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Abstract— We formulate Witsenhausen’s counterexample in
stochastic control as an optimization problem involving the
quadratic Wasserstein distance and the minimum mean-square
error. Classical results are recovered as immediate consequences
of transport-theoretic properties. New results and bounds on
the optimal cost are also obtained. In particular, we show that
the optimal controller is a strictly increasing function with a
real analytic left inverse.

I. INTRODUCTION

In [1] Witsenhausen constructed a linear quadratic Gaus-
sian (LQG) team problem with non-classical information
structure and showed that the linear controller is not neces-
sarily optimal. This serves as a counterexample to the con-
jectured optimality of linear controllers in LQG problems.
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Fig. 1. Witsenhausen’s decentralized stochastic control problem.

As illustrated in Fig. 1, Witsenhausen’s counterexample is
a two-stage decentralized stochastic control problem, where
the goal is to minimize the weighted average control cost
k2E

[
U2

1

]
+ E

[
X2

2

]
over all pairs of controllers γ1 and γ2

that are Borel measurable. According to the notation in [1],
let f(x) = γ1(x) + x and g(x) = γ2(x) and denote the
weighted control cost achieved by (f, g) by

J(f, g) = k2E
[
(f(X0)−X0)2

]
(1)

+ E
[
(f(X0)− g(f(X0) +N))2

]
, (2)

where N ∼ N (0, 1) is independent of X0, whose distribution
is fixed and arbitrary.

For a given f , the optimal g is the minimum mean-square
error (MMSE) estimator of f(X0), i.e., the conditional mean,
given the noisy observation:

g∗f (·) = E [f(X0)|f(X0) +N = ·] . (3)

Therefore

min
g
J(f, g) = k2E

[
(f(X0)−X0)2

]
+ mmse(f(X0), 1).

(4)
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where

mmse(X,σ2) , min
g

E
[
(X − g(σX +N))2

]
(5)

= E [var(X|σX +N)] . (6)

Since (6) only depends on the distribution of X , we also
denote mmse(PX , σ2) = mmse(X,σ2). The properties of
the MMSE functional as a function of the input distribution
and the signal-to-noise-ratio have been studied in [2] and [3]
respectively.

Next we define the optimal cost functional. Introduce a
scale parameter by letting X0 = σX with X distributed ac-
cording to some probability measure P . Denote the optimal
cost by

J∗(k2, σ2, P )

, inf
f,g

J(f, g) (7)

= inf
f
k2E

[
(X0 − f(X0))2

]
+ mmse(f(X0), 1) (8)

= inf
f
k2σ2E

[
(X − f(X))2

]
+ σ2mmse(f(X), σ2). (9)

The optimal affine cost is denoted by J∗a (k2, σ2, P ), defined
as the infimum in (7) with f and g restricted to affine
functions. Direct computation shows that (see [1, p. 141])

J∗a (k2, σ2, P ) = min
λ≥0

k2σ2(1− λ)2 varP +
λ2σ2 varP

1 + λ2σ2 varP
.

(10)
When the input is standard Gaussian, we simplify

J∗(k2, σ2) , J∗(k2, σ2,N (0, 1)). (11)

The same convention also applies to J∗a (k2, σ2).
The above is the usual formulation of the Witsenhausen’s

problem. In [1], it is shown that optimal controller that attains
the infimum in (9) exists for arbitrary input distribution and
is a non-decreasing function. Moreover, for Gaussian input
distribution, Witsenhausen showed that

J∗(k2, σ2) < J∗a (k2, σ2), (12)

holds in the regime of k = 1
σ and sufficiently large

σ. The proof involves showing that a two-point quantizer
f(x) = sgn(x) yields strictly smaller cost than the best
affine controller. This observation has been further extended:
[4] lowered the cost by letting f(x) =

√
2
π sgn(x), while

[5] showed that the ratio between the optimal cost and
the optimal affine cost can be made unbounded by using
successively finer quantizers of the Gaussian distribution, i.e.,

lim
σ→∞

J∗a (σ−2, σ2)
J∗(σ−2, σ2)

=∞. (13)



Numerical algorithms that provide upper bounds on the
optimal cost have been proposed using neural networks [6],
hierarchical search [7], learning approach [8], etc. Based
on information-theoretical ideas, [9], [10] developed upper
and lower bounds that are within a constant factor using
lattice quantization and joint-source-channel coding converse
respectively. For a comprehensive review see [11], [12].
Determining the optimal controller remains an open problem.

