S&DS 241 Lecture 3 Conditional probability. Independence of events.

B-H: Sec 2.1-2.2, 2.4-2.5

Last time: Probability axioms

- Sample space: Ω
- Outcome: $\omega \in \Omega$
- Events: $A \subset \Omega$
- How to make new events: set operations

Probability axioms

Definition

1 Positivity: For any event A,

 $P(A) \geq 0,$

2 Normalization:

 $P(\Omega) = 1$

3 Additivity: Let A_i be mutually exclusive events, i.e., $A_i \cap A_j = \emptyset$ whenever $i \neq j$. Then

$$P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P\left(A_{i}\right)$$

Conditional probability: motivations

• The chance to attend office hour \ll the chance to attend office hour if tomorrow is midterm

Conditional probability: motivations

- The chance to attend office hour \ll the chance to attend office hour if tomorrow is midterm
- The chance of cancer among smokers ≫ the chance of lung cancer in general

Conditional probability: motivations

- The chance to attend office hour \ll the chance to attend office hour if tomorrow is midterm
- The chance of cancer among smokers ≫ the chance of lung cancer in general
- What is the chance of blackjack given the cards dealt so far?

Conditional probability: definition

Definition

Given an event A with P(A) > 0, the conditional probability of event B given A is

$$P(B|A) riangleq rac{P(B \cap A)}{P(A)}$$

Conditional probability: definition

Definition

Given an event A with P(A) > 0, the conditional probability of event B given A is

$$P(B|A) riangleq rac{P(B \cap A)}{P(A)}$$

Intuition: event changes the "probabilistic worldview"

Conditional probability: definition

Definition

Given an event A with P(A) > 0, the conditional probability of event B given A is

$$P(B|A) riangleq rac{P(B \cap A)}{P(A)}$$

Intuition: event changes the "probabilistic worldview"

• Statistical inference: conditioning on data

P(drug is effective|result of the clinical trial)

• $\Omega = \{ \text{Janurary } 1st, \dots, \text{December } 31st \}$

• $\Omega = \{ \text{Janurary } 1st, \dots, \text{December } 31st \}$

•
$$P(\text{born on July 4th}) = \frac{1}{365}$$

- $\Omega = \{ \mathsf{Janurary 1st}, \dots, \mathsf{December 31st} \}$
- $P(\text{born on July 4th}) = \frac{1}{365}$
- $P(\text{born on July 4th}|\text{born on the 4th}) = \frac{1/365}{12/365} = \frac{1}{12}$

- $\Omega = \{ \mathsf{Janurary 1st}, \dots, \mathsf{December 31st} \}$
- $P(\text{born on July 4th}) = \frac{1}{365}$
- $P(\text{born on July 4th}|\text{born on the 4th}) = \frac{1/365}{12/365} = \frac{1}{12}$
- $P(\text{born on July 4th}|\text{born in July}) = \frac{1/365}{31/365} = \frac{1}{31}$

- *A* = {first draw is •}
- *B* = {second draw is •}

- *A* = {first draw is •}
- *B* = {second draw is •}
- P(B|A) =

- *A* = {first draw is •}
- *B* = {second draw is •}
- $P(B|A) = \frac{1}{2}$, by intuition

- A = {first draw is •}
- *B* = {second draw is •}
- $P(B|A) = \frac{1}{2}$, by intuition
- Verify this by definition:

- A = {first draw is •}
- *B* = {second draw is •}
- $P(B|A) = \frac{1}{2}$, by intuition
- Verify this by definition:

$$\blacktriangleright P(A) = \frac{3}{5}$$

- A = {first draw is •}
- *B* = {second draw is •}
- $P(B|A) = \frac{1}{2}$, by intuition
- Verify this by definition:

- A = {first draw is •}
- *B* = {second draw is •}
- $P(B|A) = \frac{1}{2}$, by intuition
- Verify this by definition:

Conditional probability satisfies three axioms on original sample space Ω : **1** Positivity: $B \subset \Omega$

$$P(B|A) = rac{P(A \cap B)}{P(A)} \ge 0$$

Conditional probability satisfies three axioms on original sample space Ω : **1** Positivity: $B \subset \Omega$

$$P(B|A) = \frac{P(A \cap B)}{P(A)} \ge 0$$

2 Normalization:

$$P(\Omega|A) = rac{P(\Omega \cap A)}{P(A)} = rac{P(A)}{P(A)} = 1$$

Conditional probability satisfies three axioms on original sample space Ω : **1** Positivity: $B \subset \Omega$

$$P(B|A) = \frac{P(A \cap B)}{P(A)} \ge 0$$

2 Normalization:

$$P(\Omega|A) = rac{P(\Omega \cap A)}{P(A)} = rac{P(A)}{P(A)} = 1$$

3 Additivity: Let $B_i \subset \Omega$ be mutually exclusive. Then

$$P\left(\bigcup_{i=1}^{\infty} B_i \middle| A\right) \stackrel{\text{exercise}}{=} \sum_{i=1}^{\infty} P\left(B_i \middle| A\right)$$

Alternatively, conditional probability satisfies three axioms on the new sample space A (the outcomes outside A are now ruled out) **1** Positivity: $B \subset A$,

$$P(B|A) = \frac{P(B)}{P(A)} \ge 0$$

Alternatively, conditional probability satisfies three axioms on the new sample space A (the outcomes outside A are now ruled out) **1** Positivity: $B \subset A$,

$$P(B|A) = \frac{P(B)}{P(A)} \ge 0$$

2 Normalization:

$$P(A|A) = \frac{P(A \cap A)}{P(A)} = \frac{P(A)}{P(A)} = 1$$

Alternatively, conditional probability satisfies three axioms on the new sample space A (the outcomes outside A are now ruled out) **1** Positivity: $B \subset A$,

$$P\left(B|A\right) = \frac{P(B)}{P(A)} \ge 0$$

2 Normalization:

$$P(A|A) = \frac{P(A \cap A)}{P(A)} = \frac{P(A)}{P(A)} = 1$$

3 Additivity: Let $B_i \subset A$ be mutually exclusive. Then

$$P\left(\bigcup_{i=1}^{\infty} B_i \middle| A\right) = \sum_{i=1}^{\infty} P\left(B_i \middle| A\right)$$

• $P(B^{c}|A) = 1 - P(B|A)$

- $P(B^{c}|A) = 1 P(B|A)$
- A and B mutually exclusive $\implies P(B|A) = 0$ e.g., P(born on July 4th|born in March) = 0

- $P(B^{c}|A) = 1 P(B|A)$
- A and B mutually exclusive $\implies P(B|A) = 0$ e.g., P(born on July 4th|born in March) = 0
- Equiprobable experiment remains equiprobable after conditioning

$$P(A) = \frac{|A|}{|\Omega|}$$

$$P(A \cap B) = \frac{|A \cap B|}{|\Omega|}$$

$$P(B|A) = \frac{|A \cap B|}{|A|}.$$

- Three coins in my pocket
 - 1 one with head on both sides
 - 2 one with tail on both sides
 - **3** one with head and tail.
- Pick one at random and flip it

- Three coins in my pocket
 - 1 one with head on both sides
 - 2 one with tail on both sides
 - 3 one with head and tail.
- Pick one at random and flip it
- P(front is H) =?

- Three coins in my pocket
 - 1 one with head on both sides
 - 2 one with tail on both sides
 - 3 one with head and tail.
- Pick one at random and flip it
- P(front is H) =?
- P(back is also H|front is H) =?

- Three coins in my pocket
 - 1 one with head on both sides
 - 2 one with tail on both sides
 - **3** one with head and tail.
- Pick one at random and flip it

- Three coins in my pocket
 - 1 one with head on both sides
 - 2 one with tail on both sides
 - 3 one with head and tail.
- Pick one at random and flip it
- Sample space: possibilities of front

coin 1	coin 2	coin 3
H_1	T_1	H_3
H_2	T_2	T_3

- Three coins in my pocket
 - 1 one with head on both sides
 - 2 one with tail on both sides
 - 3 one with head and tail.
- Pick one at random and flip it
- Sample space: possibilities of front

	coin 1	coin 2	coin 3
	H_1	T_1	H ₃
	H_2	T_2	T_3
• $P(\text{front is H}) = \frac{3}{6} =$	$=\frac{1}{2};$		

- Three coins in my pocket
 - 1 one with head on both sides
 - 2 one with tail on both sides
 - 3 one with head and tail.
- Pick one at random and flip it
- Sample space: possibilities of front

•
$$P(\text{front is H}) = \frac{3}{6} = \frac{1}{2}; \text{ similarly, } P(\text{back is H}) = \frac{1}{2}$$

