∑̀
i=1

(−(`+ 1)t)i

i!

)

≥ n

`+ 1
e−(`+1)

(∑̀
i=1

(−(`+ 1)t)i

i!

)
(a)

≥ n

`+ 1
e−(`+1)

(
((`+ 1)t)`

`!
− ((`+ 1)t)`−1

(`− 1)!

)
≥ n

(`+ 1)
e−(`+1) ((`+ 1)t)`

`!
· (t− 1)

t

≥ n

3(`+ 1)3/2
t`

(t− 1)

t
≥ n

3 · 23/2
t`

`3/2
(t− 1)

t
,

where (a) follows from the fact that (−(`+1)t)i

i! for i = 1, . . . , ` is an alternating series with increasing
magnitude of terms. Hence

E[U − U `] ≥ n

3 · 23/2
(t− 1)

t
min

`∈{2,4,...}

t`

`3/2
.

For t ≥ 2, the above minimum occurs at ` = 2 and hence min`∈{2,4,...}
t`

`3/2
≥ (t−1)3/2

23/2
. For 1 <

t < 2, using the fact that ey ≥ ey for y > 0 and log t ≥ (t − 1) log 2 for 1 < t < 2, we have

min`∈{2,4,...}
t`

`3/2
≥ (2e log t3 )3/2 ≥ (2e log 2(t−1)3 )3/2. Thus for any even value of ` > 0,

E[U − U `] ≥ n(t− 1)5/2

6.05t
.

A similar argument holds for odd values of ` and ` = 0, showing that |E[U − U `]| & n(t−1)5/2
t and

hence the desired NMSE bound.

2.3 Bounds on SGT estimators: arbitrary smoothing

Here we prove Theorem 3 in the main article on the NMSE of SGT estimator for an arbitrary
smoothing distribution. The proof consists of bounds on bias (Lemma 7) and variance (Lemma 5).

Lemma 5. For a random variable L over Z+ and t ≥ 1,

Var(UL − U) ≤ E[Φ+] · E2[tL] + E[U ].
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Proof. By Lemma 1, to bound the variance it suffices to bound the highest coefficient in hL.

|hL
i | ≤ tiP(L ≥ i) = ti

∞∑
j=i

P(L = j) ≤
∞∑
j=i

P(L = j)tj ≤ E[tL]. [7]

The above bound together with Lemma 1 yields the result.

To bound the bias, we need few definitions. For any random variable L over Z+, let

g(y) , −
∞∑
i=1

P (L ≥ i)
i!

(−y)i. [8]

Under this definition, hL(y) = g(yt). The following auxiliary lemma bounds the bias.

Lemma 6. For any random variable L over Z+,

g(y)− (1− e−y) = −e−y
∫ y

0
E
[

(−s)L

L!

]
esds.

Proof. Subtracting [8] from the Taylor series expansion of 1− e−y ,

g(y)− (1− e−y) =
∞∑
i=1

P (L < i)

i!
(−y)i

=

∞∑
i=1

i−1∑
j=0

(−y)i

i!
P (L = j)

=
∞∑
j=0

 ∞∑
i=j+1

(−y)i

i!

P (L = j) .

By the incomplete Gamma function,

∞∑
i=j+1

zi

i!
=
ez

j!

∫ z

0
τ je−τdτ.

Thus by Fubini’s theorem,

g(y)− (1− e−y) =
∞∑
j=0

e−y

j!

∫ −y
0

τ je−τdτP (L = j)

= e−y
∫ −y
0

e−τdτ

 ∞∑
j=0

τ j

j!
P (L = j)


= − e−y

∫ y

0
esds

 ∞∑
j=0

(−s)j

j!
P (L = j)


= − e−y

∫ y

0
E
[

(−s)L

L!

]
esds.
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To bound the bias, we need one more definition. For a random variable L over Z+, let

ξL(t) , max
0≤s<∞

∣∣∣∣E [(−s)L

L!

]∣∣∣∣ e−s/t,
Lemma 7. For a random variable L over Z+,

|E[UL − U ]| ≤ (E[Φ+] + E[U ]) · ξL(t).

Proof. By Lemma 6,

|g(y)− (1− e−y)| ≤ e−y
∫ y

0

∣∣∣∣E [(−s)L

L!

]∣∣∣∣ esds
≤ max

s≤y

∣∣∣∣E [(−s)L

L!

]∣∣∣∣ e−y ∫ y

0
esds

= max
s≤y

∣∣∣∣E [(−s)L

L!

]∣∣∣∣ (1− e−y).
For a symbol x,

e−λx
(
hL(λx)− (1− e−λxt)

)
= e−λx

(
g(λxt)− (1− e−λxt)

)
.

Hence,

|e−λx
(
hL(λx)− (1− e−λxt)

)
| ≤ (1− e−λxt) max

0≤y≤∞
e−y max

0≤s≤yt

∣∣∣∣E [(−s)L

L!

]∣∣∣∣
≤ (1− e−λxt) max

0≤s≤∞

∣∣∣∣E [(−s)L

L!

]∣∣∣∣ e−s/t.
The lemma follows by summing over all the symbols and substituting

∑
x 1 − e−λxt ≤

∑
x 1 −

e−λx(t+1) = E[Φ+] + E[U ].

The effectiveness of SGT estimators can also be demonstrated in terms of their approximation
performance. As shown in Figure 5(a), the Poisson and Binomial smoothing have significantly
smaller approximation error compared to the Taylor series approximation, leading to reduced bias.
The coefficients of the resulting estimator is plotted in Figure 5(b). It is easy to see that the
maximum magnitude of the coefficients is also lower for the smoothed estimators, resulting in
smaller variance. In the following sections, we particularize the main theorem for Poisson and
binomial smoothings.