In this paper, we take a new optimal transport theoretic
approach and give a concise formulation of Witsenhausen’s
counterexample in terms of the quadratic Wasserstein dis-
tance and the MMSE functional. Capitalizing on properties
of the optimal transport mapping, Witsenhausen’s classical
results can be recovered and extended with much simpler
proofs. Moreover, we show that

1) For Gaussian input, the optimal controller is a strictly
increasing function with a real analytic left inverse.
Based on the numerical evidence in [6], it was believed
that piecewise affine controller is optimal (see for ex-
ample [7, p. 384] and the conjecture in [10]). However,
our result shows that this is not the case.

2) For Gaussian input, (12) holds for any k < 0.564 and
sufficiently large σ. This improves the result in [1]
which only applies to the regime of k = 1

σ .
3) For any input distribution, the best affine controller is

asymptotically optimal in the weak-signal regime (σ →
0).

Various properties and bounds on the optimal cost are also
obtained.

II. OPTIMAL TRANSPORT THEORY

Optimal transport theory deals with the most economic
way of distributing supply to meet the demand. Consider the
following illustrative example [13, Chapter 3]: two bakeries
are located at x1 and x2, producing three and four units of
bread each day respectively. Three cafés, located at y1, y2

and y3, consume two, four and one units of bread daily
respectively. Assuming the transport cost is proportional to
the distance and the amount of bread, the question is how to
transport the bread from bakeries to cafés so as to minimize
the total cost. One feasible transport plan is illustrated in
Fig. 2, whose total cost is 2|x1−y1|+ |x1−y3|+4|x2−y2|.
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Fig. 2. Example of a transport plan.

Monge-Kantorovich’s probabilistic formulation of the op-
timal transportation problem is as follows: Given probability
measures P and Q and a cost function c : R2 → R, define

inf
PXY
{E [c(X,Y )] : PX = P, PY = Q} (14)

where the infimum is over all joint distributions (couplings)
of (X,Y ) with prescribed marginals P and Q. To see the
relationship between (14) and the optimal transport problem,
note that the example in Fig. 2 corresponds to

PX =
3
7
δx1 +

4
7
δx2 , PY =

2
7
δy1 +

4
7
δy2 +

1
7
δy3

(15)

PY |X=x1 =
2
3
δy1 +

1
3
δy3 , PY |X=x2 = δy2 , (16)

where δx is the Dirac measure (point mass) at x. The
transportation cost normalized by the total amount of bread
is exactly E [c(X,Y )] with c(x, y) = |x− y|.

With c(x, y) = (x−y)2, the quadratic Wasserstein distance
[13, Chapter 6] is defined as follows:

Definition 1. The quadratic Wasserstein space on R is de-
fined as the collection of all Borel probability measures with
finite second moments, denoted by P2(R). The quadratic
Wasserstein distance is a metric on P2(R), defined for
P,Q ∈ P2(R) as

W2(P,Q) = inf
PXY
{‖X − Y ‖2 : PX = P, PY = Q} , (17)

where ‖X − Y ‖2 ,
√

E [(X − Y )2].

The W2 distance metrizes convergence in distribution and
of second-order moments, i.e., W2(PXk , PX) → 0 if and
only if Xk

D−→X and E[X2
k ]→ E[X2].