- Three coins in my pocket
 - 1 one with head on both sides
 - 2 one with tail on both sides
 - 3 one with head and tail.
- Pick one at random and flip it
- Sample space: possibilities of front

$$\frac{\operatorname{coin} 1 \quad \operatorname{coin} 2 \quad \operatorname{coin} 3}{H_1 \quad T_1 \quad H_3}$$
$$H_2 \quad T_2 \quad T_3$$
$$P(\text{front is H}) = \frac{3}{6} = \frac{1}{2}; \text{ similarly, } P(\text{back is H}) = \frac{1}{2}$$
$$P(\text{both sides are H}) = P(\text{coin 1 is chosen}) = \frac{1}{3}$$

- Three coins in my pocket
 - 1 one with head on both sides
 - 2 one with tail on both sides
 - 3 one with head and tail.
- Pick one at random and flip it
- Sample space: possibilities of front

$$\begin{array}{cccc} \hline coin \ 1 & coin \ 2 & coin \ 3 \\ \hline H_1 & T_1 & H_3 \\ H_2 & T_2 & T_3 \end{array}$$

- $P(\text{front is H}) = \frac{3}{6} = \frac{1}{2}$; similarly, $P(\text{back is H}) = \frac{1}{2}$
- $P(\text{both sides are H}) = P(\text{coin 1 is chosen}) = \frac{1}{3}$
- *P*(back is H|front is H) = ^{1/3}/_{1/2} = ²/₃ > *P*(back is H) = ¹/₂: Why higher?

- *A* = {first draw is •}
- B = {second draw is •}

•
$$P(B|A) = \frac{1}{2} < P(B) \stackrel{\text{why?}}{=} \frac{3}{5}$$
: Why lower?

- A = {first draw is •}
- B = {second draw is •}
- $P(B|A) = P(B) = \frac{3}{5}$: Why equal?

So we have witnessed...

- All of the following are possible
 - $\blacktriangleright P(B|A) > P(B)$
 - $\blacktriangleright P(B|A) < P(B)$
 - $\blacktriangleright P(B|A) = P(B)$

So we have witnessed...

- All of the following are possible
 - $\blacktriangleright P(B|A) > P(B)$
 - $\blacktriangleright P(B|A) < P(B)$
 - $\blacktriangleright P(B|A) = P(B)$
- "Independence" \Leftrightarrow conditioning has no effect

Independence of two events

Definition (Independence)

Given events A, B with P(A) > 0, P(B) > 0, we say A and B are independent if

P(A|B) = P(A)

Independence of two events

Definition (Independence)

Given events A, B with P(A) > 0, P(B) > 0, we say A and B are independent if

P(A|B) = P(A)

<u>Remarks</u>

• Independence is a symmetric notion:

$$P(A|B) = P(A)$$

$$\Leftrightarrow P(B|A) = P(B)$$

$$\Leftrightarrow P(A \cap B) = P(A)P(B)$$

Simple examples of independent events

• Flip two coins: {first toss is H} and {second toss is T} — implicitly assumed to be "physically independent"

Simple examples of independent events

- Flip two coins: {first toss is H} and {second toss is T} implicitly assumed to be "physically independent"
- Throw a die: {even} and {divisible by 3} (Why?)

• A and B independent $\implies A^c$ and B independent, A^c and B^c independent, ...

- A and B independent $\implies A^c$ and B independent, A^c and B^c independent, ...
- A and A^c

- A and B independent ⇒ A^c and B independent, A^c and B^c independent, ...
- A and A^c are NOT independent (in fact highly dependent!): $P(A|A^c) = 0$
- *A* ⊂ *B*

- A and B independent ⇒ A^c and B independent, A^c and B^c independent, ...
- A and A^c are NOT independent (in fact highly dependent!): $P(A|A^c) = 0$
- $A \subset B$ are NOT independent (in fact highly dependent!): P(B|A) = 1

• A statistics professor had to take a flight for the first time and was terrified of the prospect that someone will bring a knife on the plane.

- A statistics professor had to take a flight for the first time and was terrified of the prospect that someone will bring a knife on the plane.
- He learned that <u>one out of a thousand</u> people does that.

- A statistics professor had to take a flight for the first time and was terrified of the prospect that someone will bring a knife on the plane.
- He learned that <u>one out of a thousand</u> people does that.
- Using his probabilistic expertise, he decided to bring a knife himself because the chance that two people carry knives is <u>one in a million</u>, which is much more reassuring.

