S&DS 241 Lecture 6

Functions of random variables. LOTUS rule.
Independence of random variables. Conditional independence.

B-H: 2.5, 3.7, 3.8, 4.5
Functions of random variables

Let X be a discrete random variable. Let $g : \mathbb{R} \rightarrow \mathbb{R}$ be a function. Then $Y = g(X)$ is also a discrete random variable,
Let X be a discrete random variable. Let $g : \mathbb{R} \to \mathbb{R}$ be a function. Then $Y = g(X)$ is also a discrete random variable, because

- $Y : \Omega \to \mathbb{R}$ is the composition of $X : \Omega \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$, which maps ω to $Y(\omega) = g(X(\omega))$

- the number of possible values of Y is at most that of X
Find PMF of $Y = g(X)$

If we know the PMF of X, we can obtain the PMF of Y:

Step 1 Find the set of values that Y takes

Step 2 Find the corresponding probabilities

$$p_Y(y) = P(g(X) = y) = \sum_{x:g(x)=y} p_X(x)$$
Example

Given the PMF of X

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_X(x)$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
</tr>
</tbody>
</table>

Find the PMF of $Y = 2X + 1$:
Example

Given the PMF of X

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_X(x)$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
</tr>
</tbody>
</table>

Find the PMF of $Y = 2X + 1$:

Step 1 Y takes values $-3, -1, 1, 3, 5$

Step 2 $P(Y = -3) = P(2X + 1 = -3) = P(X = -2) = 1/5$, and so on and so forth
Example

Given the PMF of X

\[
\begin{array}{c|c|c|c|c|c}
 x & -2 & -1 & 0 & 1 & 2 \\
p_X(x) & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\
\end{array}
\]

Find the PMF of $Y = 2X + 1$:

Step 1 Y takes values $-3, -1, 1, 3, 5$

Step 2 $P(Y = -3) = P(2X + 1 = -3) = P(X = -2) = \frac{1}{5}$, and so on and so forth

\[
\begin{array}{c|c|c|c|c|c}
y & -3 & -1 & 1 & 3 & 5 \\
p_Y(y) & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\
\end{array}
\]
Example

Given the PMF of X

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_X(x)$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
</tr>
</tbody>
</table>

Find the PMF of $Z = X^2$:

\[Z \text{ takes values } 0, 1, 4 \]

\[P(Z = 4) = P(X^2 = 4) = P(X = 2) + P(X = -2) = \frac{2}{5} \]
Example

Given the PMF of X

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_X(x)$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
</tr>
</tbody>
</table>

Find the PMF of $Z = X^2$:

Step 1 Z takes values 0, 1, 4

Step 2 $P(Z = 4) = P(X^2 = 4) = P(X = 2) + P(X = -2) = \frac{2}{5}$
Example

Given the PMF of X

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_X(x)$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
</tr>
</tbody>
</table>

Find the PMF of $Z = X^2$:

Step 1 Z takes values 0, 1, 4

Step 2 $P(Z = 4) = P(X^2 = 4) = P(X = 2) + P(X = -2) = \frac{2}{5}$

<table>
<thead>
<tr>
<th>z</th>
<th>0</th>
<th>1</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_Z(z)$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{2}{5}$</td>
<td>$\frac{2}{5}$</td>
</tr>
</tbody>
</table>
Example

Given the PMF of X

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_X(x)$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
</tr>
</tbody>
</table>

Find the PMF of $W = -X$:

Note: X and W have the same distribution (PMF), but these two random variables are NOT the same! In fact, $P(X = -W) = 1$.
Example

Given the PMF of X

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_X(x)$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
</tr>
</tbody>
</table>

Find the PMF of $W = -X$:

<table>
<thead>
<tr>
<th>w</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_W(w)$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
</tr>
</tbody>
</table>
Example

Given the PMF of X

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_X(x)$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
</tr>
</tbody>
</table>

Find the PMF of $W = -X$:

<table>
<thead>
<tr>
<th>w</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_W(w)$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
</tr>
</tbody>
</table>

