
S&DS 241 Lecture 2
Probability axioms. Counting.

B-H Section 1.2-1.6

(App A.1: review of set theory)
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Axiomatic framework

Three elements

1 Sample space

2 Events

3 Probability measure
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Sample space and events

• Sample space Ω: set of all possible outcomes

• Outcome ω ∈ Ω: element of sample space

• Events A ⊂ Ω: subset of sample space

Coin
• Ω = {H,T}
• Events: A = {H}

Die
• Ω = {1, 2, 3, 4, 5, 6}
• Events:

▶ A = {6}
▶ A = {even number} = {2, 4, 6}
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Language of set theory

Name Notation Description

complement Ac occurs if and only if A does not occur

union A ∪ B occurs when either A or B occurs

intersection A ∩ B occurs when both A and B occurs

implication A ⊂ B B occurs whenever A occurs.

Examples: dice

1 {even}c = {odd}
2 {even} ∪ {divisible by 3} = {2, 3, 4, 6}
3 {even} ∩ {divisible by 3} = {6}
4 {divisible by 6} ⊂ {even}
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Useful tool: Venn diagram
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Useful tool: de Morgan’s law

• (A ∪ B)c = Ac ∩ Bc

• (A ∩ B)c = Ac ∪ Bc
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Probability of an event

To each event A ⊂ Ω, we attach a number P(A), which denotes its

probability.
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Simplest model: equiprobable

In a finite sample space Ω:

1 For event A,

P(A) =
number of outcomes in A

total number of outcomes
=

|A|
|Ω|

2 Hence every outcome is equally likely:

P({ω}) = 1

|Ω|

This is sometimes referred to as the classical definition of probability.1

1For more: https://en.wikipedia.org/wiki/Classical_definition_of_probability.
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Examples

Fair coin
• Ω = {H,T}
• P({H}) = P({T}) = 1

2

Fair die

• Ω = {1, 2, 3, 4, 5, 6}
• P({6}) = 1

6

• P(even) = 3
6 = 1

2 .

• How many possible events are there?
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Two fair dice

• Sample space

Ω =





(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)

(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)
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• P(double) =

6
36 = 1

6 (a better way?)

• P(sum is even) =

2+4+6+4+2
36 = 1

2 (a better way?

does the result

change if the die has five faces?)
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What if the dice are not fair?



More generally

Definition

Let Ω be a finite sample space. A probability measure is a function P

that assigns a number to each event that satisfies the following

properties:

1 Positivity:2

P ({ω}) ≥ 0, ∀ω ∈ Ω

2 Normalization:

P(Ω) = 1

3 Additivity:

P (A) =
∑

ω∈A
P ({ω})

2The notation ∀ reads “for all”.
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Examples

Biased coin
• Ω = {H,T}
• P({H}) = 2

3 and P({T}) = 1
3

Loaded die
• Ω = {1, 2, 3, 4, 5, 6}

ω 1 2 3 4 5 6

P({ω}) 0.1 0.1 0.1 0.1 0.1 0.5

• P(even) = 0.7

Remarks

• For finite sample space, suffices to specify the prob of each outcome

• Probability of a given event depends on the model (assumption)

• Equiprobable model is often assumed implicitly
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Probability axioms

More general experiments:

• Infinitely many outcomes: e.g. how many tosses to get the first head

• A continuum of possible outcomes: e.g. position of a randomly

spinned wheel

The rule of assigning probabilities should conform to intuition: e.g.

• P(rain) + P(no rain) = 1

• P(flush) ≥ P(royal flush)

• ...

The axiomatic framework of probability is proposed by A.N. Kolmogorov.
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Probability axioms

Definition

A probability measure is a function P that assigns a number to each

event that satisfies the following properties:

1 Positivity: For any event A,

P (A) ≥ 0,

2 Normalization:

P(Ω) = 1

3 Additivity: Let Ai be mutually exclusive events, i.e., Ai ∩ Aj = ∅
whenever i ̸= j . Then

P

( ∞⋃

i=1

Ai

)
=

∞∑

i=1

P (Ai )

15/24



Consequences

Corollary

• P(∅) = 0

• A ⊂ B =⇒ P(A) ≤ P(B): if A leads to B, then B is more likely

• 0 ≤ P(A) ≤ 1

• P(Ac) = 1− P(A)

Proof.
• ∅ ∩∅ = ∅ and ∅ ∪∅ = ∅.