Let FP and F−1
P denote the cumulative distribution func-

tion (CDF) and quantile function (functional inverse of the
CDF [14, Exercise II.1.18]) of P respectively. The infimum
in (17) is attained by a unique coupling P ∗XY , which can be
represented by X = F−1

P (U) and Y = F−1
Q (U), for some

U uniformly distributed on [0,1]. The distribution function
of P ∗XY is given by F ∗(x, y) = min{FP (x),FQ(y)} [15,
Section 3.1]. Therefore, the W2 distance is simply the L2

distance between the respective quantiles [16]:

W2(P,Q) =
∥∥F−1

P − F−1
Q

∥∥
2
. (18)

If P is atomless, the optimal coupling P ∗Y |X is deterministic,
i.e., Y = f(X) with

f = F−1
Q ◦ FP . (19)

The following properties of the Wasserstein distance are
relevant to our subsequent analysis:

Lemma 1.
(a) (P,Q) 7→W2(P,Q) is weakly lower semi-continuous.
(b) For any fixed P , Q 7→W 2

2 (P,Q) is convex.
(c) W2(PaX , PaY ) = |a|W2(PX , PY ).
(d) W 2

2 (PX+x, PY+y) =
W 2

2 (PX , PY ) + (x− y)2 + 2(E [X]− E [Y ])(x− y).
(e) ∣∣√varX −

√
varY

∣∣2 ≤ W 2
2 (PX , PY )− (E [X]− E [Y ])2

(20)
≤ varX + varY. (21)



(f) For any strictly increasing function f : R → R,
W2(PX , Pf(X)) = ‖X − f(X)‖2. In particular, for all
a > 0, W2(PX , PaX) = |a− 1| ‖X‖2.

(g) Let mi(P ) denote the ith moment of P . Then

min
Q: varQ≤σ2

W2(P,Q) =
∣∣√varP − σ

∣∣, (22)

attained by the affine coupling f(x) = m1(P ) +
σ√

varX
(x−m1(P )).

(h) W2(P ∗Q,P ′ ∗Q) ≤W2(P, P ′).
(i) W 2

2 (PX , δx) = varX + (E [X]− x)2.

Proof. (a): [17, Proposition 7.1.3].
(b): Let λ1 and λ2 be the optimal coupling of (P,Q1) and

(P,Q2) respectively. For any 0 < α < 1, λ = αλ1 +
(1 − α)λ2 is a coupling for (P, αQ1 + (1 − α)Q2).
Therefore

W 2
2 (P, αQ1 + (1− α)Q2)

≤
∫

(x− y)2λ(dx, dy) (23)

= αW 2
2 (P,Q1) + (1− α)W 2

2 (P,Q2). (24)

(c): ‖aX − aY ‖2 = |a| ‖X − Y ‖2.
(d): Direct calculation.
(e): The lower bound is due to the triangle inequality and

the upper bound is given by an independent coupling.
(f): By (19).
(g): By (d), (e) and (f).
(h): For any coupling PXX′ of (P, P ′), PX+Z,X′+Z is a

coupling PXX′ of (P ∗ Q,P ′ ∗ Q), where Z ∼ Q is
independent of (X,X ′).

(i): Direct calculation.

In view of Lemma 1(d) and (f), the W2 distance between
Gaussian distributions is given by

W 2
2 (N (µ1, σ

2
1),N (µ2, σ

2
2)) = (µ1−µ2)2+(σ1−σ2)2, (25)

attained by an affine coupling: Y = µ2 + σ2
σ1

(X − µ1).

III. TRANSPORT-THEORETIC FORMULATION OF
WITSENHAUSEN’S COUNTEREXAMPLE

We reformulate Witsenhausen’s counterexample in terms
of the Wasserstein distance by allowing randomized con-
trollers, i.e., relaxing the controller from a deterministic
function f to a random transformation (transition probability
kernel) PY |X .1 In fact, a concavity argument shows that such
relaxation incurs no loss of generality. Indeed, for a fixed g,
the weighted cost J(PY |X , g) is affine in PY |X . Therefore
the pointwise infimum infg J(PY |X , g) is concave in PY |X ,
whose minimum occurs on extremal points, i.e., deterministic
controllers. The fact that randomized policy does not help is
standard in stochastic decision problems (e.g., [18, Section
8.5] or [19, Theorem 4.1]).

1This is in the same spirit as Kantorovich’s generalization of Monge’s
original optimal transport problem, which allows only deterministic cou-
plings in (14).