Note: X and W have the same distribution (PMF), but these two random variables are NOT the same! In fact, $P(X = -W) = 1$.
Compute $E(g(X))$
Compute $E(g(X))$

Example:

- PMF of X:

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_X(x)$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
</tr>
</tbody>
</table>

- PMF of $Z = X^2$:

<table>
<thead>
<tr>
<th>z</th>
<th>0</th>
<th>1</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_Z(z)$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{2}{5}$</td>
<td>$\frac{2}{5}$</td>
</tr>
</tbody>
</table>
Compute $E(g(X))$

Example:

- **PMF of X:**

 \[x \quad | \quad -2 \quad | \quad -1 \quad | \quad 0 \quad | \quad 1 \quad | \quad 2 \]
 \[p_X(x) \quad | \quad \frac{1}{5} \]

- **PMF of $Z = X^2$:**

 \[z \quad | \quad 0 \quad | \quad 1 \quad | \quad 4 \]
 \[p_Z(z) \quad | \quad \frac{1}{5} \quad | \quad \frac{2}{5} \quad | \quad \frac{2}{5} \]

- **Expectation:**

 \[
 E(Z) = \frac{1}{5} \times 0 + \frac{2}{5} \times 1 + \frac{2}{5} \times 4 = 2
 \]
Compute $E(g(X))$

Example:

- PMF of X:

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_X(x)$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
</tr>
</tbody>
</table>

- PMF of $Z = X^2$:

 | z | 0 | 1 | 4 |
 |-----|-----|-----|
 | $p_Z(z)$ | $\frac{1}{5}$ | $\frac{2}{5}$ | $\frac{2}{5}$ |

- Expectation:

 $$E(Z) = \frac{1}{5} \times 0 + \frac{2}{5} \times 1 + \frac{2}{5} \times 4 = 2$$

- Can we find $E(Z)$ without finding p_Z?

 $$E(X^2) = \frac{1}{5} \times (-2)^2 + \frac{1}{5} \times (-1)^2 + \frac{1}{5} \times 0^2 + \frac{1}{5} \times 1^2 + \frac{1}{5} \times 2^2 = 2$$

 Compare:

 $$E(X) = \frac{1}{5} \times (-2) + \frac{1}{5} \times (-1) + \frac{1}{5} \times 0 + \frac{1}{5} \times 1 + \frac{1}{5} \times 2 = 0.$$
Law Of The Unconscious Statistician (LOTUS)

Random variable X takes values in \mathcal{X}. Then for any function g:

$$E(g(X)) = \sum_{x \in \mathcal{X}} p_X(x)g(x),$$

that is, average the function values weighted by the PMF of X.

Law Of The Unconscious Statistician (LOTUS)

Random variable X takes values in \mathcal{X}. Then for any function g:

$$E(g(X)) = \sum_{x \in \mathcal{X}} p_X(x)g(x),$$

that is, average the function values weighted by the PMF of X.

Proof.

Group the sum according to the value of X:

$$E(g(X)) = \sum_{\omega \in \Omega} P(\{\omega\}) g(X(\omega))$$

$$= \sum_{x \in \mathcal{X}} \sum_{\omega \in \Omega: X(\omega) = x} P(\{\omega\}) g(x)$$

$$= \sum_{x \in \mathcal{X}} \left(\sum_{\omega \in \Omega: X(\omega) = x} P(\{\omega\}) \right) g(x)$$

$$= \sum_{x \in \mathcal{X}} \left(\sum_{\omega \in \Omega: X(\omega) = x} \frac{P(\{\omega\})}{P(X=x)} \right) g(x)$$

$$= \sum_{x \in \mathcal{X}} p_X(x)g(x)$$
Summary

Utility of PMF: Find

- probability of events: $P(X \in I)$
- conditional probabilities: $P(X \in I | X \in J)$
- PMF of $g(X)$
- Expectation of $g(X)$
- ...

