
S&DS 241 Lecture 7
Union bound. Inclusion-Exclusion principles.

B-H: 1.6,4.4
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Recall: Union of two events

From axioms of probability:

P (A ∪B) = P (A) + P (B)− P (AB)

(Again: we omit ∩ and write AB for intersection)
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Recall: Union of three events

P (A ∪B ∪ C) = P (A) + P (B) + P (C)

− P (AB)− P (BC)− P (CA)

+ P (ABC)

A

B

C
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Today

How to deal with

P (A1 ∪A2 ∪ · · · ∪An)

We will learn:

1 Inequality: union bound (Boole’s or Bonferroni’s inequality)

2 Equality: inclusion-exclusion principle
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Union bound (B-H: Example 4.4.3)

• Two events:

P (A ∪B) ≤ P (A) + P (B)

Proof: P (A ∪B) = P (A) + P (B)− P (AB)

• Corollary:

P (A1 ∪ . . . ∪An) ≤ P (A1) + . . .+ P (An)

Remarks

• Convenient to use: no need to deal with intersections or postulate

independence

• Conservative estimate and can be useless (might exceed 1)
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Example

A student takes 4 classes; each fails with probability 3%. Consider

P (fails at least one class)

• Ai = {ith class fails}, i = 1, 2, 3, 4

• Union bound:

P (A1 ∪A2 ∪A3 ∪A4) ≤ 12%

• If all events are mutually independent

P (A1∪A2∪A3∪A4) = 1−P (Ac
1A

c
2A

c
3A

c
4) = 1−(1−3%)4 ≈ 11.5%

• Independence might not be realistic to assume. But union bound

always applies.
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Inclusion-Exclusion Principle

P (A1 ∪A2 ∪ · · · ∪An)

=

n∑
i=1

P (Ai)

n terms

−
n∑

1≤i<j≤n

P (AiAj)

all

(
n

2

)
pairs

+

n∑
1≤i<j<k≤n

P (AiAjAk)

all

(
n

3

)
triples

− · · ·
+ (−1)n−1 P (A1A2 · · ·An) .

Proof 1 induction on n (exercise)

Proof 2 indicator random variables (later)
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Example: Matching

A hat-checker in a restaurant, having checked n hats, gets them hopelessly

scrambled and returns them at random to the guests as they leave. Let

X = number of guests with own hats. Find E(X) without finding PMF.

• Define the event

Ai = {ith guest gets own hat}, i = 1, . . . , n

Then P (Ai) = 1/n

• Define the indicator random variable:

Xi = 1Ai =

{
1 ith guest gets own hat

0 otherwise

• Note X = X1 + · · ·+Xn and hence

E(X) = E(X1)+· · ·+E(Xn) = P (A1)+· · ·+P (An) =
1

n
+· · ·+1

n
= 1

•

9/24



Example: Matching

A hat-checker in a restaurant, having checked n hats, gets them hopelessly

scrambled and returns them at random to the guests as they leave. Let

X = number of guests with own hats. Find E(X) without finding PMF.

• Define the event

Ai = {ith guest gets own hat}, i = 1, . . . , n

Then P (Ai) = 1/n

• Define the indicator random variable:

Xi = 1Ai =

{
1 ith guest gets own hat

0 otherwise

• Note X = X1 + · · ·+Xn and hence

E(X) = E(X1)+· · ·+E(Xn) = P (A1)+· · ·+P (An) =
1

n
+· · ·+1

n
= 1

•

9/24



Example: Matching

A hat-checker in a restaurant, having checked n hats, gets them hopelessly

scrambled and returns them at random to the guests as they leave. Let

X = number of guests with own hats. Find E(X) without finding PMF.

• Define the event

Ai = {ith guest gets own hat}, i = 1, . . . , n

Then P (Ai) = 1/n

• Define the indicator random variable:

Xi = 1Ai =

{
1 ith guest gets own hat

0 otherwise

• Note X = X1 + · · ·+Xn and hence

E(X) = E(X1)+· · ·+E(Xn) = P (A1)+· · ·+P (An) =
1

n
+· · ·+1

n
= 1

•

9/24



Example: Matching

A hat-checker in a restaurant, having checked n hats, gets them hopelessly

scrambled and returns them at random to the guests as they leave. Let

X = number of guests with own hats. Find E(X) without finding PMF.

• Define the event

Ai = {ith guest gets own hat}, i = 1, . . . , n

Then P (Ai) = 1/n

• Define the indicator random variable:

Xi = 1Ai =

{
1 ith guest gets own hat

0 otherwise

• Note X = X1 + · · ·+Xn and hence

E(X) = E(X1)+· · ·+E(Xn) = P (A1)+· · ·+P (An) =
1

n
+· · ·+1

n
= 1

•
9/24



Example: Matching

A hat-checker in a restaurant, having checked n hats, gets them hopelessly

scrambled and returns them at random to the guests as they leave. Let

X = number of guests with own hats. Find P (X = 0).

