S&DS 241 Lecture 2

Probability axioms. Counting.
B-H Section 1.2-1.6

(App A.1: review of set theory)
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Axiomatic framework

Three elements
@ Sample space
® Events
© Probability measure
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Sample space and events

® Sample space €2: set of all possible outcomes
® Qutcome w € 2: element of sample space

® Events A C €: subset of sample space
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® Events A C €: subset of sample space
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e Events: A= {H}
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Sample space and events

® Sample space €2: set of all possible outcomes
® Qutcome w € 2: element of sample space
® Events A C €: subset of sample space
Coin
e Q={H, T}
e Events: A= {H}

Die
e 0={1,2,3,4,5,6}
® Events:

> A= {6}
> A= {even number} = {2,4,6}
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Language of set theory

Name Notation Description

complement A€ occurs if and only if A does not occur
union AUB occurs when either A or B occurs
intersection ANB occurs when both A and B occurs
implication ACB B occurs whenever A occurs.

Examples: dice
® {even}c = {odd}
® {even} U {divisible by 3} = {2,3,4,6}
© {even} N {divisible by 3} = {6}
© {divisible by 6} C {even}
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Useful tool: Venn diagram
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Useful tool: de Morgan'’s law

* (AUB)*=A°NB°
* (AnNB)*=A°UB*
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Probability of an event

To each event A C 2, we attach a number P(A), which denotes its
probability.
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Simplest model: equiprobable

In a finite sample space €2:
® For event A,

number of outcomes in A |A|

P(A) =

total number of outcomes @

® Hence every outcome is equally likely:
P({w}) =
IQI

This is sometimes referred to as the classical definition of probability.

For more: https://en.wikipedia.org/wiki/Classical_definition_of_probability.
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https://en.wikipedia.org/wiki/Classical_definition_of_probability

Examples

Fair coin
* 0= {Ha T}

* P{HY =PUTH =}
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Examples

Fair coin

e QO={H, T}

* P{HY =PUTH =}
Fair die

e 0=1{1,2,3,4,56}
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Examples

Fair coin

e QO={H, T}

° P{H})=P({T}) =3
Fair die

e Q=1{1,2,3,4,56}
* P({6}) =3
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Examples

Fair coin

e QO={H, T}

* P({H}) = PUT}) = }
Fair die

e Q=1{1,2,3,4,5,6}

* P({6}) =}

® P(even) = % =1
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Examples

Fair coin

e QO={H, T}

* P({H) = PUTH =}
Fair die

e Q=1{1,2,3,4,56}

« P} =}

® P(even) = % = %

How many possible events are there?
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Two fair dice

® Sample space
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Two fair dice

® Sample space

A~ N N N S~

~— N — ~— —

~— N — — — —
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® P(double) =
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Two fair dice

® Sample space
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Two fair dice

® Sample space
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Two fair dice

® Sample space

* P(double) = & =

® P(sum is even) =

5 (

a better way?)
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Two fair dice

® Sample space

® P(double) = 36 = % (a better way?)

2+4+6+4+2 1

® P(sum is even) = % =5
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Two fair dice

® Sample space

® P(double) = 36 = % (a better way?)

2+4+6+4+2

® P(sum is even) = %

% (a better way?
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Two fair dice

® Sample space

Q=
® P(double) = 36 = % (a better way?)
® P(sum is even) = W % (a better way? does the result

change if the die has five faces?)
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What if the dice are not fair?



More generally

Definition
Let Q2 be a finite sample space. A probability measure is a function P
that assigns a number to each event that satisfies the following
properties:
@ Positivity:?
P({w}) >0, YweQ

® Normalization:
P(Q) =1

© Additivity:
P(A) =Y P({w})

wEA

2The notation V reads “for all”.
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Examples

Biased coin
e QO={H, T}
® P({H}) =3 and P({T}) =3
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Examples

Biased coin

e QO={H, T}

* P({H}) =3 and PUT}) =}
Loaded die

° Q=1{1,2,3,4,56}
w |1 ]2]3]|4]5]6
P({w}) [01 |01 ]0101][01]05
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Examples

Biased coin

e QO={H, T}

* P({H}) =3 and PUT}) =}
Loaded die

° Q=1{1,2,3,4,56}
w |1]2]3]4]5) 6
P({w}) [01 |01 ]0101][01]05
® P(even) =0.7
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Examples

Biased coin

e QO={H, T}

* P({H}) =3 and PUT}) =}
Loaded die

° Q=1{1,2,3,4,56}
w |1]2]3]4]5) 6
P({w}) [01 |01 ]0101][01]05
® P(even) =0.7

Remarks
® For finite sample space, suffices to specify the prob of each outcome
® Probability of a given event depends on the model (assumption)
® Equiprobable model is often assumed implicitly
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Probability axioms

More general experiments:
® |nfinitely many outcomes: e.g. how many tosses to get the first head

® A continuum of possible outcomes: e.g. position of a randomly
spinned wheel
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Probability axioms

More general experiments:
® |nfinitely many outcomes: e.g. how many tosses to get the first head

® A continuum of possible outcomes: e.g. position of a randomly

spinned wheel
The rule of assigning probabilities should conform to intuition: e.g.