2.4 Poisson smoothing

Corollary 1. For t ≥ 1, L ∼ poi(r) with r = 1
2t log

(
n(t+1)2

t−1

)
,

En,t(UL) ≤ ct

n1/t
,

where 0 ≤ ct ≤ 3 and limt→∞ ct = 1.
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Figure 5: Comparisons of approximations of hL(·) with E[L] = 2 and t = 2. (a) e−y(1−e−yt−hL(y))
as a function of y. (b) Coefficients hL

i as a function of index i.

Proof. For L ∼ poi(r),

E[tL] = e−r
∞∑
`=0

(rt)`

`!
= er(t−1). [9]

Furthermore,

E
[

(−s)L

L!

]
= e−r

∞∑
j=0

(−sr)j

(j!)2
= e−rJ0(2

√
sr),

where J0 is the Bessel function of first order which takes values in [−1, 1] cf. (1, 9.1.60). Therefore

ξL(t) ≤ e−r. [10]

Equations [9] and [10] together with Theorem 3 yields

E[(UL − U)2] ≤ E[Φ+] · e2r(t−1) + E[U ] + (E[Φ+] + E[U ])2 · e−2r.

Since E[Φ+] ≤ n and E[U ] ≤ nt,

E[(UL − U)2] ≤ ne2r(t−1) + nt+ (n+ nt)2e−2r.

Choosing r = 1
2t log n(t+1)2

t−1 ,

En,t(UL) ≤ 1

(nt)1/t
·
(
t(t− 1)

(t+ 1)2

) 1−t
t

+
1

nt
,

and the lemma with ct , 1
t1/t
·
(
t(t−1)
(t+1)2

) 1−t
t

+ 1
t .
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2.5 Binomial smoothing

We now prove the results when L ∼ Bin(k, q). Our analysis holds for all q ∈ [0, 2/(2 + t)] and in
this range, the performance of the estimator improves as q increases, and hence the NMSE bounds
are strongest for q = 2/(2 + t). Therefore, we consider binomial smoothing for two cases: the
Efron-Thisted suggested value q = 1/(1 + t) and the optimized value q = 2/(2 + t).

Corollary 2. For t ≥ 1 and L ∼ Bin(k, q), if k =
⌊
1
2 log2

nt2

t−1

⌋
and q = 1

t+1 , then

En,t(UL) ≤ ct

nlog2(1+1/t)
,

where ct satisfies 0 ≤ ct ≤ 4 and limt→∞ ct = 1; if k =
⌊
1
2 log3

nt2

t−1

⌋
and q = 2

t+2 , then

En,t(UL) ≤ c′t
(nt)log3(1+2/t)

,

where c′t satisfies 0 ≤ c′t ≤ 7 and limt→∞ c
′
t = 1.

Proof. If L ∼ Bin(k, q),

E[tL] =
k∑
`=0

(
k

`

)
(tq)`(1− q)k−` = (1 + q(t− 1))k.

Furthermore,

E
[

(−s)L

L!

]
=

k∑
j=0

(−s)j

j!

(
k

j

)
(q)j(1− q)k−j = (1− q)kLk

(
qs

1− q

)
,

where

Lk(y) =
k∑
j=0

(−y)j

j!

(
k

j

)
[11]

is the Laguerre polynomial of degree k. If tq
2(1−q) ≤ 1, for any s ≥ 0,

e−
s
t

∣∣∣∣E [(−s)L

L!

]∣∣∣∣ ≤ (1− q)ke−
s
t e

qs
2(1−q) ≤ (1− q)k,

where the first inequality follows from the fact cf. (1, 22.14.12) that for all y ≥ 0 and all k ≥ 0,

|Lk(y)| ≤ ey/2. [12]

Hence for q ≤ 2/(t+ 2),

E[(UL − U)2] ≤ E[Φ+] · (1 + q(t− 1))2k + E[U ] + (E[Φ+] + E[U ])2 · (1− q)2k.

Since E[U ] ≤ nt and E[Φ+] ≤ n,

E[(UL − U)2] ≤ n · (1 + q(t− 1))2k + nt+ (nt+ n)2 · (1− q)2k. [13]
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Substituting the Efron-Thisted suggested q = 1
t+1 results in

En,t(UL) ≤
(

22k

nt2
+

(t+ 1)2

t2

)(
t

t+ 1

)2k

+
1

nt
.

Choosing k =
⌊
1
2 log2

nt2

t−1

⌋
yields the first result with ct ,

(
1
t−1 +

(
t+1
t

)4) · ( t−1
t2

)log2(1+1/t)
+ 1

t . For

the second result, substituting q = 2
t+2 in [13] results in

En,t(UL) ≤
(

32k

nt2
+

(t+ 1)2

t2

)(
t

t+ 2

)2k

+
1

nt
.

Choosing k =
⌊
1
2 log3

nt2

t−1

⌋
yields the result with c′t ,

(
1
t−1 + (t+1)2

t2

(
t+2
t

)2)·( t−1
t2

)log3(1+2/t)
+ 1
t .

In terms of the exponent, the result is strongest for L ∼ Bin(k, 2/(t+ 2)). Hence, we state the
following asymptotic result, which is a direct consequence of Corollary 2:

Corollary 3. For L ∼ Bin(k, q), q = 2
t+2 ,k = blog3(

nt2

t−1)c, and any fixed δ, the maximum t till
which UL incurs a NMSE of δ is

lim
n→∞

max{t : En,t(UL) < δ}
log n

≥ 2

log 3 · log 1
δ

.

Proof. By Corollary 2, if t→∞, then

En,t(UL) ≤ (1 + o(1))n
− 2+o(1)
t log 3 .

where o(1) = ot(1) is uniform in n. Consequently, if t = (α+ o(1)) log n and n→∞, then

lim sup
n→∞

En,t(UL) ≤ e−
2

α log 3 .