• Recall

Ai = {ith guest gets own hat}, i = 1, . . . , n

• Note

{X = 0} = {nobody gets own hat} = Ac
1 ∩Ac

2 · · · ∩Ac
n

{X > 0} = {somebody gets own hat} = A1 ∪A2 · · · ∪An

• Plan: use inclusion-exclusion principle to find P (A1 ∪A2 · · · ∪An).
• Union bound is not useful here:

P (A1 ∪A2 · · · ∪An) ≤ P (A1) + P (A2) + · · ·P (An) = 1
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Inclusion-exclusion principle

P (A1 ∪A2 ∪ · · · ∪An)

=

n∑
i=1

P (Ai) n terms

−
n∑

1≤i<j≤n

P (AiAj) all

(
n

2

)
pairs

+

n∑
1≤i<j<k≤n

P (AiAjAk) all

(
n

3

)
triples

− · · ·
+ (−1)n−1 P (A1A2 · · ·An) .

We already know: P (Ai) = 1/n, or another way: P (Ai) =
(n−1)!

n!
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Pairwise intersection

P (AiAj) = P (Ai)P (Aj |Ai) =
1

n
× 1

n− 1

=
(n− 2)!

n!

Total number of pairs:
(
n
2

)
= n!

2!(n−2)!
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Triple intersection

P (AiAjAk) = P (Ai)P (Aj |Ai)P (Ak|AiAj) =
1

n
× 1

n− 1
× 1

n− 2

=
(n− 3)!

n!

Total number of pairs:
(
n
3

)
= n!

3!(n−3)!
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Intersection of all

P (A1A2 · · ·An) =
1

n!
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Inclusion-exclusion principle

P (A1 ∪A2 ∪ · · · ∪An)

=

n∑
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Inclusion-exclusion principle

P (A1 ∪A2 ∪ · · · ∪An)

=1

−
(
n

2

)
× (n− 2)!

n!

+

(
n

3

)
× (n− 3)!

n!

− · · ·

+ (−1)n−1 1

n!

=1− 1

2!
+

1

3!
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Therefore

P (X = 0)

=1− P (A1 ∪A2 ∪ · · · ∪An)

=
1

2!
− 1

3!
+ · · · − (−1)n−1 1

n!

n→∞−−−→ 1

e
≈ 36.8%

If there are many people, P (nobody gets own hat) ≈ 1/e

Why?

• Taylor expansion: [B-H: Math Appendix A.8.3]

ex = 1 + x+
x2

2!
+

x3

3!
+ · · ·

• Expand at x = −1: e−1 = 1− 1 + 1
2! −

1
3! + · · ·

What about P (X = 1)?
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Is 1/e surprising?

• Let’s suppose, hypothetically, Ai’s were independent. Then the

probability of nobody gets own hat would be(
1− 1

n

)n
n→∞−−−→ 1

e

• Of course they are dependent, for example,
▶ the 1st person getting own hat increases the chance that 2nd person

gets own hat (Why?)
▶ P (A2|A1) =

1
n−1 > P (A2) =

1
n

• Nevertheless, the dependence is rather weak when n is large, and

inclusion-exclusion principle makes it possible to rigorously compute

it.
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Let’s prove the inclusion-exclusion principle



Recall: indicator random variable

• For every event A, we define a binary-valued random variable:

1A =

{
1 A occurs

0 A does not occur

• Important relation (“fundamental bridge”):

E(1A) = P (A)

• Calculus of indicators (shorthand: AB = A ∩B)
▶ 1A × 1B = 1AB

▶ 1Ac = 1− 1A
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Proof of the Inclusion and Exclusion Principle

1A1∪A2∪···∪An

=1− 1Ac
1A

c
2···Ac

n

=1− 1Ac
1
× 1Ac

2
× · · · × 1Ac

n

=1− (1− 1A1) (1− 1A2) · · · · · (1− 1An)

=

n∑
i=1

1Ai

−
n∑

1≤i<j≤n

1AiAj

+

n∑
1≤i<j<k≤n

1AiAjAk

− · · ·
+ (−1)n−1 1A1A2···An
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Proof of the Inclusion and Exclusion Principle

Take expectation on both sides and invoke linearity of expectation:

E(1A1∪A2∪···∪An) =

n∑
i=1

E(1Ai)

−
n∑

1≤i<j≤n

E(1AiAj )

+
n∑

1≤i<j<k≤n

E(1AiAjAk
)

− · · ·
+(−1)n−1E(1A1A2···An)
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Proof of the Inclusion and Exclusion Principle

Thus

P (A1 ∪A2 ∪ · · · ∪An) =

n∑
i=1

P (Ai)

−
n∑

1≤i<j≤n

P (AiAj)

+

n∑
1≤i<j<k≤n

P (AiAjAk)

− · · ·
+(−1)n−1 P (A1A2 · · ·An) .
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Union bound via indicators

Union bound can be easily shown using indicator random variables:

• Fact 1: if X ≤ Y , then E(X) ≤ E(Y )

• Fact 2: 1A1∪A2∪···∪An ≤ 1A1 + · · ·1An

• Taking expectations on both sides and applying linearity =⇒

P (A1 ∪ . . . ∪An) ≤ P (A1) + . . .+ P (An)

• Using similar reasoning, we can show (Exercise)

P (A1 ∪ . . . ∪An) ≥ P (A1) + . . .+ P (An)−
∑
i<j

P (AiAj)
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