® P(rain) 4+ P(no rain) =1
e P(flush) > P(royal flush)
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Probability axioms

More general experiments:
® |nfinitely many outcomes: e.g. how many tosses to get the first head

® A continuum of possible outcomes: e.g. position of a randomly

spinned wheel
The rule of assigning probabilities should conform to intuition: e.g.

® P(rain) 4+ P(no rain) =1
e P(flush) > P(royal flush)

The axiomatic framework of probability is proposed by A.N. Kolmogorov.
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Probability axioms

Definition
A probability measure is a function P that assigns a number to each
event that satisfies the following properties:

@ Positivity: For any event A,
P(A) =0,

® Normalization:
P(Q2) =1

© Additivity: Let A; be mutually exclusive events, i.e., AiNA; =&
whenever i # j. Then

P (G A,-> = i P(A))
i=1 i=1
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Consequences

Corollary

* P(@)=0

* AC B = P(A) < P(B): if A leads to B, then B is more likely
0<PA)<1
P(A°) =1— P(A)
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Consequences

Corollary

* P(z)=0

* AC B = P(A) < P(B): if A leads to B, then B is more likely
0<PA)<1
P(A°) =1— P(A)

Proof.
e NP =Gand JUZ = 0.

P(B) = P(A) + P(B N A°)
CACQ

A and A€ are mutually exclusive
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Tversky-Kahneman experiment in the 80s3

A group of subjects are told:

Linda is 31, single, outspoken, and very bright. She majored
in philosophy in college. As a student, she was deeply concerned
with racial discrimination and other social issues, and partici-
pated in anti-nuclear demonstrations.

3https://www.washingtonpost.com/graphics/2017/politics/cognitive-biases/
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Tversky-Kahneman experiment in the 80s3

A group of subjects are told:

Linda is 31, single, outspoken, and very bright. She majored
in philosophy in college. As a student, she was deeply concerned
with racial discrimination and other social issues, and partici-
pated in anti-nuclear demonstrations.

They are then asked to rank the likelihood of various alternatives, e.g.:

(1) Linda is a bank teller.

(2) Linda is a bank teller and active in the feminist movement.

3https://www.washingtonpost . com/graphics/2017/politics/cognitive-biases/
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Tversky-Kahneman experiment in the 80s3

A group of subjects are told:

Linda is 31, single, outspoken, and very bright. She majored
in philosophy in college. As a student, she was deeply concerned
with racial discrimination and other social issues, and partici-
pated in anti-nuclear demonstrations.

They are then asked to rank the likelihood of various alternatives, e.g.:
(1) Linda is a bank teller.
(2) Linda is a bank teller and active in the feminist movement.

Tversky and Kahneman found that 85 ~ 90% of the subjects rated (2) to
be more likely. Is it?

3https://www.washingtonpost . com/graphics/2017/politics/cognitive-biases/
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Tversky-Kahneman experiment in the 80s3

A group of subjects are told:

Linda is 31, single, outspoken, and very bright. She majored
in philosophy in college. As a student, she was deeply concerned
with racial discrimination and other social issues, and partici-
pated in anti-nuclear demonstrations.

They are then asked to rank the likelihood of various alternatives, e.g.:
(1) Linda is a bank teller.
(2) Linda is a bank teller and active in the feminist movement.
Tversky and Kahneman found that 85 ~ 90% of the subjects rated (2) to
be more likely. Is it?
Of course not: P(AN B) < P(B) (They call this phenomenon the

conjunction fallacy, and note that it appears to be unaffected by prior
training in probability or statistics.)

3https://www.washingtonpost . com/graphics/2017/politics/cognitive-biases/
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Union of two events

P(AUB)=P(A)+P(B)—P(ANB)

Analogy: “area”

Circles

Proof.
AUB=AU(BNA), B=(ANnB)U(BNA°). O
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Three events
P(AUBUC)=P(A)+ P(B)+ P(C)
—P(ANB)—P(BNC)—P(CNA)
+P(ANBNC)

Proof.

