
S&DS 241 Lecture 4
Law of total probability. Bayes formula.

B-H: Sec 2.3,2.4,2.7,2.8
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Law of total probability: Motivations



Example: sampling without replacements (Lec03)

Consider an urn consisting of { }. Draw one ball at random,

remove it; then draw another at random. Find:

P (second ball is )

Thought process

• With a chance of 3
5 , first ball is , in which case there is a 1

2 chance

that the second ball is

• With a chance of 2
5 , first ball is , in which case there is a 3

4 chance

that the second ball is

• So overall,

P (second ball is ) =
3

5
× 1

2
+

2

5
× 3

4
=

3

5
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Strategy: divide and conquer

1 List all possible scenarios exhaustively

2 Compute the conditional probability of the event under each scenario

3 Take the average (weighted by the likelihood of each scenario)
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Law of total probability (LOTP)

A1

A2 A3

An

B

Ω

• Let A1, . . . , An be a partition of Ω, i.e.,

A1 ∪ · · · ∪An = Ω and Ai ∩Aj = ∅ for i ̸= j

• Then

P (B) =

n∑
i=1

P (B|Ai)P (Ai)

• Special case n = 2: conditioned on whether A occurs or not,

P (B) = P (B|A)P (A) + P (B|Ac)P (Ac)
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Proof of LOTP

A1

A2 A3

An

B

Ω

Proof.

B = B ∩ Ω = B ∩ (A1 ∪ · · · ∪An) = (A1 ∩B) ∪ · · · ∪ (An ∩B)︸ ︷︷ ︸
mutually exclusive

⇒ P (B) =
n∑

i=1

P (Ai ∩B) =

n∑
i=1

P (B|Ai)P (Ai)
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Bayes formula/rule/theorem

Recall

• Independence is a symmetric notion

• Conditioning is an asymmetric notion:

P (A|B) ̸= P (B|A) in general

• How to find P (A|B) based on P (B|A)?

P (A|B) =
P (A ∩B)

P (B)
=

P (B|A)P (A)

P (B)

• Confusing these P (A|B) and P (B|A) is called the prosecutor’s

fallacy
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Example (B-H Sec 2.8)

In 1998, Sally Clark was tried for murder after two of her sons died

shortly after birth. During the trial, an expert witness for the prosecution

testified that the probability of a newborn dying of sudden infant death

syndrome (SIDS) was 1/8500, so the probability of two deaths due to

SIDS in one family was (1/8500)2, or about 1/73 million. Therefore, he

continued, the probability of Clark’s innocence was 1/73 million.

Two issues:
• Confusing P (evidence|innocence) with P (innocence|evidence):

P (innocence|evidence) =
P (evidence|innocence)P (innocence)

P (evidence)

• P (evidence|innocence) = 1
85002

assumes independence (questionable).
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More on this

• People v. Collins in Grinstead-Snell, Section 4.1, Problem 28.

• For more in-depth discussion, see

https://en.wikipedia.org/wiki/Prosecutor’s_fallacy and

9/29
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Summary

A1

A2 A3

An

B

Ω

• Law of total probability:

P (B) =

n∑
i=1

P (B|Ai)P (Ai)

• Bayes formula:

P (Aj |B) =
P (B|Aj)P (Aj)
n∑

i=1
P (B|Ai)P (Ai)
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Statistical inference: hypotheses testing

• A1, . . . , An: hypotheses

• B: result of the experiment, observed data

• P (Ai): prior belief of the ith hypothesis

• Use Bayes formula to compute the posterior probability

P (jth hypothesis is true|data) = P (Aj |B) =
P (B|Aj)P (Aj)
n∑

i=1
P (B|Ai)P (Ai)
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Rare disease
A doctor gives a patient a test for a particular cancer. Before the test, the

only evidence the doctor has to go on is that 1 person in 1000 has this

cancer. Experience has shown that, in 99% of the cases in which cancer

is present, the test is positive; and in 95% of the cases in which cancer is

not present, it is negative. If the test turns out to be positive, what

probability should the doctor assign to the event that cancer is present?
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Mathematical description

Let + denote test positive and − test negative.