Based on the above reasoning and (9), we obtain a new
formulation of Witsenhausen’s problem as:

J∗(k2, σ2, P ) = σ2 inf
PY |X

k2E
[
(X − Y )2

]
+ mmse(Y, σ2)

(26)

= σ2 inf
Q

{
k2W 2

2 (P,Q) + mmse(Q, σ2)
}
,

(27)

which involves minimizing the MMSE penalized by the W2

distance.
Related problems to (27) have been studied in the partial

differential equations community. For example, maximizing
the differential entropy is considered in [20], [21]:

inf
Q

{
k2W 2

2 (P,Q)−h(Q)
}
, (28)

where h(Q) = −
∫

log q dQ denotes the differential entropy
of probability measure Q with density q. Solving (28) gives
a variational scheme to compute discretized approximation
to the solution of the Fokker-Planck equation [20]. Note
that for Gaussian P , the infimum in (28) is attained by
a Gaussian Q [21, p. 821]. This is because for a given
variance, a Gaussian Q minimizes W 2

2 (P,Q) and maximizes
h(Q) simultaneously. Another problem involving energy
minimization is studied in [22]:

inf
Q

{
k2W 2

2 (P,Q) +
∫

Ψ dQ
}
. (29)

Note that (28) and (29) are both convex optimization prob-
lems, because −h(Q) and

∫
Ψ dQ are convex and affine in Q

respectively. Comparing (28) and (29) with (27), we see that
the difficulty in Witsenhausen’s problem lies in the concavity
of Q 7→ mmse(Q, σ2) [2, Theorem 2], which results in the
non-convexity of the optimization problem.

IV. OPTIMAL CONTROLLER

A. Existence

We give a simple proof of the existence of optimal
controller:

Theorem 1. For any P , the infimum in (27) is attained.

Proof. In view of Lemma 1(g), Q can be restricted to
the weakly compact subset {Q : m2(Q) ≤ 4m2(P )} of
P2(R), where m2(·) denotes the second-order moment. By
Lemma 1(a), Q 7→ W2(P,Q) is weakly lower semicontinu-
ous, while Q 7→ mmse(Q, σ2) is weakly continuous for any
σ > 0 [2, Theorem 7]. The existence of the minimizer of
(27) then follows from the fact that lower semicontinuous
functions attain infimum on compact set.

The above proof is much simpler than Witsenhausen’s
original argument [1, Theorem 1], which involves proving
that an infimizing sequence of controller converges pointwise
and the limit is optimal. Note that Theorem 1 also holds for
non-Gaussian noise, as long as the noise has a continuous
and bounded density which guarantees the weak continuity
of MMSE [2, Theorem 7].



Output distribution Q Controller f
Gaussian affine
discrete piecewise constant
atomless strictly increasing
bounded supported bounded
symmetric odd
has smooth density smooth

TABLE I
RELATIONSHIP BETWEEN OUTPUT DISTRIBUTION AND CONTROLLER.

B. Structure of the optimal controller

Any optimal controller is an optimal transport mapping
from P to the optimal Q. In view of (19), the optimal
controller is an increasing function. In case of P = N (0, 1),
the optimal controller is given by

f = F−1
Q ◦ Φ, (30)

where Φ denotes the standard Gaussian CDF. As summarized
in Table I, various properties of the controller f can be
equivalently recast as constraints on the output distribution
Q. For example, using only affine controllers is equivalent
to restricting Q to Gaussian distributions. Observe that for
Gaussian P , there is an incentive for using non-linear control
(equivalently non-Gaussian Q). By Lemma 1(g), among all
distributions with the same variance, Gaussian Q minimizes
the W2 distance to P but maximizes the MMSE [3, Propo-
sition 15]. Therefore it is possible the optimal Q is non-
Gaussian.

C. Regularity of optimal controller

It is known that the optimal g as a MMSE estimator is
real analytic [1, Lemma 3]. The following result shows that
the optimal f is a strictly increasing piecewise real analytic
function with a real analytic left inverse. According to the
identity theorem of real analytic functions [23, Theorem
9.4.3, p. 208], piecewise affine functions do not have analytic
left inverses. Therefore we conclude that piecewise constant
or piecewise affine controllers cannot be optimal, disproving
a conjecture in [10, p. 21]. Nevertheless, since MMSE is
weakly continuous, the optimal cost can be approached
arbitrarily close by restricting Q to any weakly dense subset
of P2(R) (e.g., discrete distributions, Gaussian mixtures,
etc.) or restricting the controller f to any dense family of
L2(R, P ) (e.g., piecewise constant or affine functions).