Thus for any fixed δ, the maximum t till which UL incurs a NMSE of δ is

lim
n→∞

max{t : En,t(UL) < δ}
log n

≥ 2

log 3 · log 1
δ

.

Corollaries 1 and 2 imply Theorem 1 for the Poisson model.

3 Extensions to other models

Our results so far have been developed for the Poisson model. Next we extend them to the multi-
nomial model (fixed sample size), the Bernoulli-product model, and the hypergeometric model
(sampling without replacement) (4), for which upper bounds of NMSE for general smoothing dis-
tributions that are analogous to Theorem 3 are presented in Theorem 4, 5 and 6, respectively. Using
these results, we obtain the NMSE for Poisson and Binomial smoothings similar to Corollaries 1
and 2. We remark that up to multiplicative constants, the NMSE under multinomial and Bernoulli-
product model are similar to those of Poisson model; however, the NMSE under hypergeometric
model is slightly larger.
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3.1 The multinomial model

The multinomial model corresponds to the setting described in the introduction, where upon observ-
ing n i.i.d. samples, the objective is to estimate the expected number of new symbols U (Xn, Xn+m

n+1 )
that would be observed if we took m more samples. We can write the expected number of new
symbols as

U (Xn, Xn+m
n+1 ) =

∑
x

1Nx=0 · 1N ′x>0.

As before we abbreviate
U , U (Xn, Xn+m

n+1 )

and similarly UE , UE(Xn, t) for any estimator E. The difficulty in handling multinomial distri-
butions is that, unlike the Poisson model, the number of occurrences of symbols are correlated; in
particular, they sum up to n. This dependence renders the analysis cumbersome. In the multino-
mial setting each symbol is distributed according to Bin(n, px) and hence

E[1Nx=i] =

(
n

i

)
pix(1− px)n−i.

As an immediate consequence,

E[Φi] = E

[∑
x

1Nx=i

]
=
∑
x

(
n

i

)
pix(1− px)n−i.

We now bound the bias and variance of an arbitrary linear estimator Uh. We first show that the
bias E[Uh − U ] under the multinomial model is close to that under the Poisson model, which is∑

x e
−λx(h(λx)− (1− e−tλx)) as given in Lemma 1.

Lemma 8. The bias of Uh =
∑∞

i=1 Φihi satisfies∣∣∣∣∣E[Uh − U ]−
∑
x

e−λx
(
h(λx)− (1− e−tλx)

)∣∣∣∣∣ ≤ 2 sup
i
|hi|+ 2.

Proof. First we recall a result on Poisson approximation: For X ∼ Bin(n, p) and Y ∼ poi(np),

|E[f(X)]− E[f(Y )]| ≤ 2p sup
i
|f(i)|, [14]

which follows from the total variation bound dTV(Bin(n, p), poi(np)) ≤ p (2, Theorem 1) and the
fact that dTV(µ, ν) = 1

2 sup‖f‖∞≤1
∫
fdµ−

∫
fdν. In particular, taking f(x) = 1x=0 gives

0 ≤ e−np − (1− p)n ≤ 2p.

Note that the linear estimator can be expressed as Uh =
∑

x hNx . Under the multinomial model,

E[Uh − U ] =
∑
x

ENx∼Bin(n,px)[hNx ]−
∑
x

(1− px)n(1− (1− px)m).

Under the Poisson model,∑
x

e−λx
(
h(λx)− (1− e−tλx)

)
=
∑
x

ENx∼poi(npx)[hNx ]−
∑
x

e−npx(1− e−mpx).

11



Then ∣∣∣∣∣∑
x

ENx∼Bin(n,px)[hNx ]−
∑
x

ENx∼poi(npx)[hNx ]

∣∣∣∣∣ [14]≤ 2 sup
i
|hi|

∑
x

px = 2 sup
i
|hi|.

Furthermore, ∑
x

(1− px)n(1− (1− px)m)−
∑
x

e−npx(1− e−mpx)

≤
∑
x

e−npx(e−mpx − (1− px)m)
[14]

≤
∑
x

e−npx2px ≤ 2.

Similarly,
∑

x(1− px)n(1− (1− px)m)−
∑

x e
−npx(1− e−mpx) ≥ −2. Assembling the above proves

the lemma.

The next result bounds the variance.

Lemma 9. For any linear estimator Uh,

Var(Uh − U) ≤ 8nmax

{
sup
i≥1

h2i , 1

}
+ 8m.

Proof. Recognizing that Uh − U is a function of n + m independent random variables, namely,
X1, . . . , Xn+m drawn i.i.d. from p, we apply Steele’s variance inequality (11) to bound its variance.
Similar to [3.1],

Uh − U =
∑
x

hNx + 1Nx=01N ′x>0

Changing the value of any one of the first n samples changes the multiplicities of two symbols, and
hence the value of Uh−U can change by at most 4 max(maxi≥1 |hi|, 1). Similarly, changing any one
of the last m samples changes the value of Uh − U by at most four. Applying Steele’s inequality
gives the lemma.

Lemmas 8 and 9 are analogous to Lemma 1. Together with [7] and Lemma 7, we obtain the
main result for the multinomial model.

Theorem 4. For t ≥ 1 and any random variable L over Z+,

E[(UL − U)2] ≤ 8nE2[tL] + 8m+
(
(n(t+ 1)ξL(t) + 2E[tL] + 2

)2
.

Similar to Corollaries 1 and 2, one can compute the NMSE for Binomial and Poisson smoothings.
We remark that up to multiplicative constants the results are identical to those for the Poisson
model.

3.2 Bernoulli-product model

Consider the following species assemblage model. There are k distinct species and each one can
be found in one of n independent sampling units. Thus every species can be present in multiple
sampling units simultaneously and each sampling unit can capture multiple species. For example
species x can be found in sampling units 1, 3 and 5 and species y can be found in units 2, 3, and 4.

