S&DS 241 Lecture 7

Union bound. Inclusion-Exclusion principles.

B-H: 1.6,4.4
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Recall: Union of two events

From axioms of probability:
P(AUB)=P(A)+P(B)—-P(AB)

(Again: we omit N and write AB for intersection)

Circles
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Recall: Union of three events

P(AUBUC) = P(A)+ P(B)+ P(C)
— P(AB) — P(BC) — P (CA)
+ P (ABC)

£
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Today

How to deal with
P(A1UA2U"'UAn)
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Today

How to deal with
P(A1UA2U"'UAH)

We will learn:
@ Inequality: union bound (Boole's or Bonferroni's inequality)

® Equality: inclusion-exclusion principle
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Union bound (B-H: Example 4.4.3)

® Two events:
P(AUB)<P(A)+ P(B)

Proof: P(AUB) =P (A)+ P(B)— P(AB)
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Union bound (B-H: Example 4.4.3)

® Two events:
P(AUB)<P(A)+ P(B)

Proof: P(AUB) =P (A)+ P (B)- P(AB)

e Corollary:

P(AjU...UA,)<P(A)+...+ P(A,)
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Union bound (B-H: Example 4.4.3)

® Two events:
P(AuB)<P(A)+ P(B)

Proof: P(AUB) =P (A)+ P(B)— P(AB)

e Corollary:

P(AjU...UA,)<P(A)+...+ P(A,)

Remarks

e Convenient to use: no need to deal with intersections or postulate
independence
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Union bound (B-H: Example 4.4.3)

® Two events:
P(AuB)<P(A)+ P(B)

Proof: P(AUB) =P (A)+ P(B)— P(AB)

e Corollary:

P(AjU...UA,)<P(A)+...+ P(A,)

Remarks

e Convenient to use: no need to deal with intersections or postulate
independence

e Conservative estimate and can be useless (might exceed 1)
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Example

A student takes 4 classes; each fails with probability 3%. Consider

P(fails at least one class)
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o A; = {i*h class fails}, i = 1,2,3,4
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Example

A student takes 4 classes; each fails with probability 3%. Consider

P(fails at least one class)

o A; = {i*h class fails}, i = 1,2,3,4
® Union bound:
P(A1UA2UA3UA4) < 12%
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Example

A student takes 4 classes; each fails with probability 3%. Consider

P(fails at least one class)

o A; = {i*h class fails}, i = 1,2,3,4
® Union bound:
P(A1UA2UA3UA4) < 12%

e If all events are mutually independent

P(AjUAUA3UAY) = 1— P(ASASASAS) = 1—(1-3%)* ~ 11.5%
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Example

A student takes 4 classes; each fails with probability 3%. Consider

P(fails at least one class)

A; = {i*" class fails}, i = 1,2,3,4

Union bound:

P(A1UA2UA3UA4)S12%

If all events are mutually independent

P(AjUAUA3UAY) = 1— P(ASASASAS) = 1—(1-3%)* ~ 11.5%

Independence might not be realistic to assume. But union bound
always applies.
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Inclusion-Exclusion Principle

P(A1UA2U"'UA7L)

= Z P (A;)
i—1

- Y P(Ai4))
1<i<j<n

1<i<j<k<n

+ (=)™ P (A1 Ay Ay).
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Inclusion-Exclusion Principle

P(A1UA2U"'UAH)

= Z P (A;)
i—1

- Y P(Ai4))
1<i<j<n

1<i<j<k<n

+ (=)™ P (A4 Ay - Ay).

n terms

all " airs
Ir
o) P
(") triples
a riple
5 p
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Inclusion-Exclusion Principle

P(A1UA2U"'UAH)

= Z P (A;)
i—1

- Y P(Ai4))
1<i<j<n

+ > P(AAA)
1<i<j<k<n

+ (=) P (4145 Ay).

Proof 1 induction on n (exercise)

n terms

all (") pai
2 palrs

(") triples

a riple
5 ) trip
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Inclusion-Exclusion Principle

P(A1UA2U"'UA7L)

= Z P (A;)
i—1

- Y P(Ai4))
1<i<j<n

+ > P(AAA)
1<i<j<k<n

+ (=)™ P (A4 Ay - Ay).

