
S&DS 241 Lecture 6
Functions of random variables. LOTUS rule.

Independence of random variables. Conditional independence.

B-H: 2.5, 3.7, 3.8, 4.5
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Functions of random variables

Let X be a discrete random variable. Let g : R → R be a function. Then

Y = g(X) is also a discrete random variable,

because

• Y : Ω → R is the composition of X : Ω → R and g : R → R, which
maps ω to Y (ω) = g(X(ω))

Ω

ω

X(ω)

X

g

Y = g(X)

g(X(ω))

• the number of possible values of Y is at most that of X
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Find PMF of Y = g(X)

If we know the PMF of X, we can obtain the PMF of Y :

Step 1 Find the set of values that Y takes

Step 2 Find the corresponding probabilities

pY (y) = P (g(X) = y) =
∑

x:g(x)=y

pX(x)
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Example

Given the PMF of X

x −2 −1 0 1 2

pX(x) 1
5

1
5

1
5

1
5

1
5

Find the PMF of Y = 2X + 1:

Step 1 Y takes values −3,−1, 1, 3, 5

Step 2 P (Y = −3) = P (2X + 1 = −3) = P (X = −2) = 1/5, and

so on and so forth

y −3 −1 1 3 5

pY (y)
1
5

1
5

1
5

1
5

1
5

4/24



Example

Given the PMF of X

x −2 −1 0 1 2

pX(x) 1
5

1
5

1
5

1
5

1
5

Find the PMF of Y = 2X + 1:

Step 1 Y takes values −3,−1, 1, 3, 5

Step 2 P (Y = −3) = P (2X + 1 = −3) = P (X = −2) = 1/5, and

so on and so forth

y −3 −1 1 3 5

pY (y)
1
5

1
5

1
5

1
5

1
5

4/24



Example

Given the PMF of X

x −2 −1 0 1 2

pX(x) 1
5

1
5

1
5

1
5

1
5

Find the PMF of Y = 2X + 1:

Step 1 Y takes values −3,−1, 1, 3, 5

Step 2 P (Y = −3) = P (2X + 1 = −3) = P (X = −2) = 1/5, and

so on and so forth

y −3 −1 1 3 5

pY (y)
1
5

1
5

1
5

1
5

1
5

4/24



Example

Given the PMF of X

x −2 −1 0 1 2

pX(x) 1
5

1
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1
5

1
5

1
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Example

Given the PMF of X

x −2 −1 0 1 2

pX(x) 1
5

1
5

1
5

1
5

1
5

Find the PMF of W = −X:

w −2 −1 0 1 2

pW (w) 1
5

1
5

1
5

1
5

1
5

Note: X and W have the same distribution (PMF), but these two

random variables are NOT the same! In fact, P (X = −W ) = 1.
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Compute E(g(X))

Example:

• PMF of X: x −2 −1 0 1 2

pX(x) 1
5

1
5

1
5

1
5

1
5

• PMF of Z = X2: z 0 1 4

pZ(z)
1
5

2
5

2
5

• Expectation:

E(Z) =
1

5
× 0 +

2

5
× 1 +

2

5
× 4 = 2

• Can we find E(Z) without finding pZ?

E(X2) =
1

5
× (−2)2 +

1

5
× (−1)2 +

1

5
× 02 +

1

5
× 12 +

1

5
× 22 = 2

Compare:

E(X) =
1

5
× (−2) +

1

5
× (−1) +

1

5
× 0 +

1

5
× 1 +

1

5
× 2 = 0.
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Law Of The Unconscious Statistician (LOTUS)
Random variable X takes values in X . Then for any function g:

E(g(X)) =
∑
x∈X

pX(x)g(x),

that is, average the function values weighted by the PMF of X.

Proof.

Group the sum according to the value of X:

E(g(X)) =
∑
ω∈Ω

P ({ω}) g(X(ω))

=
∑
x∈X

∑
ω∈Ω:X(ω)=x

P ({ω}) g(x)

=
∑
x∈X

 ∑
ω∈Ω:X(ω)=x

P ({ω})


︸ ︷︷ ︸

P (X=x)

g(x)
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Summary

Utility of PMF: Find

• probability of events: P (X ∈ I)

• conditional probabilities: P (X ∈ I|X ∈ J)

• PMF of g(X)

• Expectation of g(X)

• ...
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Independence of random variables



Independence of two random variables

Recall independence of two events:

P (A ∩B) = P (A)P (B)

Definition

Discrete random variables X and Y are independent if for any x, y ∈ R,
{X = x} and {Y = y} are independent events, i.e.,

P (X = x, Y = y) = P (X = x)P (Y = y).