P (cancer) = 1/1000, P (no cancer) = 999/1000,

P (+|cancer)︸ ︷︷ ︸
true positive

= 99%, P (−|cancer)︸ ︷︷ ︸
false negative

= 1%

P (−|no cancer)︸ ︷︷ ︸
true negative

= 95%, P (+|no cancer)︸ ︷︷ ︸
false positive

= 5%

The question is

P (cancer|+) =?

Grinstead-Snell:
When a group of second-year medical students was asked this

question, over half of the students incorrectly guessed the prob-

ability to be greater than 50%
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Compute the posterior probability

P (cancer|+)

=
P (cancer,+)

P (+)

=
P (cancer,+)

P (cancer,+) + P (no cancer,+)

=
P (cancer)P (+|cancer)

P (cancer)P (+|cancer) + P (no cancer)P (+|no cancer)

=
1/1000× 99%

1/1000× 99% + 999/1000× 5%

= 0.0194

Are you surprised?

• The test seems very reliable, but why the probability 1.94% is so

small?

• Given the probability is 1.94%, should the patient not be alarmed?
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Be careful when priors are very biased

• Tree-diagram (see B-H p. 57):

52 Introduction to Probability

Many people, including doctors, find it surprising that the conditional probability
of having the disease given a positive test result is only 16%, even though the test
is 95% accurate (see Gigerenzer and Ho↵rage [14]). The key to understanding this
surprisingly high posterior probability is to realize that there are two factors at play:
the evidence from the test, and our prior information about the prevalence of the
disease. Although the test provides evidence in favor of disease, conditionitis is also
a rare condition! The conditional probability P (D|T ) reflects a balance between
these two factors, appropriately weighing the rarity of the disease against the rarity
of a mistaken test result.

100000 people

100 
people

99900 people
dise

ased
healthy

199

test –

4995
94905

test –

true positives false negatives

false positives

true negatives

tes
t +

test
 +

FIGURE 2.4

Testing for a rare disease in a population of 10000 people, where the prevalence of
the disease is 1% and the true positive and true negative rates are both equal to
95%. Bubbles are not to scale.

For further intuition, consider a population of 10000 people as illustrated in Figure
2.4, where 100 have conditionitis and 9900 don’t; this corresponds to a 1% disease
rate. If we tested everybody in the population, we’d expect that out of the 100
diseased individuals, 95 would test positive and 5 would test negative. Out of the
9900 healthy individuals, we’d expect (0.95)(9900) ⇡ 9405 to test negative and 495
to test positive.

Now let’s focus in on those individuals who test positive; that is, let’s condition on a

• In fact the test result has increased the likelihood almost 20-fold!

(from 0.001 to 0.0194)
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More reading on this example

• Blitzstein-Hwang: Example 2.3.9 (pp. 56-58)
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Example: Deuce
Alice plays tennis against Bob. The game is at deuce. Suppose

• Alice wins each point with probability p and loses with probability

q = 1− p

• Each point is played independently

• The game is won by the player who leads by 2 points

What is the probability that Alice eventually wins the game?

For example

• WLWW → Alice wins

• WLLWLL → Alice loses

Observations:

• The game can go on for arbitrarily long

• Special case p = 1/2: Answer is 1/2 by symmetry

• Instead of listing all the outcomes corresponding to Alice winning,

let’s do somthing differently...
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Let

• u = P (Alice eventually wins|game is tied)

• v = P (Alice eventually wins|leading by one point)

• w = P (Alice eventually wins|trailing by one point)

By law of total probability:

u =P (wins game|draw)

=P (wins game|draw,wins next point)× p

+ P (wins game|draw, loses next point)× q

=v × p+ w × q

Similarly,

• v = 1× p+ u× q

• w = u× p+ 0× q



Let

• u = P (Alice eventually wins|game is tied)