Independence of random variables
Independence of two random variables

Recall independence of two events:

\[P(A \cap B) = P(A)P(B) \]
Independence of two random variables

Recall independence of two events:

\[P(A \cap B) = P(A)P(B) \]

Definition

Discrete random variables \(X \) and \(Y \) are **independent** if for any \(x, y \in \mathbb{R} \), \(\{ X = x \} \) and \(\{ Y = y \} \) are independent events, i.e.,

\[P(X = x, Y = y) = P(X = x)P(Y = y). \]
Independence of two random variables

Recall independence of two events:

\[P(A \cap B) = P(A)P(B) \]

Definition

Discrete random variables \(X \) and \(Y \) are independent if for any \(x, y \in \mathbb{R} \), \(\{X = x\} \) and \(\{Y = y\} \) are independent events, i.e.,

\[P(X = x, Y = y) = P(X = x)P(Y = y). \]

Equivalently: conditioning does not change PMF

\[P(X = x|Y = y) = P(X = x) \]

provided that \(P(Y = y) > 0 \).
Consequences

X and Y independent \implies any event involving X is independent of that involving Y: for any $I, J \subset \mathbb{R}$,

$$P(X \in I, Y \in J) = P(X \in I)P(Y \in J)$$
Consequences

X and Y independent \implies any event involving X is independent of that involving Y: for any $I, J \subset \mathbb{R}$,

$$P(X \in I, Y \in J) = P(X \in I)P(Y \in J)$$

Proof.

$$P(X \in I, Y \in J) = \sum_{x \in I} \sum_{y \in J} P(X = x, Y = y)$$

$$= \sum_{x \in I} \sum_{y \in J} P(X = x)P(Y = y) \quad \text{independence}$$

$$= \left(\sum_{x \in I} P(X = x) \right) \left(\sum_{y \in J} P(Y = y) \right)$$

$$= P(X \in I) \cdot P(Y \in J)$$
Consequences

If X and Y are independent, then

$$E(XY) = E(X)E(Y)$$
Consequences

If X and Y are independent, then

$$E(XY) = E(X)E(Y)$$

Proof.

$$E(XY) = \sum_{x} \sum_{y} xyP(X = x, Y = y) = \sum_{x} \sum_{y} xyP(X = x)P(Y = y)$$

LOTUS independence

$$= \left(\sum_{x} xP(X = x) \right) \left(\sum_{y} yP(Y = y) \right)$$

$E(X)$ $E(Y)$
Summary

- For any X and Y, $E(X + Y) = E(X) + E(Y)$

- For independent X and Y, $E(XY) = E(X)E(Y)$
Consequences

If X and Y are independent, then

- $f(X)$ and $g(Y)$ are also independent
- Hence

$$E(f(X)g(Y)) = E(f(X))E(g(Y))$$
Example: fair die

Let X be the result of a fair die. Let

$$Y = X \mod 2$$
$$Z = X \mod 3$$

Then

- $p_Y(0) = p_Y(1) = 1/2$
Example: fair die

Let X be the result of a fair die. Let

\[Y = X \mod 2 \]
\[Z = X \mod 3 \]

Then

- $p_Y(0) = p_Y(1) = 1/2$
- $p_Z(0) = p_Z(1) = p_Z(2) = 1/3$
Example: fair die

Let X be the result of a fair die. Let

$$Y = X \mod 2$$
$$Z = X \mod 3$$

Then

- $p_Y(0) = p_Y(1) = 1/2$
- $p_Z(0) = p_Z(1) = p_Z(2) = 1/3$
- Are Y and Z independent?
Example: fair die

Let X be the result of a fair die. Let

$$Y = X \mod 2$$

$$Z = X \mod 3$$

Then

- $p_Y(0) = p_Y(1) = 1/2$
- $p_Z(0) = p_Z(1) = p_Z(2) = 1/3$
- Are Y and Z independent? Yes!
Example: fair die

Let X be the result of a fair die. Let

$$Y = X \mod 2$$
$$Z = X \mod 3$$

Then

- $p_Y(0) = p_Y(1) = 1/2$
- $p_Z(0) = p_Z(1) = p_Z(2) = 1/3$
- Are Y and Z independent? Yes!