12



Given the data collected from n sampling units, the objective is to estimate the expected number
of new species that would be observed if we placed m more units.

The aforementioned problem is typically modeled as by the Bernoulli-product model. Since, in
this model each sample only has presence-absence data, it is often referred to as incidence model (6).
For notational simplicity, we use the same notation as the other three models. In Bernoulli-
product model, for a symbol x, Nx denotes the number of sampling units in which x appears
and Φi denotes the number of symbols that appeared in i sampling units. Given a set of distinct
symbols (potentially infinite), each symbol x is observed in each sampling unit independently with
probability px and the observations from each sampling unit are independent of each other. To
distinguish from the multinomial and Poisson sampling models where each sample can be only one
symbol, we refer to samples here as sampling units. Given the results of n sampling units, the
goal is to estimate the expected number of new symbols that would appear in the next m sampling
units. Let pS =

∑
x px. Note that pS is also the expected number of symbols that we observe for

each sampling unit and need not sum to 1. For example, in the species application, probability of
catching bumble bee can be 0.5 and honey bee be 0.7.

This model is significantly different from the multinomial model in two ways. Firstly, here given
n sampling units the number of occurrences of symbols are independent of each other. Secondly,
pS ,

∑
x px need not be 1. In the Bernoulli-product model, the probability observing each symbol

at a particular sample is px and hence in n samples, the number of occurrences is distributed
Bin(n, px). Therefore the probability that x is be observed in i sampling units is

E[1Nx=i] =

(
n

i

)
pix(1− px)n−i,

and an immediate consequence on the number of distinct symbols that appear i sampling units is

E[Φi] = E

[∑
x

1Nx=i

]
=
∑
x

(
n

i

)
pix(1− px)n−i.

Furthermore, the expected total number of symbols is npS and hence

n∑
i=1

E[Φi]i = npS .

Under the Bernoulli-product model the objective is to estimate the number of new symbols that
we observe in m more sampling units and is

U (Xn, Xn+m
n+1 ) =

∑
x

1Nx=0 · 1N ′x>0.

As before, we abbreviate
U , U (Xn, Xn+m

n+1 )

and similarly UE , UE(Xn, t) for any estimator E. Since the probabilities need not add up to 1,
we redefine our definition of En,t(UE) as

En,t(UE) , maxEp
(
U − UE

ntpS

)2

.

13



Under this model, the SGT estimator satisfy similar results to that of Corollaries 1 and 2, up to
multiplicative constants. The main ingredient is to bound the bias and variance (like Lemma 1).
We note that since the marginal of Nx is Bin(n, px) under both the multinomial and the Bernoulli-
product model, the bias bound follows entirely analogously as in Lemma 8. The proof of variance
bound is very similar to that of Lemma 1 and hence is omitted.

Lemma 10. The linear estimator Uh has bias∣∣∣∣∣E[Uh − U ]−
∑
x

e−λx
(
h(λx)− (1− e−tλx)

)∣∣∣∣∣ ≤ 2pS

(
sup
i
|hi|+ 1

)
,

and the variance

Var(Uh − U) ≤ npS ·
(
t+ sup

i≥1
h2i

)
.

The above lemma together with [7] and Lemma 7 yields the main result for the Bernoulli-product
model.

Theorem 5. For any random variable L over Z+ and t ≥ 1,

E[(UL − U)2] ≤ npS ·
(
t+ E2[tL]

)
+ (n(t+ 1)pSξL(t) + 2pS (E[tL] + 1))2.

Similar to Corollaries 1 and 2, one can compute the normalized mean squared loss for Binomial
and Poisson smoothings. We remark that up to multiplicative constants the results would be similar
to that for the Poisson model.

3.3 The hypergeometric model

The hypergeometric model considers the population estimation problem with samples drawn with-
out replacement. Given n samples drawn uniformly at random, without replacement from a set
{y1, . . . , yR} of R symbols, the objective is to estimate the number of new symbols that would be
observed if we had access to m more random samples without replacement, where n + m ≤ R.
Unlike the Poisson, multinomial, and Bernoulli-product models we have considered so far, where
the samples are independently and identically distributed, in the hypergeometric model the samples
are dependent hence a modified analysis is needed.

Let rx ,
∑R

i=1 1yi=x be the number of occurrences of symbol x in the R symbols, which
satisfies

∑
x rx = R. Denote by Nx the number of times x appears in the n samples drawn without

replacements, which is distributed according to the hypergeometric distribution Hyp(R, rx, n) with
the following probability mass function:2

P(Nx = i) =

(
rx
i

)(
R−rx
n−i

)(
R
n

) .

We also denote the joint distribution of {Nx}, which is multivariate hypergeometric, by Hyp({rx}, n).
Consequently,

E[Φi] =
∑
x

P(Nx = i) =
∑
x

(
rx
i

)(
R−rx
n−i

)(
R
n

) .

2We adopt the convention that
(
n
k

)
= 0 for all k < 0 and k > n throughout.
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Furthermore, conditioned on Nx = 0, N ′x is distributed as Hyp(R− n, rx,m) and hence

E[U ] =
∑
x

E[1Nx=0] · E[1N ′x>0|1Nx=0] =
∑
x

(
R−rx
n

)(
R
n

) ·

(
1−

(
R−n−rx

m

)(
R−n
m

) )
. [15]

As before, we abbreviate
U , U (Xn, Xn+m

n+1 )

which we want to estimate and similarly for any estimator UE , UE(Xn, t). We now bound the
variance and bias of a linear estimator Uh under the hypergeometric model.

Lemma 11. For any linear estimator Uh,

Var(Uh − U) ≤ 12n sup
i
h2i + 6n+ 3m.

Proof. We first note that for a random variable Y that lies in the interval [a, b],

Var(Y ) ≤ (a− b)2

4
.