• v = P (Alice eventually wins|leading by one point)

• w = P (Alice eventually wins|trailing by one point)

By law of total probability:

u =P (wins game|draw)
=P (wins game|draw,wins next point)× p

+ P (wins game|draw, loses next point)× q

=v × p+ w × q

Similarly,

• v = 1× p+ u× q

• w = u× p+ 0× q



Let

• u = P (Alice eventually wins|game is tied)

• v = P (Alice eventually wins|leading by one point)

• w = P (Alice eventually wins|trailing by one point)

By law of total probability:

u =P (wins game|draw)
=P (wins game|draw,wins next point)× p

+ P (wins game|draw, loses next point)× q

=v × p+ w × q

Similarly,

• v = 1× p+ u× q

• w = u× p+ 0× q



Let

• u = P (Alice eventually wins|game is tied)

• v = P (Alice eventually wins|leading by one point)

• w = P (Alice eventually wins|trailing by one point)

By law of total probability:

u =P (wins game|draw)
=P (wins game|draw,wins next point)× p

+ P (wins game|draw, loses next point)× q

=v × p+ w × q

Similarly,

• v = 1× p+ u× q

• w = u× p+ 0× q



Solving the equations
u = vp+ wq

v = p+ uq

w = up

gives

u =
p2

1− 2pq
=

p2

p2 + q2
1
2

1

1
2

1

0
p

p2

p2+q2

• This method is called first-step analysis in B-H Sec 2.7.2

• Will revisit later when discussing random walk
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Application: Optimal Stopping



Motel problem

• Suppose you are driving down a highway and pass a strip of n motels

• with distinct rates and arranged randomly

• n is quite large

• You do not know the arrangement: no :-(

• Once passed a motel, cannot turn back

• Goal: choose the cheapest motel
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A strategy

Phase I: “exploration” Drive past the first k motels and record the prices;

Phase II: “exploitation” Pick the first motel that is cheaper than the

cheapest of the first k motels (if none, it’s a failure).

Question
• What is P (success) = P (find the cheapest)

• What is the best choice of k?
▶ k = 0 is too greedy: P (success) = 1

n ≈ 0
▶ k = n is clearly bad: P (success) = 0
▶ Maybe some intermediate value k is good

• How good is this strategy?
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Surprisingly, when n is large
• Optimal choice of k ≈ n/e

• P (success) ≈ 1/e ≈ 36.8%

• This is the best among all strategies (not just two-phase strategies)!!

• We will use LOTP to resolve the first two questions

• The third takes a PhD
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Mathematically equivalent scenarios

“Best” strategy of the job interviewer:

• Blindly reject the first 36.8% applicants (but keep their CVs)

• Accept the next applicant who beats the best of the first 36.8%
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Solution using law of total probability
• Let

Ei = {ith motel is the cheapest}, i = 1, . . . , n

Then P (Ei) = 1/n.

• By Law of Total Probability

P (success) =
n∑

i=1

P (success|Ei)P (Ei) =
1

n

n∑
i=1

P (success|Ei)

• For i = 1, . . . , k,

P (success|Ei) = 0

• For i = k + 1, . . . , n

P (success|Ei) = P (cheapest of the first i− 1 is located in the first k|Ei)

=
k

i− 1
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Solution using law of total probability

P (success) =
k∑

i=1

0× 1

n
+

n∑
i=k+1

k

i− 1
× 1

n
=

k

n

n−1∑
i=k

1

i
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P (success) versus k: n = 100
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Approximating
∑

by
∫

P (success) =
k

n

n−1∑
i=k

1

i

=
k

n

(
1

n

n−1∑
i=k

n

i

)
(∗)
≈ k

n

∫ 1

k/n

1

x
dx =

k

n
ln

n

k
.

which attains the maximum 1/e at k = n/e.

(∗): Approximate sum by integtral (see B-H math appendix A.8.4)

For more see https://en.wikipedia.org/wiki/Secretary_problem
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