Equivalently: conditioning does not change PMF

P (X = x|Y = y) = P (X = x)

provided that P (Y = y) > 0.
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Consequences
X and Y independent =⇒ any event involving X is independent of

that involving Y : for any I, J ⊂ R,

P (X ∈ I, Y ∈ J) = P (X ∈ I)P (Y ∈ J)

Proof.

P (X ∈ I, Y ∈ J) =
∑
x∈I

∑
y∈J

P (X = x, Y = y)

=
∑
x∈I

∑
y∈J

P (X = x)P (Y = y) independence

=

(∑
x∈I

P (X = x)

)
︸ ︷︷ ︸

P (X∈I)

∑
y∈J

P (Y = y)


︸ ︷︷ ︸

P (Y ∈J)
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Consequences

If X and Y are independent, then

E(XY ) = E(X)E(Y )

Proof.

E(XY ) =
∑
x

∑
y

xyP (X = x, Y = y) LOTUS

=
∑
x

∑
y

xyP (X = x)P (Y = y) independence

=

(∑
x

xP (X = x)

)
︸ ︷︷ ︸

E(X)

(∑
y

yP (Y = y)

)
︸ ︷︷ ︸

E(Y )
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Summary

• For any X and Y ,

E(X + Y ) = E(X) + E(Y )

• For independent X and Y ,

E(XY ) = E(X)E(Y )
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Consequences

If X and Y are independent, then

• f(X) and g(Y ) are also independent

• Hence

E(f(X)g(Y )) = E(f(X))E(g(Y ))

15/24



Example: fair die
Let X be the result of a fair die. Let

Y = X mod 2

Z = X mod 3

Then

• pY (0) = pY (1) = 1/2

• pZ(0) = pZ(1) = pZ(2) = 1/3

• Are Y and Z independent?

Yes!

P (Y = 0, Z = 0) = P (X = 6) = 1/6

P (Y = 0, Z = 1) = P (X = 4) = 1/6

. . . . . .

P (Y = 1, Z = 2) = P (X = 5) = 1/6
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Example

Are X and g(X) independent?

In general no, e.g.,

• X = ±1 equally likely, Y = −X

• P (X = 1, Y = 1) = 0 ̸= P (X = 1)P (Y = 1) = 1
4

unless in trivial cases (e.g. X is a constant or g is a constant function)
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Independence of multiple random variables

Definition

Discrete random variables X1, . . . , Xn are independent if for any

x1, . . . , xn ∈ R,
P (X1 = x1, . . . , Xn = xn) = P (X1 = x1)× · · · × P (Xn = xn).

Consequences:

• X1 and X2 +X3 are independent

• X2
4 and X5X6 −X7 are independent

• ...

18/24
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Conditional independence
Independence (of events and random variables) naturally extends to

conditional scenarios (B-H: Def 2.5.7 and 3.8.10):

Definition

Let C be an event with P (C) > 0.

• Events A and B are conditionally independent given an event C if

P (A ∩B|C) = P (A|C)P (B|C)

• Random variables X and Y are conditionally independent given an

event C if

P (X = x, Y = y|C) = P (X = x|C)P (Y = y|C)

for all x, y

• Random variables X and Y are conditionally independent given an

random variable Z if

P (X = x, Y = y|Z = z) = P (X = x|Z = z)P (Y = y|Z = z)

for all x, y and for all z such that P (Z = z) > 0
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Example: fair die (continued)

Let X be the result of a fair die. Let

Y = X mod 2

Z = X mod 3

Then

• pY (0) = pY (1) = 1/2

• pZ(0) = pZ(1) = pZ(2) = 1/3

• We have verified that Y and Z independent.

• Questions:
▶ Are Y and Z independent conditioned on the event {X ≤ 3}? No.

• For example, P (Y = 0, Z = 1|X ≤ 3) = 0, but

P (Y = 0|X ≤ 3) = P (Z = 1|X ≤ 3) = 1
3

▶ Are Y and Z independent conditioned on the event {X is even}?
Yes. (Exercise)
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Monty Hall problem

1 2

? ?