For notational convenience define h0 = 0. Then Uh =
∑

x hNx . Let Z =
∑

1Nx=0 and Z ′ =∑
1Nx=N ′x=0 denote the number of unobserved symbols in the first n samples and the total n+m

samples, respectively. Then U = Z − Z ′. Since the collection of random variables 1Nx=0 indexed
by x are negatively correlated, we have

Var
(
Z) ≤

∑
x

Var(1Nx=0

)
=
∑
x

E[1Nx=0(1− 1Nx=0)] ≤
∑
x

E [1Nx>0] ≤ n.

Analogously, Var(Z ′) ≤ n+m and hence

Var(Uh − U) = Var(Uh − Z + Z ′) ≤ 3Var(Uh) + 3Var(Z ′) + 3Var(Z) ≤ 3Var(Uh) + 6n+ 3m.

Thus it remains to show
Var(Uh) ≤ 4n sup

i
h2i . [16]

By induction on n, we show that for any n ∈ N, any set of nonnegative integers {rx} and any
function (x, k) 7→ f(x, k) with k ∈ Z+ satisfying f(x, 0) = 0,

Var

(∑
x

f(x,Nx)

)
≤ 4n‖f‖2∞, [17]

where {Nx} ∼ Hyp({rx}, n) and ‖f‖∞ = supx,k |f(x, k)|. Then the desired Equation [16] follows
from [17] with f(x, k) = hk.

We first prove [17] for n = 1, in which case exactly one of Nx’s is one and the rest are zero.
Hence, |

∑
x f(x,Nx)| ≤ ‖f‖∞ and Var(

∑
x f(x,Nx)) ≤ ‖f‖2∞.

Next assume the induction hypothesis holds for n − 1. Let X1 denote the first sample and let
Ñx denote the number of occurrences of symbol x in samples X2, . . . , Xn. Then Nx = Ñx +1X1=x.
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Furthermore, conditioned on X1 = y, {Ñx} ∼ Hyp({r̃x}, n− 1), where r̃x = rx − 1x=y. By the law
of total variance, we have

Var

(∑
x

f(x,Nx)

)
= E [V (X1)] + Var (g(X1)) . [18]

where

V (y) , Var

(∑
x

f(x,Nx)

∣∣∣∣∣X1 = y

)
, g(y) , E

[∑
x

f(x,Nx)

∣∣∣∣∣X1 = y

]
For the first term in [18], note that

V (y) = Var

(∑
x

f(x, Ñx + 1x=y)

∣∣∣∣∣X1 = y

)
= Var

(∑
x

fy(x, Ñx)

∣∣∣∣∣X1 = y

)
.

where we defined fy(x, k) , f(x, k + 1x=y). Hence, by the induction hypothesis, V (y) ≤ 4(n −
1)‖fy‖2∞ ≤ 4(n− 1)‖f‖2∞ and E [V (X1)] ≤ 4(n− 1)||f ||2∞.

For the second term in [18], observe that for any y 6= z

g(y) = E[f(y, Ñy + 1)|X1 = y] + E[f(z, Ñz)|X1 = y] + E

∑
x 6=y,z

f(x, Ñx)

∣∣∣∣∣X1 = y

 ,
and

g(z) = E[f(z, Ñz + 1)|X1 = z] + E[f(y, Ñy)|X1 = z] + E

∑
x 6=y,z

f(x, Ñx)

∣∣∣∣∣X1 = z

 ,
Observe that {Nx}x 6=y,z have the same joint distribution conditioned on eitherX1 = y orX1 = z and
hence E[

∑
x 6=y,z f(x, Ñx)|X1 = y] = E[

∑
x 6=y,z f(x, Ñx)|X1 = z]. Therefore |g(y) − g(z)| ≤ 4‖f‖∞

for any y 6= z. This implies that the function g takes values in an interval of length at most 4‖f‖∞.
Therefore Var(g(X1)) ≤ 1

4(4‖f‖∞)2 = 4‖f‖2∞. This completes the proof of [17] and hence the
lemma.

Let

B(h, rx) ,
rx∑
i=1

(
rx
i

)( n
R

)i (
1− n

R

)rx−i
hi −

(
1− n

R

)rx (
1−

(
1− m

R− n

)rx)
.

To bound the bias, we first prove an auxiliary result.

Lemma 12. For any linear estimator Uh,∣∣∣∣∣E[Uh − U ]−
∑
x

B(h, rx)

∣∣∣∣∣ ≤ 4 max

(
sup
i
|hi|, 1

)
+

2R

R− n
.

Proof. Recall that Nx ∼ Hyp(R, rx, n). Let Ñx be a random variable distributed as Bin(rx, n/R).
Since Hyp(R, rx, n) coincides with Hyp(R,n, rx), we have

dTV(Bin(rx, n/R),Hyp(R, rx, n)) = dTV(Bin(rx, n/R),Hyp(R,n, rx)) ≤ 2rx
R
,
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where the last inequality follows from (7, Theorem 4). Since dTV(µ, ν) = 1
2 sup‖f‖∞≤1

∫
fdµ −∫

fdν = supE µ(E)− ν(E), we have∣∣∣E[f(Nx)]− E[f(Ñx)]
∣∣∣ ≤ 4rx

R
sup
i
|f(i)|, [19]

and∣∣∣∣∣
(
R−n−rx

m

)(
R−n
m

) −
(

1− m

R− n

)rx∣∣∣∣∣ ≤ dTV(Bin(rx,m/(R− n)),Hyp(R− n,m, rx)) ≤ 2rx
R− n

. [20]

Define fx(i) = hi − 1i=0

(
1−

(
1− m

R−n

)rx)
. In view of [15] and the fact that

∑
rx = R, we have∣∣∣∣∣E[Uh − U ]−

∑
x

E[fx(Nx)]

∣∣∣∣∣ ≤ 2R

R− n
.