$$P(Y = 0, Z = 0) = P(X = 6) = 1/6$$
Example: fair die

Let X be the result of a fair die. Let

$$Y = X \mod 2$$
$$Z = X \mod 3$$

Then

- $p_Y(0) = p_Y(1) = 1/2$
- $p_Z(0) = p_Z(1) = p_Z(2) = 1/3$
- Are Y and Z independent? Yes!

$$P(Y = 0, Z = 0) = P(X = 6) = 1/6$$
$$P(Y = 0, Z = 1) = P(X = 4) = 1/6$$
$$\ldots\ldots$$
$$P(Y = 1, Z = 2) = P(X = 5) = 1/6$$
Example

Are X and $g(X)$ independent?
Example

Are X and $g(X)$ independent? In general no, e.g.,

- $X = \pm 1$ equally likely, $Y = -X$
- $P(X = 1, Y = 1) = 0 \neq P(X = 1)P(Y = 1) = \frac{1}{4}$
Example

Are X and $g(X)$ independent? In general no, e.g.,

- $X = \pm 1$ equally likely, $Y = -X$
- $P(X = 1, Y = 1) = 0 \neq P(X = 1)P(Y = 1) = \frac{1}{4}$

unless in trivial cases (e.g. X is a constant or g is a constant function)
Independence of multiple random variables

Definition

Discrete random variables X_1, \ldots, X_n are independent if for any $x_1, \ldots, x_n \in \mathbb{R}$,

$$P(X_1 = x_1, \ldots, X_n = x_n) = P(X_1 = x_1) \times \cdots \times P(X_n = x_n).$$
Independence of multiple random variables

Definition

Discrete random variables X_1, \ldots, X_n are **independent** if for any $x_1, \ldots, x_n \in \mathbb{R}$,

$$P(X_1 = x_1, \ldots, X_n = x_n) = P(X_1 = x_1) \times \cdots \times P(X_n = x_n).$$

Consequences:

- X_1 and $X_2 + X_3$ are independent
- X_4^2 and $X_5X_6 - X_7$ are independent
- ...

Conditional independence

Independence (of events and random variables) naturally extends to conditional scenarios (B-H: Def 2.5.7 and 3.8.10):

Definition

Let C be an event with $P(C) > 0$.

- **Events** A and B are *conditionally independent* given an event C if
 \[P(A \cap B|C) = P(A|C)P(B|C) \]
Conditional independence

Independence (of events and random variables) naturally extends to conditional scenarios (B-H: Def 2.5.7 and 3.8.10):

Definition

Let C be an event with $P(C) > 0$.

- **Events** A and B are conditionally independent given an event C if
 \[P(A \cap B|C) = P(A|C)P(B|C) \]

- **Random variables** X and Y are conditionally independent given an event C if
 \[P(X = x, Y = y|C) = P(X = x|C)P(Y = y|C) \]
 for all x, y
Conditional independence

Independence (of events and random variables) naturally extends to conditional scenarios (B-H: Def 2.5.7 and 3.8.10):

Definition

Let C be an event with $P(C) > 0$.

- **Events** A and B are conditionally independent given an event C if
 \[P(A \cap B|C) = P(A|C)P(B|C) \]
- **Random variables** X and Y are conditionally independent given an event C if
 \[P(X = x, Y = y|C) = P(X = x|C)P(Y = y|C) \]
 for all x, y
- **Random variables** X and Y are conditionally independent given a random variable Z if
 \[P(X = x, Y = y|Z = z) = P(X = x|Z = z)P(Y = y|Z = z) \]
 for all x, y and for all z such that $P(Z = z) > 0$
Example: fair die (continued)

Let X be the result of a fair die. Let

$$Y = X \mod 2$$
$$Z = X \mod 3$$

Then

- $p_Y(0) = p_Y(1) = 1/2$
- $p_Z(0) = p_Z(1) = p_Z(2) = 1/3$
- We have verified that Y and Z independent.
Example: fair die (continued)