• A prize is behind one of the three doors. The other two are empty

• The guest randomly chooses a door

• The host, knowing where the prize is, opens one of the remaining
two doors that is empty. Specifically
▶ If guest’s door is empty, host opens the other empty door;
▶ If guest’s door has prize, host randomly chooses an empty door.

• The hosts offers the guest the option to switch the choice to the

other closed door

• Question: Would you switch? Not switch? Doesn’t matter?
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Monty Hall problem
Define the relevant random variables

• X: location of prize

• G: choice of guest

• H: choice of host

• S: the other door

Then

• X and G are independent and equally likely to be 1, 2, 3

• Then P (X = G) = 1
3

(analogy: for two dice P (double) = 1/6 in lecture 2)

• Per rule of the game, either X = G or X = S

• Hence P (X = S) = 2
3 , i.e., switching is twice as likely to win

• Another way for guest to think:

▶ If my door is empty (2/3 chance), switch will win
▶ If my door has prize (1/3 chance), switch will lose

22/24



Monty Hall problem
Define the relevant random variables

• X: location of prize

• G: choice of guest

• H: choice of host

• S: the other door

Then

• X and G are independent and equally likely to be 1, 2, 3

• Then P (X = G) = 1
3

(analogy: for two dice P (double) = 1/6 in lecture 2)

• Per rule of the game, either X = G or X = S

• Hence P (X = S) = 2
3 , i.e., switching is twice as likely to win

• Another way for guest to think:

▶ If my door is empty (2/3 chance), switch will win
▶ If my door has prize (1/3 chance), switch will lose

22/24



Monty Hall problem
Define the relevant random variables

• X: location of prize

• G: choice of guest

• H: choice of host

• S: the other door

Then

• X and G are independent and equally likely to be 1, 2, 3

• Then P (X = G) = 1
3

(analogy: for two dice P (double) = 1/6 in lecture 2)

• Per rule of the game, either X = G or X = S

• Hence P (X = S) = 2
3 , i.e., switching is twice as likely to win

• Another way for guest to think:

▶ If my door is empty (2/3 chance), switch will win
▶ If my door has prize (1/3 chance), switch will lose

22/24



Monty Hall problem
Define the relevant random variables

• X: location of prize

• G: choice of guest

• H: choice of host

• S: the other door

Then

• X and G are independent and equally likely to be 1, 2, 3

• Then P (X = G) = 1
3

(analogy: for two dice P (double) = 1/6 in lecture 2)

• Per rule of the game, either X = G or X = S

• Hence P (X = S) = 2
3 , i.e., switching is twice as likely to win

• Another way for guest to think:

▶ If my door is empty (2/3 chance), switch will win
▶ If my door has prize (1/3 chance), switch will lose

22/24



Monty Hall problem
Define the relevant random variables

• X: location of prize

• G: choice of guest

• H: choice of host

• S: the other door

Then

• X and G are independent and equally likely to be 1, 2, 3

• Then P (X = G) = 1
3

(analogy: for two dice P (double) = 1/6 in lecture 2)

• Per rule of the game, either X = G or X = S

• Hence P (X = S) = 2
3 , i.e., switching is twice as likely to win

• Another way for guest to think:

▶ If my door is empty (2/3 chance), switch will win
▶ If my door has prize (1/3 chance), switch will lose

22/24



Monty Hall problem
Define the relevant random variables

• X: location of prize

• G: choice of guest

• H: choice of host

• S: the other door

Then

• X and G are independent and equally likely to be 1, 2, 3

• Then P (X = G) = 1
3

(analogy: for two dice P (double) = 1/6 in lecture 2)

• Per rule of the game, either X = G or X = S

• Hence P (X = S) = 2
3 , i.e., switching is twice as likely to win

• Another way for guest to think:

▶ If my door is empty (2/3 chance), switch will win
▶ If my door has prize (1/3 chance), switch will lose

22/24



Monty Hall problem
Define the relevant random variables

• X: location of prize

• G: choice of guest

• H: choice of host

• S: the other door

Then

• X and G are independent and equally likely to be 1, 2, 3

• Then P (X = G) = 1
3

(analogy: for two dice P (double) = 1/6 in lecture 2)