Applying [19] yields∑
x

∣∣∣E[fx(Ñx)]− E [fx(Nx)]
∣∣∣ ≤ 4 sup

i
|fx(i)| ≤ 4 max

(
sup
i
|hi|, 1

)
.

The above equation together with [20] results in the lemma since B(h, rx) = E[fx(Ñx)].

Note that to upper bound the bias, we need to bound
∑

xB(h, rx). It is easy to verify for the
GT coefficients hGT

i = − (−t)i with t = m/n, B(hGT, rx) = 0. Therefore, if we choose h = hL based
on the tail of random variable L with hL

i = hGT
i P (L ≥ i) as defined in [6], we have

B(hL, rx) =

rx∑
i=1

(
rx
i

)( n
R

)i (
1− n

R

)rx−i
(−t)iP(L < i)

=
(

1− n

R

)rx rx∑
i=1

(
rx
i

)(
− m

R− n

)i
P(L < i). [21]

Similar to Lemma 6, our strategy is to find an integral presentation of the bias. This is done in
the following lemma.

Lemma 13. For any y ≥ 0 and any k ∈ N,

k∑
i=1

(
k

i

)
(−y)iP(L < i) = −k(1− y)k

∫ y

0
E
[(
k − 1

L

)
(−s)L

]
(1− s)−k−1ds. [22]

Remark 1. For the special case of y = 1, [22] is understood in the limiting sense: Letting δ = 1−y
and β = 1−s

δ , we can rewrite the right-hand side as

−k
∫ 1/δ

1
E
[(
k − 1

L

)
(βδ − 1)L

]
kβ−k−1dβ.
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For all |δ| ≤ 1 and hence 0 ≤ 1− βδ ≤ 2, we have∣∣∣∣E [(k − 1

L

)
(βδ − 1)L

]∣∣∣∣ =
∣∣∣E [(k − 1

L

)
(βδ − 1)L1L<k

] ∣∣∣ ≤ 4k.

By dominated convergence theorem, as δ → 0, the right-hand side converges to −E
[(
k−1
L

)
(−1)L

]
and coincides with the left-hand side, which can be easily obtained by applying

(
k
i

)
=
(
k−1
i

)
+
(
k−1
i−1
)
.

Proof. Denote the left-hand side of [22] by F (y). Using i
(
k
i

)
= k

(
k−1
i−1
)
, we have

F ′(y) =

k∑
i=1

(
k

i

)
(−i)(−y)i−1P(L < i) = −k

k∑
i=1

(
k − 1

i− 1

)
(−y)i−1P(L < i)

= − k
k∑
i=1

(
k − 1

i− 1

)
(−y)i−1P(L < i− 1)− k

k∑
i=1

(
k − 1

i− 1

)
(−y)i−1P(L = i− 1). [23]

The second term is simply −kE
[(
k−1
L

)
(−y)L

]
, G(y). For the first term, since L ≥ 0 almost surely

and
(
k
i

)
=
(
k−1
i

)
+
(
k−1
i−1
)
, we have

k
k∑
i=1

(
k − 1

i− 1

)
(−y)i−1P(L < i− 1) = k

k∑
i=1

(
k − 1

i

)
(−y)iP(L < i)

= k
k∑
i=1

(
k

i

)
(−y)iP(L < i)− k

k∑
i=1

(
k − 1

i− 1

)
(−y)iP(L < i)

= kF (y)− yF ′(y). [24]

Combining [23] and [24] yields the following ordinary differential equation:

F ′(y)(1− y) + kF (y) = G(y), F (0) = 0,

whose solution is readily obtained as F (y) = (1− y)k
∫ y
0 (1− s)−k−1G(s)ds, i.e., the desired Equa-

tion [22].

Combining Lemma 12–13 yields the following bias bound:

Lemma 14. For any random variable L over Z+ and t = m/n ≥ 1,

|E[UL − U ]| ≤ nt · max
0≤s≤1

∣∣∣∣E [(rx − 1

L

)
(−s)L

]∣∣∣∣+ 4E[tL] +
2R

R− n
.

Proof. Recall the coefficient bound [7] that supi |hi| ≤ E[tL]. By Lemma 12 and the assumption
that t ≥ 1, ∣∣∣∣∣E[Uh − U ]−

∑
x

B(hL, rx)

∣∣∣∣∣ ≤ 4E[tL] +
2R

R− n
.
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Thus it suffices to bound
∑

xB(hL, rx). For every x, using [21] and applying Lemma 13 with
y = m

R−n and k = rx, we obtain

B(hL, rx) = −
(

1− n+m

R

)rx ∫ m
R−n

0
E
[(
rx − 1

L

)
(−s)L

]
rx(1− s)−rx−1ds.

Since 0 ≤ m
R−n ≤ 1, letting K = max0≤s≤1

∣∣E[(rx−1L

)
(−s)L

]∣∣, we have

|B(hL, rx)| ≤
(

1− n+m

R

)rx
K

∫ m
R−n

0
rx(1− s)−rx−1ds.

= K

((
1− n

R

)rx
−
(

1− n+m

R

)rx)
≤ K

(
1− n

R

)rx−1 mrx
R

,

where the last inequality follows from the convexity of x 7→ (1− x)rx . Summing over all symbols x
results in the lemma.

Combining Lemma 14 and Lemma 11 gives the following NMSE bound:

Theorem 6. Under the assumption of Lemma 14,

E[(UL − U)2] ≤ 12(n+ 1)E2[tL] + 6n+ 3m+
12R2

(R− n)2
+ 3m2 max

1≥α>0

∣∣∣∣E [(rx − 1

L

)
(−α)L

]∣∣∣∣2 .
As before, we can choose various smoothing distribution and obtain upper bounds on the mean

squared error.