Theorem 2. Let P has a real analytic strictly positive
density. Then
• Any optimal Q for (27) has a real analytic density

and unbounded support, with the same mean as P and
variance not exceeding varP + 4

k2σ2 .
• Any optimal controller f is a strictly increasing un-

bounded piecewise real analytic function with a real
analytic inverse.

Proof. For notational convenience, assume that σ = 1. Let
Q be an minimizer of (27) and Y = f(X) is the associated
optimal coupling. Proceeding as in the proof of [20, Theorem

5.1], fix τ ∈ R and ξ ∈ C∞c (R) arbitrarily. Perturb Y along
the direction of ξ by letting

Yτ = f(X) + τ ξ(X) (31)

and Qτ = PYτ . Then

W 2
2 (P,Qτ )−W 2

2 (P,Q)

≤ E
[
(X − (f + τξ)(X))2

]
− E

[
(X − f(X))2

]
(32)

= 2τ E [ξ(X)(f(X)−X)] + τ2E
[
ξ2(X)

]
. (33)

It can be shown that the first-order variation on the MMSE
is

mmse(Qτ , σ2)−mmse(Q, σ2)

= − τ E
[
(ϕ′ ∗ (η2 + 2η′)) ◦ f(X)ξ(X)

]
+ o(τ). (34)

where ϕ(x) = 1√
2π

e−
x2
2 denotes the standard normal den-

sity, η = g′

g is the score function of Z = Y +N and

g(z) = E [ϕ(z −N)] (35)

is the density of Z. By the optimality of Q, we have

2k2 E [(f(X)−X)ξ(X)]

≤ lim inf
τ↓0

1
τ
k2(W 2

2 (P,Qτ )−W 2
2 (P,Q)) (36)

≤ E
[
(ϕ′ ∗ (η2 + 2η′)) ◦ f(X)ξ(X)

]
, (37)

where (36) and (37) follows from (33) and (34) respectively.
Replacing τ by −τ in (36) and by the arbitrariness of ξ, the
following variational equation holds P -a.e. (or equivalently
Lebesgue-a.e.):2

2k2(f − id) = (ϕ′ ∗ (η2 + 2η′)) ◦ f, (38)

where id(x) = x. In view of (19), f is right-continuous,
which implies that (38) actually holds everywhere.

An immediate consequence of the variational equation is
the regularity of the optimal controller. Let

h = id− 1
2k2

(ϕ′ ∗ (η2 + 2η′)). (39)

Then
h ◦ f = id, (40)

i.e., h is a left inverse of f . Therefore f is injective [24,
Theorem I.1, p. 7], hence strictly increasing. Due to the
analyticity of the Gaussian density, ϕ′ ∗ (η2 + 2η′) is real
analytic regardless of η [1, Lemma 2]. Thus h is also real
analytic. Note that f has at most countably many disconti-
nuities. We conclude that f is piecewise real analytic.3 In
view of the continuity of h, (40) implies that the range of f
is unbounded.

2Directly perturbing the distribution of Y results in the same variational
equation.

3Note that (40) alone does not imply that f is analytic. For a counterex-
ample, consider the analytic function g(x) = x3 − x. Let f be the inverse
of g restricted on |x| ≥ 1. Then (40) is satisfied but f has a discontinuity
at 0. To prove the analyticity of f is equivalent to show that Q is supported
on the entire real line.



Next we show that Q is absolutely continuous with respect
to the Lebesgue measure. In view of Table I, the strict
monotonicity of f implies that Q has no atom. Let f−1 :
f(R)→ R denote the inverse of f . Since f−1 = F−1

P ◦ FQ,
(40) implies that FQ = FP ◦h holds on the entire range of f ,
whose closure is the support of Q. By assumption, FP is a
real analytic function. It follows that FQ is also real analytic,
i.e., Q has a density that is real analytic in the interior of its
support.