Let X be the result of a fair die. Let

$$Y = X \mod 2$$
$$Z = X \mod 3$$

Then

- $p_Y(0) = p_Y(1) = 1/2$
- $p_Z(0) = p_Z(1) = p_Z(2) = 1/3$
- We have verified that Y and Z independent.
- Questions:
 - Are Y and Z independent conditioned on the event $\{X \leq 3\}$?
Example: fair die (continued)

Let X be the result of a fair die. Let

$$Y = X \mod 2$$
$$Z = X \mod 3$$

Then

- $p_Y(0) = p_Y(1) = 1/2$
- $p_Z(0) = p_Z(1) = p_Z(2) = 1/3$
- We have verified that Y and Z independent.
- Questions:
 - Are Y and Z independent conditioned on the event $\{X \leq 3\}$? No.
 - For example, $P(Y = 0, Z = 1|X \leq 3) = 0$, but
 $$P(Y = 0|X \leq 3) = P(Z = 1|X \leq 3) = \frac{1}{3}$$
Example: fair die (continued)

Let X be the result of a fair die. Let

$$Y = X \mod 2$$
$$Z = X \mod 3$$

Then

- $p_Y(0) = p_Y(1) = 1/2$
- $p_Z(0) = p_Z(1) = p_Z(2) = 1/3$
- We have verified that Y and Z independent.

Questions:

- Are Y and Z independent conditioned on the event $\{X \leq 3\}$? No.
 - For example, $P(Y = 0, Z = 1|X \leq 3) = 0$, but $P(Y = 0|X \leq 3) = P(Z = 1|X \leq 3) = \frac{1}{3}$
- Are Y and Z independent conditioned on the event $\{X \text{ is even}\}$? Yes. (Exercise)
Monty Hall problem

- A prize is behind one of the three doors. The other two are empty.
Monty Hall problem

- A prize is behind one of the three doors. The other two are empty.
- The guest randomly chooses a door.
- The host, knowing where the prize is, opens one of the remaining two doors that is empty. Specifically:
 - If guest's door is empty, host opens the other empty door;
 - If guest's door has prize, host randomly chooses an empty door.
- The host offers the guest the option to switch the choice to the other closed door.

Monty Hall problem

- A prize is behind one of the three doors. The other two are empty.
- The guest randomly chooses a door.
- The host, knowing where the prize is, opens one of the remaining two doors that is **empty**.

```
1 2
? ?
```
Monty Hall problem

- A prize is behind one of the three doors. The other two are empty.
- The guest randomly chooses a door.
- The host, knowing where the prize is, opens one of the remaining two doors that is empty. Specifically:
 - If guest’s door is empty, host opens the other empty door;
 - If guest’s door has prize, host randomly chooses an empty door.
Monty Hall problem

- A prize is behind one of the three doors. The other two are empty.
- The guest randomly chooses a door.
- The host, knowing where the prize is, opens one of the remaining two doors that is empty. Specifically:
 - If guest’s door is empty, host opens the other empty door;
 - If guest’s door has prize, host randomly chooses an empty door.
- The host offers the guest the option to switch the choice to the other closed door.
Monty Hall problem

• A prize is behind one of the three doors. The other two are empty
• The guest randomly chooses a door
• The host, knowing where the prize is, opens one of the remaining two doors that is empty. Specifically
 ▶ If guest’s door is empty, host opens the other empty door;
 ▶ If guest’s door has prize, host randomly chooses an empty door.
• The host offers the guest the option to switch the choice to the other closed door
• Question: Would you switch? Not switch? Doesn’t matter?
Monty Hall problem

Define the relevant random variables

- X: location of prize

...
Monty Hall problem

Define the relevant random variables

- X: location of prize
- G: choice of guest
- H: choice of host
- S: the other door

Then

- X and G are independent and equally likely to be 1, 2, 3.

Then $P(X = G) = \frac{1}{3}$ (analogy: for two dice $P(double) = \frac{1}{6}$ in lecture 2).

Per rule of the game, either $X = G$ or $X = S$.