- A statistics professor had to take a flight for the first time and was terrified of the prospect that someone will bring a knife on the plane.
- He learned that <u>one out of a thousand</u> people does that.
- Using his probabilistic expertise, he decided to bring a knife himself because the chance that two people carry knives is <u>one in a million</u>, which is much more reassuring.
- Do you agree with his reasoning?

Independence of three events

DefinitionEvents A, B and C are mutually independent ifP(AB) = P(A)P(B)P(BC) = P(B)P(C)P(CA) = P(C)P(A)

and

$$P(ABC) = P(A)P(B)P(C)$$

<u>Shorthand</u>: *AB* stands for $A \cap B$, *ABC* for $A \cap B \cap C$, etc.

- $A = \{A | \text{ and } Bob \text{ are born on the same day} \}$
- $B = \{Bob and Charlie are born on the same day\}$
- $C = \{$ Charlie and Alice are born on the same day $\}$

Are they mutually independent?

- $A = \{A | \text{ and } Bob \text{ are born on the same day} \}$
- $B = \{Bob and Charlie are born on the same day\}$
- $C = \{$ Charlie and Alice are born on the same day $\}$

Are they mutually independent?

•
$$P(A) = P(B) = P(C) = \frac{1}{365}$$

- $A = \{A | \text{ and } Bob \text{ are born on the same day} \}$
- $B = \{Bob and Charlie are born on the same day\}$
- $C = \{$ Charlie and Alice are born on the same day $\}$

Are they mutually independent?

•
$$P(A) = P(B) = P(C) = \frac{1}{365}$$

• A, B, C are pairwise independent:

 $P(AB) = P(\text{all three have same birthday}) = \frac{1}{365^2} = P(A)P(B)$

- $A = \{A | \text{ and } Bob \text{ are born on the same day} \}$
- $B = \{Bob and Charlie are born on the same day\}$
- $C = \{$ Charlie and Alice are born on the same day $\}$

Are they mutually independent?

•
$$P(A) = P(B) = P(C) = \frac{1}{365}$$

• A, B, C are pairwise independent:

 $P(AB) = P(\text{all three have same birthday}) = \frac{1}{365^2} = P(A)P(B)$

• A, B, C are dependent: AB = ABC so P(C|AB) = 1 and

$$P(ABC) = \frac{1}{365^2} \neq P(A)P(B)P(C)$$

- $A = \{A | \text{ and } Bob \text{ are born on the same day} \}$
- $B = \{Bob and Charlie are born on the same day\}$
- $C = \{$ Charlie and Alice are born on the same day $\}$

Are they mutually independent?

•
$$P(A) = P(B) = P(C) = \frac{1}{365}$$

• A, B, C are pairwise independent:

 $P(AB) = P(\text{all three have same birthday}) = \frac{1}{365^2} = P(A)P(B)$

• A, B, C are dependent: AB = ABC so P(C|AB) = 1 and

$$P(ABC) = \frac{1}{365^2} \neq P(A)P(B)P(C)$$

Lesson: dependence is revealed when examined jointly

A, B, C are mutually independent $\implies A \text{ and } B \cup C \text{ independent}$ $\implies A \text{ and } B^c \cap C \text{ independent, etc}$

Knowing that A, B, C are pairwisely independent is not enough for these implications.

Definition: check independence of all pairs, all triples, all 4-tuples, ... Formally:

Definition

Events A_1, A_2, \ldots, A_n are mutually independent if $P(A_{i_1}A_{i_2}\ldots A_{i_k}) = P(A_{i_1})P(A_{i_2})\ldots P(A_{i_k})$, "k-way independence"

for all $k \ge 2$ and all $1 \le i_1 < i_2 < \ldots i_k \le n$

Example: backups

Example

A data center consists of n hard drives storing the same file. Suppose each of them fails with probability 40% independently. How many hard drives are needed to boost the reliability to at least 99.9%?

Example: backups

Example

A data center consists of n hard drives storing the same file. Suppose each of them fails with probability 40% independently. How many hard drives are needed to boost the reliability to at least 99.9%?

- $A_i = \{i$ th hard drive fails $\}$
- Independence $\implies P(A_1 \cap A_2 \cap \cdots \cap A_n) = 0.4^n$
- $P(\text{file accessible}) = 1 P(A_1 \cap A_2 \cap \cdots \cap A_n) = 1 0.4^n \ge 0.999 \implies n \ge 8$