To conclude the proof, we show an upper bound on varQ.
From (38), we have

X = Y − 1
2k2

ϕ′ ∗ (η2 + 2η′) ◦ Y, a.s. (41)

Without loss of generality, we assume that E [X] = 0. Then
E [Y ] = 0 in view of Lemma 1(d). Hence

k2(varY − varX)

≤ E
[
Y (ϕ′ ∗ (η2 + 2η′)) ◦ Y

]
(42)

=
∫

E [Y ϕ′(z − Y )] (η2 + 2η′)(z)dz (43)

=
∫

(g(z) + zg′(z) + g′′(z))(η2 + 2η′)(z)dz, (44)

Recall that η = g′

g is the score of Z, and the Fisher
information of Z is given by

J(Z) =
∫
gη2 = −

∫
gη′. (45)

Hence ∫
g(η2 + 2η′)dz = −J(Z) (46)

Integrating by parts, we have∫
zg′(z)(η2 + 2η′)(z)dz

=
∫
zg′(z)η2(z)dz + 2

∫
zg(z)η(z)η′(z)dz (47)

=
∫
zg′(z)η2(z)dz −

∫
(zg(z))′η2(z)dz (48)

= −
∫
g(z)η2(z)dz (49)

= − J(Z), (50)

where we have used η = g′

g . Similarly,∫
g′′(η2 + 2η′)dz

= −
∫
η2(g′′ + g)dz +

∫
η2gdz + 2

∫
g′′2

g
dz (51)

= − E
[
η2(Y )E

[
N2|Z

]]
+ J(Z) + 2E

[
(E
[
N2|Z

]
− 1)2

]
(52)

≤ J(Z) + 2(E
[
N4
]
− 1) (53)

= J(Z) + 4. (54)

where (52) is due to (35), (45) and g′′

g (z) = E
[
N2|Z = z

]
−

1, while (53) follows from Jensen’s inequality. Combining

(44), (46), (50) and (54), we have

varQ ≤ varP +
4− J(Z)

k2
≤ varP +

4
k2
. (55)

Remark 1. Combining the Crámer-Rao bound J(Z) ≥
1

varZ = 1
1+varQ with the first inequality in (55) yields a better

upper bound: varQ ≤ g(k2,σ2varP )
σ2 , where

g(u, v) =
v + 4

u − 1
2

+
1
2

√(
v +

4
u

+ 1
)2

− 1
u
. (56)

Remark 2. The variational equation (38) has been formally
derived in [1, p. 140], where it is remarked that “this
condition is of little use”. However, combined with the
structure of optimal controller as optimal transport map,
interesting results can be deduced.

For Gaussian input, solutions to (38) always exist, namely
optimal linear controllers. This has also been observed by
Witsenhausen [1, Lemma 14]. In view of the analyticity
result in Theorem 3, finding series approximations to the
solution of (38) is a reasonable attempt to find good con-
trollers. However, it can be shown that the only polynomial
solution to (38) is affine.

V. OPTIMAL COST

A. Properties
Theorem 3. P 7→ J∗(k2, σ2, P ) is concave, weakly upper
semi-continuous and translation-invariant. Moreover,

0 ≤ J∗(k2, σ2, P ) ≤ min{k2σ2varP, σ2 mmse(P, σ2)} ≤ 1.
(57)

Proof. By (7), J∗(k2, σ2, ·) is the pointwise infimum of
affine functionals, hence concave. Weak semicontinuity fol-
lows from pointwise infimum of weak continuous functionals
(see the proof of [2, Theorem 6]). The middle inequality in
(57) follows from choosing Q to be either δm1(P ) or P .

The following result gives a lower bound on the optimal
cost of any symmetric distribution via the optimal cost of the
Rademacher distribution (random sign) B = 1

2 (δ1 + δ−1),
which has been explicitly determined in [1, Sec. 5] (see
Fig. 3):

J∗(k2, σ2, B) = min
b≥0

{
k2(b− σ)2 + b2 mmse(B, b2)

}
(58)

where b2 mmse(B, b2) =
√

2πa2ϕ(a)
∫ ϕ(y)

cosh(ay)dy.