• Per rule of the game, either X = G or X = S

• Hence P (X = S) = 2
3 , i.e., switching is twice as likely to win

• Another way for guest to think:

▶ If my door is empty (2/3 chance), switch will win
▶ If my door has prize (1/3 chance), switch will lose

22/24



Monty Hall problem
Define the relevant random variables

• X: location of prize

• G: choice of guest

• H: choice of host

• S: the other door

Then

• X and G are independent and equally likely to be 1, 2, 3

• Then P (X = G) = 1
3

(analogy: for two dice P (double) = 1/6 in lecture 2)

• Per rule of the game, either X = G or X = S

• Hence P (X = S) = 2
3 , i.e., switching is twice as likely to win

• Another way for guest to think:

▶ If my door is empty (2/3 chance), switch will win
▶ If my door has prize (1/3 chance), switch will lose

22/24



Monty Hall problem
Define the relevant random variables

• X: location of prize

• G: choice of guest

• H: choice of host

• S: the other door

Then

• X and G are independent and equally likely to be 1, 2, 3

• Then P (X = G) = 1
3

(analogy: for two dice P (double) = 1/6 in lecture 2)

• Per rule of the game, either X = G or X = S

• Hence P (X = S) = 2
3 , i.e., switching is twice as likely to win

• Another way for guest to think:

▶ If my door is empty (2/3 chance), switch will win
▶ If my door has prize (1/3 chance), switch will lose

22/24



Monty Hall problem
Define the relevant random variables

• X: location of prize

• G: choice of guest

• H: choice of host

• S: the other door

Then

• X and G are independent and equally likely to be 1, 2, 3

• Then P (X = G) = 1
3

(analogy: for two dice P (double) = 1/6 in lecture 2)

• Per rule of the game, either X = G or X = S

• Hence P (X = S) = 2
3 , i.e., switching is twice as likely to win

• Another way for guest to think:

▶ If my door is empty (2/3 chance), switch will win
▶ If my door has prize (1/3 chance), switch will lose

22/24



Monty Hall problem
Define the relevant random variables

• X: location of prize

• G: choice of guest

• H: choice of host

• S: the other door

Then

• X and G are independent and equally likely to be 1, 2, 3

• Then P (X = G) = 1
3

(analogy: for two dice P (double) = 1/6 in lecture 2)

• Per rule of the game, either X = G or X = S

• Hence P (X = S) = 2
3 , i.e., switching is twice as likely to win

• Another way for guest to think:
▶ If my door is empty (2/3 chance), switch will win

▶ If my door has prize (1/3 chance), switch will lose

22/24



Monty Hall problem
Define the relevant random variables

• X: location of prize

• G: choice of guest

• H: choice of host

• S: the other door

Then

• X and G are independent and equally likely to be 1, 2, 3

• Then P (X = G) = 1
3

(analogy: for two dice P (double) = 1/6 in lecture 2)

• Per rule of the game, either X = G or X = S

• Hence P (X = S) = 2
3 , i.e., switching is twice as likely to win

• Another way for guest to think:
▶ If my door is empty (2/3 chance), switch will win
▶ If my door has prize (1/3 chance), switch will lose

22/24



Monty Hall problem

1 2

? ?

• Maybe you are still not convinced because the guest knows which

door he chooses and observes which door the hosts opens

• The guest should evaluate the probability conditioned on these

information in order to make an informed decision.

• So let’s compute some conditional probabilities
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Monty Hall problem: conditional probability
Suppose guest chooses first door and host opens third door, i.e., G = 1

and H = 3. Goal: find

P (X = 1|G = 1, H = 3) and P (X = 2|G = 1, H = 3)

Use law of total probability and Bayes rule:
P (G = 1, H = 3) =P (G = 1, H = 3|X = 1)︸ ︷︷ ︸

1/3×1/2

P (X = 1)︸ ︷︷ ︸
1/3

+ P (G = 1, H = 3|X = 2)︸ ︷︷ ︸
1/3×1

P (X = 2)︸ ︷︷ ︸
1/3

+ P (G = 1, H = 3|X = 3)︸ ︷︷ ︸
1/3×0

P (X = 3)︸ ︷︷ ︸
1/3

=
1

6

and hence

P (X = 1|G = 1, H = 3) =
1

3
and P (X = 2|G = 1, H = 3) =

2

3
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