• P(B) = P(A) + P(B ∩ Ac)

• ∅ ⊂ A ⊂ Ω

• A and Ac are mutually exclusive
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Tversky-Kahneman experiment in the 80s3

A group of subjects are told:
Linda is 31, single, outspoken, and very bright. She majored

in philosophy in college. As a student, she was deeply concerned

with racial discrimination and other social issues, and partici-

pated in anti-nuclear demonstrations.

They are then asked to rank the likelihood of various alternatives, e.g.:

(1) Linda is a bank teller.

(2) Linda is a bank teller and active in the feminist movement.

Tversky and Kahneman found that 85 ∼ 90% of the subjects rated (2) to

be more likely. Is it?

Of course not: P(A ∩ B) ≤ P(B) (They call this phenomenon the

conjunction fallacy, and note that it appears to be unaffected by prior

training in probability or statistics.)

3
https://www.washingtonpost.com/graphics/2017/politics/cognitive-biases/
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Union of two events

P (A ∪ B) = P (A) + P (B)− P (A ∩ B)

Analogy: “area”

Proof.

A ∪ B = A ∪ (B ∩ Ac), B = (A ∩ B) ∪ (B ∩ Ac).

18/24



Three events

P (A ∪ B ∪ C ) = P (A) + P (B) + P(C )

− P (A ∩ B)− P (B ∩ C )− P (C ∩ A)

+ P (A ∩ B ∩ C )

Proof.

Apply the previous formula for two events thrice.

A

B

C

Extending this formula to P (∪n
i=1Ai ): Inclusion-exclusion principle

(later).
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Counting and computing probabilities



Recall: factorial and binomial coefficients

• n! ≜ n(n − 1) · · · 1: number of ways to permute n items

• n(n − 1) · · · (n − k + 1) = n!
(n−k)! : number of ways,

considering order, to choose k items out of n items

•
(n
k

)
≜ n(n−1)···(n−k+1)

k! = n!
(n−k)!k! : number of ways,

regardless of order, to choose k items out of n items
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Example: Poker

A poker deck consists of 52 cards:

1♢, 1♠, 1♡, 1♣, . . . , 13♢, 13♠, 13♡, 13♣

Draw five cards successively from the deck:

• Flush: all five cards have the same suit e.g. 2♢, 3♢, 5♢, 7♢, 9♢

P(Flush) =

4×
(13
5

)

(52
5

)

=
33

16660
≈ 0.198%

• Full house: three cards have the same rank, and the other two have

another rank e.g. 3♢, 3♠, 3♡, 9♢, 9♣

P(Full house) =

13× 12×
(4
3

)
×
(4
2

)

(52
5

)

=
6

4165
≈ 0.144%
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• Full house: three cards have the same rank, and the other two have

another rank e.g. 3♢, 3♠, 3♡, 9♢, 9♣

P(Full house) =

13× 12×
(4
3

)
×
(4
2

)

(52
5

)

=
6

4165
≈ 0.144%
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Example: More poker

A poker deck consists of 52 cards:

1♢, 1♠, 1♡, 1♣, . . . , 13♢, 13♠, 13♡, 13♣

Draw two cards successively from the deck.

P(2nd card is higher than 1st card) =

∑13
i=1 4× 4× (i − 1)

52× 51
=

8

17

since

1 + 2 + · · ·+ 12 =
(1 + 12)× 12

2
= 78
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Example: More poker

Or, we can be smarter. Consider three events:

H = {2nd higher than 1st}
L = {2nd lower than 1st}
E = {2nd equal to 1st}

Then we know

1 P(H) + P(L) + P(E ) = 1

2 P(H) = P(L) (by symmetry)

3 P(E ) is easy:

P(E ) =
52× 3

52× 51
=

1

17

4 Now we profit:

P(H) =
1− P(E )

2
=

8

17
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