S&DS 241 Lecture 7 Union bound. Inclusion-Exclusion principles.

B-H: 1.6,4.4

Recall: Union of two events

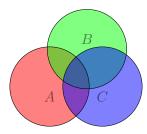
From axioms of probability:

$$P(A \cup B) = P(A) + P(B) - P(AB)$$

(Again: we omit \cap and write AB for intersection)

Recall: Union of three events

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$
$$- P(AB) - P(BC) - P(CA)$$
$$+ P(ABC)$$



How to deal with

 $P\left(A_1 \cup A_2 \cup \cdots \cup A_n\right)$

Today

How to deal with

$$P\left(A_1 \cup A_2 \cup \cdots \cup A_n\right)$$

We will learn:

- 1 Inequality: union bound (Boole's or Bonferroni's inequality)
- 2 Equality: inclusion-exclusion principle

Two events:

$P\left(A \cup B\right) \le P\left(A\right) + P\left(B\right)$

Proof: $P(A \cup B) = P(A) + P(B) - P(AB)$

• Two events:

 $P\left(A \cup B\right) \le P\left(A\right) + P\left(B\right)$

Proof: $P(A \cup B) = P(A) + P(B) - P(AB)$

• Corollary:

 $P(A_1 \cup \ldots \cup A_n) \le P(A_1) + \ldots + P(A_n)$

• Two events:

 $P\left(A \cup B\right) \le P\left(A\right) + P\left(B\right)$

Proof: $P(A \cup B) = P(A) + P(B) - P(AB)$

• Corollary:

 $P(A_1 \cup \ldots \cup A_n) \le P(A_1) + \ldots + P(A_n)$

Remarks

• Convenient to use: no need to deal with intersections or postulate independence

• Two events:

 $P\left(A \cup B\right) \le P\left(A\right) + P\left(B\right)$

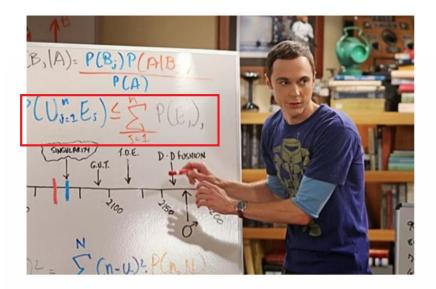
 $\underline{\mathsf{Proof:}} \ P\left(A \cup B\right) = P\left(A\right) + P\left(B\right) - P\left(AB\right)$

• Corollary:

 $P(A_1 \cup \ldots \cup A_n) \le P(A_1) + \ldots + P(A_n)$

Remarks

- Convenient to use: no need to deal with intersections or postulate independence
- Conservative estimate and can be useless (might exceed 1)



A student takes 4 classes; each fails with probability 3%. Consider

P(fails at least one class)

A student takes 4 classes; each fails with probability 3%. Consider

P(fails at least one class)

•
$$A_i = \{i^{\text{th}} \text{ class fails}\}, i = 1, 2, 3, 4$$

A student takes 4 classes; each fails with probability 3%. Consider

P(fails at least one class)

- $A_i = \{i^{\text{th}} \text{ class fails}\}, i = 1, 2, 3, 4$
- Union bound:

 $P(A_1 \cup A_2 \cup A_3 \cup A_4) \le 12\%$

A student takes 4 classes; each fails with probability 3%. Consider

P(fails at least one class)

- $A_i = \{i^{th} \text{ class fails}\}, i = 1, 2, 3, 4$
- Union bound:

$$P(A_1 \cup A_2 \cup A_3 \cup A_4) \le 12\%$$

• If all events are mutually independent

 $P(A_1 \cup A_2 \cup A_3 \cup A_4) = 1 - P(A_1^c A_2^c A_3^c A_4^c) = 1 - (1 - 3\%)^4 \approx 11.5\%$

A student takes 4 classes; each fails with probability 3%. Consider

P(fails at least one class)

- $A_i = \{i^{th} \text{ class fails}\}, i = 1, 2, 3, 4$
- Union bound:

 $P(A_1 \cup A_2 \cup A_3 \cup A_4) \le 12\%$

• If all events are mutually independent

 $P(A_1 \cup A_2 \cup A_3 \cup A_4) = 1 - P(A_1^c A_2^c A_3^c A_4^c) = 1 - (1 - 3\%)^4 \approx 11.5\%$