Hence $P(X = S) = \frac{2}{3}$, i.e., switching is twice as likely to win.

Another way for guest to think:

- If my door is empty ($\frac{2}{3}$ chance), switch will win.
- If my door has prize ($\frac{1}{3}$ chance), switch will lose.
Monty Hall problem

Define the relevant random variables

- X: location of prize
- G: choice of guest
- H: choice of host
- S: the other door

Then

- X and G are independent and equally likely to be $1, 2, 3$.
- $P(X = G) = \frac{1}{3}$ (analogy: for two dice P (double) = $\frac{1}{6}$ in lecture 2).
- Per rule of the game, either $X = G$ or $X = S$.
- Hence $P(X = S) = \frac{2}{3}$, i.e., switching is twice as likely to win.

Another way for guest to think:

- If my door is empty ($\frac{2}{3}$ chance), switch will win.
- If my door has prize ($\frac{1}{3}$ chance), switch will lose.
Monty Hall problem

Define the relevant random variables

- X: location of prize
- G: choice of guest
- H: choice of host
- S: the other door

Then

- X and G are independent and equally likely to be 1, 2, 3
- $P(X = G) = \frac{1}{3}$ (analogy: for two dice $P(\text{double}) = \frac{1}{6}$ in lecture 2)
- Per rule of the game, either $X = G$ or $X = S$
- Hence $P(X = S) = \frac{2}{3}$, i.e., switching is twice as likely to win

Another way for guest to think:

- If my door is empty ($\frac{2}{3}$ chance), switch will win
- If my door has prize ($\frac{1}{3}$ chance), switch will lose
Monty Hall problem

Define the relevant random variables

- \(X\): location of prize
- \(G\): choice of guest
- \(H\): choice of host
- \(S\): the other door

Then

- \(X\) and \(G\) are independent and equally likely to be 1, 2, 3
- \(P(X = G) = \frac{1}{3}\) (analogy: for two dice \(P\) (double) = \(\frac{1}{6}\) in lecture 2)
- Per rule of the game, either \(X = G\) or \(X = S\)
- Hence \(P(X = S) = \frac{2}{3}\), i.e., switching is twice as likely to win

Another way for guest to think:

- If my door is empty (\(\frac{2}{3}\) chance), switch will win
- If my door has prize (\(\frac{1}{3}\) chance), switch will lose
Monty Hall problem

Define the relevant random variables

- X: location of prize
- G: choice of guest
- H: choice of host
- S: the other door

Then

- X and G are independent and equally likely to be 1, 2, 3
Monty Hall problem

Define the relevant random variables

- X: location of prize
- G: choice of guest
- H: choice of host
- S: the other door

Then

- X and G are independent and equally likely to be 1, 2, 3
- Then $P(X = G) = \frac{1}{3}$
 (analogy: for two dice P(double) = $\frac{1}{6}$ in lecture 2)
Monty Hall problem

Define the relevant random variables

- X: location of prize
- G: choice of guest
- H: choice of host
- S: the other door

Then

- X and G are independent and equally likely to be 1, 2, 3
- Then $P(X = G) = \frac{1}{3}$
 (analogy: for two dice $P(\text{double}) = \frac{1}{6}$ in lecture 2)
- Per rule of the game, either $X = G$ or $X = S$
Monty Hall problem

Define the relevant random variables

- X: location of prize
- G: choice of guest
- H: choice of host
- S: the other door

Then

- X and G are independent and equally likely to be 1, 2, 3
- Then $P(X = G) = \frac{1}{3}$
 (analogy: for two dice P(double) = 1/6 in lecture 2)
- Per rule of the game, either $X = G$ or $X = S$
- Hence $P(X = S) = \frac{2}{3}$, i.e., switching is twice as likely to win
Monty Hall problem

Define the relevant random variables

- X: location of prize
- G: choice of guest
- H: choice of host
- S: the other door