Theorem 4. For any symmetric P ,

J∗(k2, σ2, P )

≥ sup
Q,Q′:

1
2 (Q+Q′)=P

sup
PY Y ′ :

PY =Q,PY ′=Q
′

E
[
J∗(k2, σ2|Y − Y ′|2/4, B)

]
(59)

≥ sup
PY Y ′ :

PY =PY ′=P

E
[
J∗(k2, σ2|Y − Y ′|2/4, B)

]
. (60)



The proof of Theorem 4 follows from writing a symmetric
distribution as a scale mixture of the Rademacher distribu-
tion and concavity of the optimal cost. For symmetric P ,
choosing the coupling Y ′ = −Y in (60) gives the the lower
bound in [1, Theorem 3].

B. Monotonicity in signal power

Consider the following question: for a given input distribu-
tion P , does higher power necessarily require higher control
cost, i.e., for fixed k2 and P , is J∗(k2, σ2, P ) increasing in
σ2? Intuitively this should be true. However, any discrete
input with finite variance serves as an counterexample (see
Fig. 3 for binary input). To see this, by (57), J∗(k2, σ2, P ) ≤
σ2 mmse(P, σ2), which vanishes as σ → 0 or∞.4 Therefore
J∗(k2, ·, P ) cannot be monotone for any discrete P .
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Fig. 3. J∗(1, σ2, B) against σ2 where B is the Rademacher distribution.

Nonetheless, monotonicity in signal power holds for Gaus-
sian input, an immediate consequence of Theorem 3:

Corollary 1.

(a) Noisy input costs more: For any distribution Q,

J∗(k2, σ2, P ∗Q) ≥ J∗(k2, σ2, P ) (61)

(b) For Gaussian input, σ2 7→ J∗(k2, σ2) is increasing.

Proof. Observe that P ∗ Q is a location mixture of P . In
view of the translation-invariance and concavity of J∗ in P ,
(61) follows from applying Jensen’s inequality. For (b), note
that J∗(k2, σ2) = J∗(k2, 1,N (0, σ2)). The desired mono-
tonicity then follows from (61) and the infinite divisibility
of Gaussian distribution.

From the above proof we see that, monotonicity also
holds for any stable input distribution [26] and any noise
distribution (not necessarily Gaussian).

4As σ2 → ∞, σ2 mmse(P, σ2) converges to the MMSE dimension of
P , which is zero for all discrete P [25, Theorem 4].

C. Optimal cost: Gaussian input

Theorem 5. σ2 7→ J∗(k2, σ2) is increasing, subadditive and
Lipschitz continuous, with

0 ≤ ∂J∗

∂σ2
≤ k2

k2 + 1
. (62)

Proof. Since mmse(Q, ·) is decreasing,

J∗(k2, σ2)
σ2

= min
Q

{
k2W 2

2 (N (0, 1), Q) + mmse(Q, σ2)
}

(63)
is also decreasing in σ2. This implies the desired subaddi-
tivity. Another consequence is

∂J∗

∂σ2
≤ J∗

σ2
≤ ∂J∗

∂σ2

∣∣∣∣
σ2=0

=
k2

k2 + 1
, (64)

where the last equality follows from (67) proved next.

D. Weak-signal regime

By the continuity of MMSE [3, Proposition 7], for all Q
with finite variance, mmse(Q, σ2) = varQ+o(1) as σ2 → 0.
By Lemma 1(g) and (27), for any P ,

lim
σ2→0

J∗(k2, σ2, P )
σ2

= min
PY

{
k2W 2

2 (P,Q) + varQ
}

(65)

= min
λ≥0

k2(
√

varP − λ)2 + λ2 (66)

=
k2

k2 + 1
varP, (67)

attained by the affine controller

f(x) =
k2
√

varP

k2 + 1
(x−m1(P )) +m1(P ). (68)

E. Strong-signal regime

Fix k and let Q∗σ be an optimizer of (27). Since J∗ ≤ 1,
we have

W 2
2 (Q∗σ, P ) ≤ 1

k2σ2
(69)

which implies that Q∗σ
W2−−→ P as σ2 → ∞. Therefore, the

corresponding optimal controller f∗σ also converges to the
identity in L2(R, P ). However this does not imply almost
sure convergence.