Corollary 4. If L ∼ poi(r) and R− n ≥ m ≥ n, then

E[(UL − U)2] ≤ 12(n+ 1)e2r(t−1) + 3m2e−r + 9m+ 48.

Furthermore, if r = 1
2t−1 · log(nt2),

En,t(UL) ≤ 27

(nt2)
1

2t−1

+
9nt+ 48

(nt)2
.

Proof. For L ∼ poi(r), E[tL] = er(t−1) and

max
0≤α≤1

∣∣∣∣E [(rx − 1

L

)
(−α)L

]∣∣∣∣ = e−r max
0≤α≤1

|Lrx−1 (αr) | ≤ e−r/2,

where Lrx−1 is the Laguerre polynomial of degree rx−1 defined in [11] and the last equality follows
the bound [12]. Furthermore, R/(R − n) = 1 + n/(R − n) ≤ 1 + n/m ≤ 2 and n ≤ m, and hence
the first part of the lemma. The second part follows by substituting the value of r.
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4 Lower bounds

Under the multinomial model (i.i.d. sampling), we lower bound the risk En,t(UE) for any estimator
UE using the support size estimation lower bound in (15). Since the lower bound in (15) also holds
for the Poisson model, so does our lower bound.

Recall that S(p) =
∑

x 1px>0 denotes the support size of a distribution p. It is shown that given
n i.i.d. samples drawn from a distribution p whose minimum non-zero mass p+min is at least 1/k,
the minimax mean-square error for estimating S(p) satisfies

min
Ŝ

max
p:p+min≥1/k

E[(Ŝ − S(p))2] ≥ c′k2 · exp

(
−cmax

(√
n log k

k
,
n

k

))
. [25]

where c, c′ are universal positive constants with c > 1. We prove Theorem 2 under the multinomial
model with c being the universal constant from [25].

Suppose there is an estimator Û for U that can accurately predict the number of new symbols
arising in the next m samples, we can then produce a support size estimator by adding the number
of symbols observed, Φ+, in the current n samples, namely,

Ŝ = Û + Φ+. [26]

Note that U =
∑

x 1Nx=01N ′x>0. For m = ∞, U is the total number of unseen symbols and we

have S(p) = U + Φ+. Consequently, if Û can foresee far into the future (i.e., for too large an m),
then [26] will constitute a support size estimator that is too good to be true.

Combining Theorem 2 with the positive result (Corollary 1 or 2) yields the following character-
ization of the minimax risk:

Corollary 5. For all t ≥ c,

inf
UE
En,t(UE) = exp

(
−Θ

(
max

{
log n

t
, 1

}))
Consequently, as n→∞, the minimax risk infUE En,t(UE)→ 0 if and only if t = o(log n).

Proof of Theorem 2. Recall that m = nt. Let Û be an arbitrary estimator for U . The support size
estimator Ŝ = Û +Φ+ defined in [26] must obey the lower bound [25]. Hence for some p satisfying
p+min ≥ 1/k,

E[(S(p)− Ŝ)2] ≥ c′k2 · exp

(
−cmax

(√
n log k

k
,
n

k

))
. [27]

Let S = S(p) denote the support size, which is at most k. Let Ũ , EXn+m
n+1

[U ] be the ex-

pectation of U over the unseen samples Xn+m
n+1 conditioned on the available samples Xn

1 . Then

Ũ =
∑

x 1Nx=0

(
1− (1− px)nt

)
. Since Û is independent of Xn+m

n+1 , by convexity,

EXn+m
1

[(U − Û)2] ≥ EXn
1

[(EXn+m
n+1

[U − Û ])2] = E[(Ũ − Û)2]. [28]

Notice that with probability one,

|S − Ũ − Φ+| ≤ Se−nt/k ≤ ke−nt/k, [29]
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which follows from

Ũ + Φ+ =
∑

x:px>0

1Nx=0

(
1− (1− px)nt

)
+ 1Nx>0 ≤ S,

and, on the other hand,

Ũ + Φ+ =
∑

x:px≥1/k

1Nx=0

(
1− (1− px)nt

)
+ 1Nx>0

≥
∑
x

1Nx=0

(
1− (1− 1/k)nt

)
+ 1Nx>0 ≥ S(1− (1− 1/k)nt) ≥ S(1− e−nt/k).

Expanding the left hand side of [27],

E[(S − Ŝ)2] = E
[(
S − Ũ − Φ+ + Ũ − Û

)2]
≤ 2E[(S − Ũ − Φ+)2] + 2E[(Ũ − Û))2]

[29]

≤ 2k2e−2nt/k + 2E[(Ũ − Û))2]
[28]

≤ 2k2e−2nt/k + 2E[(U − Û))2]

Let

k = min

{
nt2

c2 log nt2

c2

,
nt

log 4
c′

}
,

which ensures that

c′k2 · exp

(
−cmax

{√
n log k

k
,
n

k

})
≥ 4k2e−2nt/k. [30]

Then
E[(U − Û)2] ≥ k2e−2nt/k,

establishes the following lower bound with α , c′2

4 log2(4/c′)
and β , c2:

min
E
En,t(UE) ≥ min

{
α,

4t2

β2 log2 nt
2

β

(
β

nt2

)2β/t
}
.

To verify [30], since t ≥ c by assumption, we have exp(2tnk −
cn
k ) ≥ exp(ntk ) ≥ 4

c′ . Similarly, since

k log k ≤ nt2

c2
by definition, we have 2nt

k ≥ 2c′
√

n log k
k and hence exp

(
2tn
k −c

√
n log k
k

)
≥ exp(ntk ) ≥ 4

c′ ,

completing the proof of [30].
Thus we have shown that there exist universal positive constants α, β such that

min
E
En,t(UE) ≥ min

{
α,

4t2

β2 log2 nt
2

β

(
β

nt2

)2β/t
}
.

Let y =
(
nt2

β

)2β/t
, then

min
E
En,t(UE) ≥ min

{
α, 16

1

y log2 y

}
.