Apply the previous formula for two events thrice. O

R

Extending this formula to P (U?_; A;): Inclusion-exclusion principle

(later).
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Counting and computing probabilities



Recall: factorial and binomial coefficients

® nl 2 n(n—1)---1: number of ways to permute n items

®*nn—1)---(n—k+1)= (nfi'k), number of ways,
considering order, to choose k items out of n items

o (1) 2 ”("—1)"1'((!”_"“) = (ni’;(!)!k!: number of ways,

regardless of order, to choose k items out of n items
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Example: Poker

A poker deck consists of 52 cards:
15,184,109, 1, ..., 135,134,130, 13%

Draw five cards successively from the deck:
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Example: Poker

A poker deck consists of 52 cards:
15,184,109, 1, ..., 135,134,130, 13%

Draw five cards successively from the deck:
® Flush: all five cards have the same suit e.g. 2,30, 58, 7,90
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Example: Poker
A poker deck consists of 52 cards:

10,164,109, 1%, ...,13<,134,130,13&

Draw five cards successively from the deck:
® Flush: all five cards have the same suit e.g. 2,30, 58, 7,90

P(Flush) =

()
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Example: Poker
A poker deck consists of 52 cards:

10,164,109, 1%, ...,13<,134,130,13&

Draw five cards successively from the deck:
® Flush: all five cards have the same suit e.g. 2,30, 58, 7,90

p(Flush) = -2 (5)
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Example: Poker

A poker deck consists of 52 cards:
15,184,109, 1, ..., 135,134,130, 13%

Draw five cards successively from the deck:
® Flush: all five cards have the same suit e.g. 2,30, 58, 7,90

X (153) _ 33
(552) 16660

4
P(Flush) = ~ 0.198%
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Example: Poker

A poker deck consists of 52 cards:
15,184,109, 1, ..., 135,134,130, 13%

Draw five cards successively from the deck:
® Flush: all five cards have the same suit e.g. 2,30, 58, 7,90

X (153) _ 3
(552) 16660

4
P(Flush) = ~ 0.198%

® Full house: three cards have the same rank, and the other two have
another rank e.g. 3$,3#,30,9{,9&
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Example: Poker
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® Flush: all five cards have the same suit e.g. 2,30, 58, 7,90

X (153) _ 3
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4
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Example: Poker

A poker deck consists of 52 cards:
15,184,109, 1, ..., 135,134,130, 13%

Draw five cards successively from the deck:
® Flush: all five cards have the same suit e.g. 2,30, 58, 7,90

X (153) _ 3
(552) 16660

4
P(Flush) = ~ 0.198%

® Full house: three cards have the same rank, and the other two have
another rank e.g. 3$,3#,30,9{,9&

13 x 12 x (3) x (5)

()

P(Full house) =
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Example: Poker

A poker deck consists of 52 cards:
15,184,109, 1, ..., 135,134,130, 13%

Draw five cards successively from the deck:
® Flush: all five cards have the same suit e.g. 2,30, 58, 7,90

X (153) _ 33
(552) 16660

4
P(Flush) = ~ 0.198%

® Full house: three cards have the same rank, and the other two have
another rank e.g. 3$,3#,30,9{,9&

1312 (§) x (3)

(552) 4165

P(Full house) = ~ 0.144%
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Example: More poker

A poker deck consists of 52 cards:
15,184,109, 1, ..., 135,134,130, 13%

Draw two cards successively from the deck.

P(2nd card is higher than 1st card) =
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Example: More poker

A poker deck consists of 52 cards:
15,184,109, 1, ..., 135,134,130, 13%
Draw two cards successively from the deck.

o O y2iaxax(i-1) 8
P(2nd card is higher than 1st card) = 52 % 51 17

since
(1+12) x 12 B

78
2

1424 +12=
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Example: More poker

Or, we can be smarter. Consider three events:

H = {2nd higher than 1st}
L = {2nd lower than 1st}
E = {2nd equal to 1st}

Then we know
® P(H)+P(L)+P(E)y=1
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H = {2nd higher than 1st}
L = {2nd lower than 1st}
E = {2nd equal to 1st}

Then we know

® P(H)+P(L)+P(E)y=1
® P(H) = P(L) (by symmetry)

24/24



Example: More poker

Or, we can be smarter. Consider three events:

H = {2nd higher than 1st}
L = {2nd lower than 1st}
E = {2nd equal to 1st}

Then we know
® P(H)+P(L)+P(E)y=1
® P(H) = P(L) (by symmetry)
® P(E) is easy:
52 x 3 1

PE) =5 51 = 17
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Example: More poker

Or, we can be smarter. Consider three events:

H = {2nd higher than 1st}
L = {2nd lower than 1st}
E = {2nd equal to 1st}

Then we know
® P(H) + P(L)+ P(E) =1
® P(H) = P(L) (by symmetry)
® P(E) is easy:

52 x 3 1
PEE) =551~ 17
® Now we profit:
1—P(E
P(H) = ( )—E
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