Note that as σ → ∞, the asymptotically optimal affine
controller converges the identity. This is equivalent to setting
Q = P . However choosing Q = P is not necessarily asymp-
totically optimal, even though the optimal output distribution
Q∗σ does converge to the input distribution P . This is
because Q∗σ

W2−−→ P does not imply that σ2mmse(Q∗σ, σ
2)−

σ2mmse(P, σ2) → 0. Indeed, for P = N (0, 1) and all
k < 0.564,

lim
σ→∞

J∗(k2, σ2) < 1 = lim
σ→∞

J∗a (k2, σ2). (70)

To see this, let Qσ to be the optimal m-point uniform
quantized version of N (0, 1) with σ = 2a

∆m
, where ∆m is

the optimal step size and a > 0 is to be optimized later. By
[27, Theorem 13], ∆m = 4

√
logm
m (1 + o(1)) and the optimal



mean-square quantization error is Dm = 1
12∆2

m(1 + o(1)).5

Therefore W 2
2 (Qσ,N (0, 1)) ≤ Dm. Let Yσ ∼ Qσ and

Zδ = σYσ + N . Define the following suboptimal estimator
of N based on Zσ: f(z) = z − σy(z/σ), where y(x) is the
closest atom of Yσ to x. Such an estimator is exact whenever
|N | ≤ a. Moreover, N > a (resp. N < −a) implies that
−a < f(Zσ) < 0 (resp. 0 < f(Zσ) < a). Therefore

σ2 mmse(Qσ, σ2) = mmse(N |Zσ) (71)

≤ E
[
(N − f(Zσ))2

]
(72)

≤ 8E
[
N21{N>a}

]
(73)

= 8Q(a) + 8aϕ(a) (74)

Hence

lim
σ→∞

J∗(k2, σ2) ≤ min
a>0

{
4
3
k2a2 + 8Q(a) + 8aϕ(a)

}
(75)

< 1 (76)

for all k < 0.564.

VI. CONCLUDING REMARKS

We gave a transport-theoretic formulation of Witsen-
hausen’s counterexample. The Wasserstein metric (17) as
well as the more general Monge-Kantorovich cost functional
(14) are particularly relevant to decentralized stochastic deci-
sion problems with non-classical information structure where
the the decision of the later-stage controller only depends on
the output distribution of the controller in the earlier stage.

In addition to solving for the minimizer of (27) for
a given P , there are several interesting open problems.
Theorem 3 shows that P 7→ J∗(k2, σ2, P ) is concave, upper
semicontinuous and bounded. Therefore it makes sense to
investigate the worst-case input distribution, for instance, in
the following senses,

max
P : varP≤1

J∗(k2, σ2, P ) (77)

and
max

P : supp(P )⊂[−A,A]
J∗(k2, σ2, P ) (78)

It is not clear whether the least favorable prior in (77) is
Gaussian. As for (78), recall that under bounded support
constraint, the least favorable prior for the mean-square
error with Gaussian noise [28, p. 79] and the capacity-
achieving distribution of Gaussian channel [29] are both
finitely-supported. Using similar analyticity arguments, it
might be possible to show that the maximizer of (78) is also
finitely-supported.

We have shown that affine controllers are asymptotically
optimal in the weak-signal regime (σ → 0), but strictly
suboptimal in the strong-signal regime (σ →∞) for all fixed
k < 0.564. An open question is whether affine controllers are
strictly suboptimal for all σ > 0 and k > 0. Since optimal
affine controllers satisfy the variational equation (38), they

5In fact the same conclusion holds for any generalized Gamma distribu-
tion [27, Section III.A].

are stationary points. Hence any proof of suboptimality based
on local perturbation will fail.

Other open problems includes whether the minimizer of
(27) is unique and symmetric. For symmetric P , choosing
a symmetric Q decreases the W2 distance but increases the
MMSE.
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