 Independence might not be realistic to assume. But union bound always applies.

$$P(A_1 \cup A_2 \cup \dots \cup A_n)$$

= $\sum_{i=1}^n P(A_i)$
- $\sum_{1 \le i < j \le n}^n P(A_i A_j)$
+ $\sum_{1 \le i < j < k \le n}^n P(A_i A_j A_k)$
- \dots
+ $(-1)^{n-1} P(A_1 A_2 \cdots A_n).$

$$P(A_{1} \cup A_{2} \cup \dots \cup A_{n})$$

$$= \sum_{i=1}^{n} P(A_{i}) \qquad n \text{ terms}$$

$$- \sum_{1 \le i < j \le n}^{n} P(A_{i}A_{j}) \qquad \text{all } \binom{n}{2} \text{ pairs}$$

$$+ \sum_{1 \le i < j < k \le n}^{n} P(A_{i}A_{j}A_{k}) \qquad \text{all } \binom{n}{3} \text{ triples}$$

$$- \dots$$

$$+ (-1)^{n-1} P(A_{1}A_{2} \dots A_{n}).$$

$$P(A_{1} \cup A_{2} \cup \dots \cup A_{n})$$

$$= \sum_{i=1}^{n} P(A_{i}) \qquad n \text{ terms}$$

$$- \sum_{1 \leq i < j \leq n}^{n} P(A_{i}A_{j}) \qquad \text{all } \binom{n}{2} \text{ pairs}$$

$$+ \sum_{1 \leq i < j < k \leq n}^{n} P(A_{i}A_{j}A_{k}) \qquad \text{all } \binom{n}{3} \text{ triples}$$

$$- \dots$$

$$+ (-1)^{n-1} P(A_{1}A_{2} \dots A_{n}).$$

Proof 1 induction on n (exercise)

$$P(A_{1} \cup A_{2} \cup \dots \cup A_{n})$$

$$= \sum_{i=1}^{n} P(A_{i}) \qquad n \text{ terms}$$

$$- \sum_{1 \leq i < j \leq n}^{n} P(A_{i}A_{j}) \qquad \text{all } \binom{n}{2} \text{ pairs}$$

$$+ \sum_{1 \leq i < j < k \leq n}^{n} P(A_{i}A_{j}A_{k}) \qquad \text{all } \binom{n}{3} \text{ triples}$$

$$- \dots$$

$$+ (-1)^{n-1} P(A_{1}A_{2} \dots A_{n}).$$

Proof 1 induction on n (exercise) Proof 2 indicator random variables (later)

A hat-checker in a restaurant, having checked n hats, gets them hopelessly scrambled and returns them at random to the guests as they leave. Let X = number of guests with own hats. Find E(X) without finding PMF.

A hat-checker in a restaurant, having checked n hats, gets them hopelessly scrambled and returns them at random to the guests as they leave. Let X = number of guests with own hats. Find E(X) without finding PMF.

Define the event

$$A_i = \{i^{\text{th}} \text{ guest gets own hat}\}, \quad i = 1, \dots, n$$

Then $P(A_i) = 1/n$

A hat-checker in a restaurant, having checked n hats, gets them hopelessly scrambled and returns them at random to the guests as they leave. Let X = number of guests with own hats. Find E(X) without finding PMF.

Define the event

$$A_i = \{i^{\text{th}} \text{ guest gets own hat}\}, \quad i = 1, \dots, n$$

Then $P(A_i) = 1/n$

Define the indicator random variable:

$$X_i = \mathbf{1}_{A_i} = \begin{cases} 1 & i^{\text{th}} \text{ guest gets own hat} \\ 0 & \text{otherwise} \end{cases}$$

A hat-checker in a restaurant, having checked n hats, gets them hopelessly scrambled and returns them at random to the guests as they leave. Let X = number of guests with own hats. Find E(X) without finding PMF.