Then

- X and G are independent and equally likely to be 1, 2, 3
- Then $P(X = G) = \frac{1}{3}$
 (analogy: for two dice $P($double$) = \frac{1}{6}$ in lecture 2)
- Per rule of the game, either $X = G$ or $X = S$
- Hence $P(X = S) = \frac{2}{3}$, i.e., switching is twice as likely to win
- Another way for guest to think:
 ▶ If my door is empty ($\frac{2}{3}$ chance), switch will win
 ▶ If my door has prize ($\frac{1}{3}$ chance), switch will lose
Monty Hall problem

Define the relevant random variables

- X: location of prize
- G: choice of guest
- H: choice of host
- S: the other door

Then

- X and G are independent and equally likely to be 1, 2, 3
- Then $P(X = G) = \frac{1}{3}$
 (analogy: for two dice P(double) = 1/6 in lecture 2)
- Per rule of the game, either $X = G$ or $X = S$
- Hence $P(X = S) = \frac{2}{3}$, i.e., switching is twice as likely to win
- Another way for guest to think:
 - If my door is empty (2/3 chance), switch will win
Monty Hall problem

Define the relevant random variables

- X: location of prize
- G: choice of guest
- H: choice of host
- S: the other door

Then

- X and G are independent and equally likely to be 1, 2, 3
- Then $P(X = G) = \frac{1}{3}$
 (analogy: for two dice P (double) = $1/6$ in lecture 2)
- Per rule of the game, either $X = G$ or $X = S$
- Hence $P(X = S) = \frac{2}{3}$, i.e., switching is twice as likely to win
- Another way for guest to think:
 - If my door is empty (2/3 chance), switch will win
 - If my door has prize (1/3 chance), switch will lose
Monty Hall problem

- Maybe you are still not convinced because the guest knows which door he chooses and observes which door the hosts opens.
Monty Hall problem

- Maybe you are still not convinced because the guest knows which door he chooses and observes which door the hosts opens.
- The guest should evaluate the probability conditioned on these information in order to make an informed decision.
• Maybe you are still not convinced because the guest knows which door he chooses and observes which door the hosts opens
• The guest should evaluate the probability conditioned on these information in order to make an informed decision.
• So let’s compute some conditional probabilities
Monty Hall problem: conditional probability

Suppose guest chooses first door and host opens third door, i.e., $G = 1$ and $H = 3$. Goal: find

$$P(X = 1|G = 1, H = 3) \quad \text{and} \quad P(X = 2|G = 1, H = 3)$$
Monty Hall problem: conditional probability

Suppose guest chooses first door and host opens third door, i.e., $G = 1$ and $H = 3$. Goal: find

$$P(X = 1|G = 1, H = 3) \quad \text{and} \quad P(X = 2|G = 1, H = 3)$$

Use law of total probability and Bayes rule:

$$P(G = 1, H = 3) = P(G = 1, H = 3|X = 1) P(X = 1)$$

$$+ P(G = 1, H = 3|X = 2) P(X = 2)$$

$$+ P(G = 1, H = 3|X = 3) P(X = 3)$$

$$= \frac{1}{6}$$

and hence
Monty Hall problem: conditional probability

Suppose guest chooses first door and host opens third door, i.e., \(G = 1 \) and \(H = 3 \). Goal: find

\[
P(X = 1|G = 1, H = 3) \quad \text{and} \quad P(X = 2|G = 1, H = 3)
\]

Use law of total probability and Bayes rule:

\[
P(G = 1, H = 3) = P(G = 1, H = 3|X = 1) P(X = 1) + P(G = 1, H = 3|X = 2) P(X = 2) + P(G = 1, H = 3|X = 3) P(X = 3)
\]

\[
= \frac{1}{3} \times \frac{1}{2} \quad \frac{1}{3} + \frac{1}{3} \times 1 \quad \frac{1}{3} + \frac{1}{3} \times 0 \quad \frac{1}{3}
\]

\[
= \frac{1}{6}
\]

and hence

\[
P(X = 1|G = 1, H = 3) = \frac{1}{3} \quad \text{and} \quad P(X = 2|G = 1, H = 3) = \frac{2}{3}
\]