Since y > 1, y3 ≥ y log2 y and hence for some constants c1, c2 > 0,

min
E
En,t(UE) ≥ min

{
α, 16

1

y3

}
≥ min

{
α,

(
β

nt2

)6β/t
}
≥ c1 min

{
1,

(
1

n

)c2/t}
≥ c1

nc2/t
.
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5 Connections to support size estimation

Approximation-theoretic techniques for estimating norms and other properties such as support size
and entropy have been successfully used in statistics. For example, estimating the Lp norms in
Gaussian models (10, 5) and estimating entropy (14, 9) and support size (15) of discrete distri-
butions. Among the aforementioned problems, support size estimation is closest to ours. Hence,
we now discuss the difference between the approximation technique we use and the those used for
support size estimation.

The support size of a discrete distribution p is

S(p) =
∑
x

1px>0. [31]

At first glance, estimating S(p) may appear similar to species estimation as one can convert a
support size estimator Ŝ to Û by

Û = Ŝ −
∞∑
i=1

Φi.

However, without any assumption on the distribution it is impossible to estimate the support size.
For example, regardless of the number of samples collected, there could be infinitely many symbols
with arbitrarily small combined probabilities that have not been observed. A possible assumption
is therefore that the lowest non-zero probability of the underlying distribution p, denoted by p+min,
is at least 1/k, for some known k. Under this assumption (12) applied a linear programming
estimator similar to the one in (8), to estimate the support size within an additive error of kε with
constant probability using Ω( k

log k
1
ε2

) samples. Based on best polynomial approximations, recently
(15) showed that the minimax risk of support size estimation satisfies

min
Ŝ

max
p:p+min≥1/k

Ep[(Ŝ − S(p))2] = k2 exp

(
−Θ

(
max

{√
k log k

n
,
k

n
, 1

}))
,

and therefore the optimal sample complexity of for estimating S(p) within an additive error of kε
with constant probability is Θ( k

log k log2 1
ε ). Note that the assumption p+min ≥ 1/k is crucial for this

result to hold as otherwise estimation is impossible. By contrast, we show later that for species
estimation no such assumptions are necessary. The intuition is that if there exist a large number
of very improbable symbols, most likely they will not appear in the new samples either.

To estimate the support size, in view of [31] and the assumption p+min ≥ 1/k, the technique of
(15) is to approximate the indicator function y 7→ 1y≥1/k in the range {0} ∪ [1/k, log k/n] using

Chebyshev polynomials. Since by assumption no px lies in (0, 1k ), the approximation error in this
interval is irrelevant. For example, in Figure 6(a), the red curve is a useful approximation for S(p),
even though it behaves badly over (0, 1/k). To estimate the average number of unseen symbols
U , in view of Lemma 1, we need to approximate y 7→ 1 − e−yt over the entire [0,∞) as in, e.g.,
Figure 6(b). Concurrent to this work, (13) proposed a linear programming algorithm to estimate
U . However, their NMSE is O( t

logn) compared to the optimal result O(n−1/t) in Theorem 1, thus
exponentially weaker for t = o(log n). Furthermore, the computational cost far exceeds those of
our linear estimators.
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Figure 6: (a) a good approximation for support size; (b) a good approximation for species estima-
tion.

6 Monotone-concave modification

As argued in (3), it is often useful for species estimators to be nonnegative as well as monotone
and concave in the range of extrapolation m;3 however, linear estimators including Good-Toulmin
and SGT need not satisfy these properties. To address this issue, we can apply to any estimator
sequence {UE

m}m≥0 the following transform: for m = 0, let ŨE
0 = 0, for m = 1

ŨE
m = max

(
ŨE
0 , U

E
1 )
)
,

and for every m > 0,
ŨE
m = min(max(ŨE

m−1, U
E
m), 2ŨE

m−1 − ŨE
m−2),

resulting in ŨE that is always non-negative. Furthermore it is both monotone and concave in m.

Lemma 15. ŨE
m is always non-negative and it is both monotone and concave in m.

Proof. For concavity, observe that

ŨE
m − ŨE

m−1 = min(max(ŨE
m−1, U

E
m), 2ŨE

m−1 − ŨE
m−2)− ŨE

m−1

≤ 2ŨE
m−1 − ŨE

m−2 − ŨE
m−1

= ŨE
m−1 − ŨE

m−2,

since the difference between consecutive terms is decreasing the sequence is concave in m.
The proof of monotonicity is by induction. Observe that ŨE

1 ≥ ŨE
0 by construction. For any

m ≥ 2, we prove by induction that ŨE
m ≥ ŨE

m−1. Suppose ŨE
m−1 ≥ ŨE

m−2), then

ŨE
m = min(max(ŨE

m−1, U
E
m), 2ŨE

m−1 − ŨE
m−2) ≥ min(max(ŨE

m−1, U
E
m), ŨE

m−1) ≥ ŨE
m−1,

where the first inequality follows by the inductive hypothesis.
Finally, since the sequence is monotone and ŨE

0 = 0, it is always nonnegative.

3A sequence am is said to be concave if the successive difference is non-increasing, i.e., am+1 − am ≤ am − am−1
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In Figure 7, we compare the performance of the SGT estimator (with Binomial smoothing of
parameter q = 2/(2 + t)) and its monotone-concave version on the premise as Fig. 3 in the main
paper. As before, the true value is shown in black, and the estimators are colored, with the solid
line representing their means and the shaded band corresponding to one standard deviation. For
computational purposes we apply a variation of this transform, relating estimates that are 0.2n
apart instead of 1 apart. Note that the performance of the original and modified versions are
similar.
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Figure 7: Comparisons of the estimated number of unseen species as a function of t. All experiments
have distribution support size 106, n = 5 · 105, and are averaged over 100 iterations.
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