Define the event

$$A_i = \{i^{\text{th}} \text{ guest gets own hat}\}, \quad i = 1, \dots, n$$

Then $P(A_i) = 1/n$

Define the indicator random variable:

$$X_i = \mathbf{1}_{A_i} = \begin{cases} 1 & i^{\text{th}} \text{ guest gets own hat} \\ 0 & \text{otherwise} \end{cases}$$

• Note $X = X_1 + \cdots + X_n$ and hence

$$E(X) = E(X_1) + \dots + E(X_n) = P(A_1) + \dots + P(A_n) = \frac{1}{n} + \dots + \frac{1}{n} = 1_{\frac{9}{24}}$$

A hat-checker in a restaurant, having checked n hats, gets them hopelessly scrambled and returns them at random to the guests as they leave. Let X = number of guests with own hats. Find P(X = 0).

A hat-checker in a restaurant, having checked n hats, gets them hopelessly scrambled and returns them at random to the guests as they leave. Let X = number of guests with own hats. Find P(X = 0).

Recall

$$A_i = \{i^{\text{th}} \text{ guest gets own hat}\}, \quad i = 1, \dots, n$$

Note

 $\{X = 0\} = \{\text{nobody gets own hat}\} = A_1^c \cap A_2^c \dots \cap A_n^c$ $\{X > 0\} = \{\text{somebody gets own hat}\} = A_1 \cup A_2 \dots \cup A_n$

A hat-checker in a restaurant, having checked n hats, gets them hopelessly scrambled and returns them at random to the guests as they leave. Let X = number of guests with own hats. Find P(X = 0).

Recall

$$A_i = \{i^{\text{th}} \text{ guest gets own hat}\}, \quad i = 1, \dots, n$$

Note

$$\{X = 0\} = \{\text{nobody gets own hat}\} = A_1^c \cap A_2^c \dots \cap A_n^c$$
$$\{X > 0\} = \{\text{somebody gets own hat}\} = A_1 \cup A_2 \dots \cup A_n$$

• Plan: use inclusion-exclusion principle to find $P(A_1 \cup A_2 \cdots \cup A_n)$.

A hat-checker in a restaurant, having checked n hats, gets them hopelessly scrambled and returns them at random to the guests as they leave. Let X = number of guests with own hats. Find P(X = 0).

Recall

$$A_i = \{i^{\text{th}} \text{ guest gets own hat}\}, \quad i = 1, \dots, n$$

Note

$$\{X = 0\} = \{\text{nobody gets own hat}\} = A_1^c \cap A_2^c \dots \cap A_n^c$$
$$\{X > 0\} = \{\text{somebody gets own hat}\} = A_1 \cup A_2 \dots \cup A_n$$

- Plan: use inclusion-exclusion principle to find $P(A_1 \cup A_2 \cdots \cup A_n)$.
- Union bound is not useful here:

$$P(A_1 \cup A_2 \cdots \cup A_n) \le P(A_1) + P(A_2) + \cdots + P(A_n) = 1$$

$$P(A_{1} \cup A_{2} \cup \dots \cup A_{n})$$

$$= \sum_{i=1}^{n} P(A_{i}) \qquad n \text{ terms}$$

$$- \sum_{1 \le i < j \le n}^{n} P(A_{i}A_{j}) \qquad \text{all } \binom{n}{2} \text{ pairs}$$

$$+ \sum_{1 \le i < j < k \le n}^{n} P(A_{i}A_{j}A_{k}) \qquad \text{all } \binom{n}{3} \text{ triples}$$

$$- \dots$$

$$+ (-1)^{n-1} P(A_{1}A_{2} \dots A_{n}).$$

$$\begin{split} &P\left(A_1 \cup A_2 \cup \dots \cup A_n\right) \\ &= \sum_{i=1}^n P\left(A_i\right) & n \text{ terms} \\ &- \sum_{1 \leq i < j \leq n}^n P\left(A_i A_j\right) & \text{all } \binom{n}{2} \text{ pairs} \\ &+ \sum_{1 \leq i < j < k \leq n}^n P\left(A_i A_j A_k\right) & \text{all } \binom{n}{3} \text{ triples} \\ &- \dots \\ &+ \left(-1\right)^{n-1} P\left(A_1 A_2 \dots A_n\right). \end{split}$$

We already know: $P(A_i) = 1/n$,

$$P(A_{1} \cup A_{2} \cup \dots \cup A_{n})$$

$$= \sum_{i=1}^{n} P(A_{i}) \qquad n \text{ terms}$$

$$- \sum_{1 \leq i < j \leq n}^{n} P(A_{i}A_{j}) \qquad \text{all } \binom{n}{2} \text{ pairs}$$

$$+ \sum_{1 \leq i < j < k \leq n}^{n} P(A_{i}A_{j}A_{k}) \qquad \text{all } \binom{n}{3} \text{ triples}$$

$$- \dots$$

$$+ (-1)^{n-1} P(A_{1}A_{2} \dots A_{n}).$$

We already know: $P(A_i) = 1/n$, or another way: $P(A_i) = \frac{(n-1)!}{n!}$

Pairwise intersection

$$P(A_i A_j) = P(A_i)P(A_j | A_i) = \frac{1}{n} \times \frac{1}{n-1}$$

Pairwise intersection

$$P(A_i A_j) = P(A_i) P(A_j | A_i) = \frac{1}{n} \times \frac{1}{n-1} = \frac{(n-2)!}{n!}$$

Pairwise intersection

$$P(A_i A_j) = P(A_i) P(A_j | A_i) = \frac{1}{n} \times \frac{1}{n-1} = \frac{(n-2)!}{n!}$$

Total number of pairs: $\binom{n}{2} = \frac{n!}{2!(n-2)!}$

Triple intersection

$$P(A_i A_j A_k) = P(A_i) P(A_j | A_i) P(A_k | A_i A_j) = \frac{1}{n} \times \frac{1}{n-1} \times \frac{1}{n-2}$$

Triple intersection

$$P(A_i A_j A_k) = P(A_i) P(A_j | A_i) P(A_k | A_i A_j) = \frac{1}{n} \times \frac{1}{n-1} \times \frac{1}{n-2} = \frac{(n-3)!}{n!}$$

Triple intersection

$$P(A_i A_j A_k) = P(A_i) P(A_j | A_i) P(A_k | A_i A_j) = \frac{1}{n} \times \frac{1}{n-1} \times \frac{1}{n-2} = \frac{(n-3)!}{n!}$$

Total number of pairs: $\binom{n}{3} = \frac{n!}{3!(n-3)!}$

Intersection of all

$$P\left(A_1 A_2 \cdots A_n\right) = \frac{1}{n!}$$

Inclusion-exclusion principle

$$\begin{split} &P\left(A_{1}\cup A_{2}\cup\cdots\cup A_{n}\right)\\ &=\sum_{i=1}^{n}P\left(A_{i}\right) & n \text{ terms}\\ &-\sum_{1\leq i< j\leq n}^{n}P\left(A_{i}A_{j}\right) & \text{all } \binom{n}{2} \text{ pairs}\\ &+\sum_{1\leq i< j< k\leq n}^{n}P\left(A_{i}A_{j}A_{k}\right) & \text{all } \binom{n}{3} \text{ triples}\\ &-\cdots\\ &+\left(-1\right)^{n-1}P\left(A_{1}A_{2}\cdots A_{n}\right). \end{split}$$

Inclusion-exclusion principle

$$P(A_1 \cup A_2 \cup \dots \cup A_n)$$

=1
$$-\binom{n}{2} \times \frac{(n-2)!}{n!}$$

$$+\binom{n}{3} \times \frac{(n-3)!}{n!}$$

$$-\dots$$

$$+(-1)^{n-1}\frac{1}{n!}$$

Inclusion-exclusion principle

$$P(A_{1} \cup A_{2} \cup \dots \cup A_{n})$$
=1
$$-\binom{n}{2} \times \frac{(n-2)!}{n!} + \binom{n}{3} \times \frac{(n-3)!}{n!} + (-1)^{n-1} \frac{1}{n!} = 1 - \frac{1}{2!} + \frac{1}{3!} - \dots + (-1)^{n-1} \frac{1}{n!}$$

16/24

$$P(X = 0)$$

=1 - P (A₁ \cup A₂ \cup \dots \cup A_n)
= $\frac{1}{2!} - \frac{1}{3!} + \dots - (-1)^{n-1} \frac{1}{n!}$

$$P(X = 0)$$

=1 - P (A₁ \cap A₂ \cap \dots \dots A_n)
=\frac{1}{2!} - \frac{1}{3!} + \dots - (-1)^{n-1} \frac{1}{n!} \frac{n \to \infty}{n} \frac{1}{e} \approx 36.8\%

$$P(X = 0)$$

=1 - P (A₁ \cap A₂ \cap \dots \dots A_n)
= $\frac{1}{2!} - \frac{1}{3!} + \dots - (-1)^{n-1} \frac{1}{n!} \xrightarrow{n \to \infty} \frac{1}{e} \approx 36.8\%$

If there are many people, $P({\rm nobody\ gets\ own\ hat})\approx 1/e$

$$P(X = 0)$$

=1 - P (A₁ \cap A₂ \cap \dots \dots A_n)
= $\frac{1}{2!} - \frac{1}{3!} + \dots - (-1)^{n-1} \frac{1}{n!} \xrightarrow{n \to \infty} \frac{1}{e} \approx 36.8\%$

If there are many people, $P({\rm nobody\ gets\ own\ hat})\approx 1/e$ Why?

• Taylor expansion: [B-H: Math Appendix A.8.3]

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

• Expand at x = -1: $e^{-1} = 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \cdots$

$$P(X = 0)$$

=1 - P (A₁ \cap A₂ \cap \dots \dots A_n)
= $\frac{1}{2!} - \frac{1}{3!} + \dots - (-1)^{n-1} \frac{1}{n!} \xrightarrow{n \to \infty} \frac{1}{e} \approx 36.8\%$

If there are many people, $P({\rm nobody\ gets\ own\ hat})\approx 1/e$ Why?

• Taylor expansion: [B-H: Math Appendix A.8.3]

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

• Expand at x = -1: $e^{-1} = 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \cdots$ What about P(X = 1)?

Is 1/e surprising?

• Let's suppose, hypothetically, A_i 's were independent. Then the probability of nobody gets own hat would be

$$\left(1-\frac{1}{n}\right)^n \xrightarrow{n \to \infty} \frac{1}{e}$$

Is 1/e surprising?

• Let's suppose, hypothetically, A_i 's were independent. Then the probability of nobody gets own hat would be

$$\left(1-\frac{1}{n}\right)^n \xrightarrow{n \to \infty} \frac{1}{e}$$

- Of course they are dependent, for example,
 - the 1st person getting own hat increases the chance that 2nd person gets own hat (Why?)

Is 1/e surprising?

• Let's suppose, hypothetically, A_i 's were independent. Then the probability of nobody gets own hat would be

$$\left(1-\frac{1}{n}\right)^n \xrightarrow{n \to \infty} \frac{1}{e}$$

- Of course they are dependent, for example,
 - the 1st person getting own hat increases the chance that 2nd person gets own hat (Why?)

•
$$P(A_2|A_1) = \frac{1}{n-1} > P(A_2) = \frac{1}{n}$$

 Nevertheless, the dependence is rather weak when n is large, and inclusion-exclusion principle makes it possible to rigorously compute it.

Let's prove the inclusion-exclusion principle

Recall: indicator random variable

• For every event A, we define a binary-valued random variable:

$$\mathbf{1}_{A} = \begin{cases} 1 & A \text{ occurs} \\ 0 & A \text{ does not occur} \end{cases}$$

• Important relation ("fundamental bridge"):

 $E(\mathbf{1}_A) = P(A)$

Recall: indicator random variable

• For every event A, we define a binary-valued random variable:

$$\mathbf{1}_{A} = \begin{cases} 1 & A \text{ occurs} \\ 0 & A \text{ does not occur} \end{cases}$$

• Important relation ("fundamental bridge"):

 $E(\mathbf{1}_A) = P(A)$

• Calculus of indicators (shorthand: $AB = A \cap B$)

$$\mathbf{I}_A \times \mathbf{1}_B = \mathbf{1}_{AB}$$

▶ $1_{A^c} = 1 - 1_A$

 $\mathbf{1}_{A_1\cup A_2\cup\cdots\cup A_n}$

$$\mathbf{1}_{A_1\cup A_2\cup\cdots\cup A_n}=1-\mathbf{1}_{A_1^cA_2^c\cdots A_n^c}$$

$$\mathbf{1}_{A_1 \cup A_2 \cup \dots \cup A_n} = 1 - \mathbf{1}_{A_1^c A_2^c \cdots A_n^c}$$
$$= 1 - \mathbf{1}_{A_1^c} \times \mathbf{1}_{A_2^c} \times \dots \times \mathbf{1}_{A_n^c}$$

$$\begin{aligned} \mathbf{1}_{A_{1}\cup A_{2}\cup\cdots\cup A_{n}} =& 1 - \mathbf{1}_{A_{1}^{c}A_{2}^{c}\cdots A_{n}^{c}} \\ =& 1 - \mathbf{1}_{A_{1}^{c}}\times\mathbf{1}_{A_{2}^{c}}\times\cdots\times\mathbf{1}_{A_{n}^{c}} \\ =& 1 - (1 - \mathbf{1}_{A_{1}})(1 - \mathbf{1}_{A_{2}})\cdots\cdots(1 - \mathbf{1}_{A_{n}}) \end{aligned}$$

$$\begin{aligned} \mathbf{1}_{A_{1}\cup A_{2}\cup\cdots\cup A_{n}} &= 1 - \mathbf{1}_{A_{1}^{c}A_{2}^{c}\cdots A_{n}^{c}} \\ &= 1 - \mathbf{1}_{A_{1}^{c}} \times \mathbf{1}_{A_{2}^{c}} \times \cdots \times \mathbf{1}_{A_{n}^{c}} \\ &= 1 - (1 - \mathbf{1}_{A_{1}}) (1 - \mathbf{1}_{A_{2}}) \cdots (1 - \mathbf{1}_{A_{n}}) \\ &= \sum_{i=1}^{n} \mathbf{1}_{A_{i}} \\ &- \sum_{1 \leq i < j \leq n}^{n} \mathbf{1}_{A_{i}A_{j}} \\ &+ \sum_{1 \leq i < j < k \leq n}^{n} \mathbf{1}_{A_{i}A_{j}A_{k}} \\ &- \cdots \\ &+ (-1)^{n-1} \mathbf{1}_{A_{1}A_{2}\cdots A_{n}} \end{aligned}$$

Take expectation on both sides and invoke linearity of expectation:

$$E(\mathbf{1}_{A_1\cup A_2\cup\cdots\cup A_n}) = \sum_{i=1}^n E(\mathbf{1}_{A_i})$$

$$-\sum_{1\leq i< j\leq n}^n E(\mathbf{1}_{A_iA_j})$$

$$+\sum_{1\leq i< j< k\leq n}^n E(\mathbf{1}_{A_iA_jA_k})$$

$$-\cdots$$

$$+(-1)^{n-1} E(\mathbf{1}_{A_1A_2\cdots A_n})$$

Thus

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = \sum_{i=1}^n P(A_i)$$

$$-\sum_{1 \le i < j \le n}^n P(A_i A_j)$$

$$+\sum_{1 \le i < j < k \le n}^n P(A_i A_j A_k)$$

$$-\dots$$

$$+ (-1)^{n-1} P(A_1 A_2 \dots A_n).$$

Union bound can be easily shown using indicator random variables:

• Fact 1: if $X \leq Y$, then $E(X) \leq E(Y)$

Union bound can be easily shown using indicator random variables:

- Fact 1: if $X \leq Y$, then $E(X) \leq E(Y)$
- Fact 2: $\mathbf{1}_{A_1 \cup A_2 \cup \cdots \cup A_n} \leq \mathbf{1}_{A_1} + \cdots \mathbf{1}_{A_n}$

Union bound can be easily shown using indicator random variables:

- Fact 1: if $X \leq Y$, then $E(X) \leq E(Y)$
- Fact 2: $\mathbf{1}_{A_1 \cup A_2 \cup \dots \cup A_n} \leq \mathbf{1}_{A_1} + \dots \mathbf{1}_{A_n}$
- Taking expectations on both sides and applying linearity \implies

$$P(A_1 \cup \ldots \cup A_n) \le P(A_1) + \ldots + P(A_n)$$

Union bound can be easily shown using indicator random variables:

- Fact 1: if $X \leq Y$, then $E(X) \leq E(Y)$
- Fact 2: $\mathbf{1}_{A_1 \cup A_2 \cup \dots \cup A_n} \leq \mathbf{1}_{A_1} + \dots \mathbf{1}_{A_n}$
- Taking expectations on both sides and applying linearity \implies

$$P(A_1 \cup \ldots \cup A_n) \le P(A_1) + \ldots + P(A_n)$$

• Using similar reasoning, we can show (Exercise)

$$P(A_1 \cup \ldots \cup A_n) \ge P(A_1) + \ldots + P(A_n) - \sum_{i < j} P(A_i A_j)$$