Proof 1 induction on n (exercise)
Proof 2 indicator random variables (later)

n terms

all " airs
Ir
o) P
(") triples
a riple
3 p
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Example: Matching

A hat-checker in a restaurant, having checked n hats, gets them hopelessly
scrambled and returns them at random to the guests as they leave. Let
X = number of guests with own hats. Find E(X) without finding PMF.
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X = number of guests with own hats. Find E(X) without finding PMF.
® Define the event

A; = {i*" guest gets own hat}, i=1,...,n

Then P(A;) =1/n
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Example: Matching

A hat-checker in a restaurant, having checked n hats, gets them hopelessly

scrambled and returns them at random to the guests as they leave. Let

X = number of guests with own hats. Find E(X) without finding PMF.
® Define the event

A; = {i*" guest gets own hat}, i=1,...,n

Then P(A;) =1/n
® Define the indicator random variable:

1 4™ guest gets own hat
0 otherwise
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Example: Matching

A hat-checker in a restaurant, having checked n hats, gets them hopelessly

scrambled and returns them at random to the guests as they leave. Let

X = number of guests with own hats. Find E(X) without finding PMF.
® Define the event

A; = {i*" guest gets own hat}, i=1,...,n

Then P(A;) =1/n
® Define the indicator random variable:

1 4™ guest gets own hat
0 otherwise

® Note X = X; +---+ X,, and hence

E(X) = E(X1)++E(X,) = P(A1)+ - +P(A,) = %+- : -+% =1



Example: Matching

A hat-checker in a restaurant, having checked n hats, gets them hopelessly
scrambled and returns them at random to the guests as they leave. Let
X = number of guests with own hats. Find P(X = 0).
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Example: Matching

A hat-checker in a restaurant, having checked n hats, gets them hopelessly
scrambled and returns them at random to the guests as they leave. Let
X = number of guests with own hats. Find P(X = 0).

® Recall

A; = {i*" guest gets own hat}, i=1,...,n

® Note

{X =0} = {nobody gets own hat} = ATNAS---NA;
{X > 0} = {somebody gets own hat} = A; UAs---UA,
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Example: Matching

A hat-checker in a restaurant, having checked n hats, gets them hopelessly
scrambled and returns them at random to the guests as they leave. Let
X = number of guests with own hats. Find P(X = 0).

® Recall

A, = {ith guest gets own hat}, i=1,...,n
® Note
{X =0} = {nobody gets own hat} = ATNAS---NA;

{X > 0} = {somebody gets own hat} = A; UAs---UA,

® Plan: use inclusion-exclusion principle to find P(A; U Ay ---U A,).
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Example: Matching

A hat-checker in a restaurant, having checked n hats, gets them hopelessly
scrambled and returns them at random to the guests as they leave. Let
X = number of guests with own hats. Find P(X = 0).

® Recall

A; = {ith guest gets own hat}, i=1,...,n
® Note

{X =0} = {nobody gets own hat} = ATNAS---NA;
{X > 0} = {somebody gets own hat} = A; UAs---UA,

® Plan: use inclusion-exclusion principle to find P(A; U Ay ---U A,).
® Union bound is not useful here:
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Inclusion-exclusion principle

P(A1UA2U"-UAn)

=Y P(4A)
=1

— Y P(Ai4))
1<i<j<n

+ ) P(AAjA)
1<i<j<k<n

+ (=)™ P (A1 Ay Ay).

n terms

(") pai
a alrs
9 p
(") tripl
a riples
3 p
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Inclusion-exclusion principle

P<A1UA2U"-UAn)

= Z P (A;) n terms
i=1
_ Z P (A;Aj) all (g) pairs
1<i<j<n
+ Z P (A;A;AL) all <Z> triples
1<i<j<k<n

+ (=)™ P (A1 Ay Ay).

We already know: P(A;) =1/n,
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Inclusion-exclusion principle

:ZP(Ai) n terms
i=1
N Z P (Ai4;) all (Z) pairs
1<i<j<n
+ Z P (A;AjA) all <Z> triples
1<i<j<k<n

+ (=)™ P (A1 Ay Ay).

We already know: P(Az) = 1/n, or another way: P(AZ) — (n—1)!

n!
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Pairwise intersection

P(AiA;) = P(A)P(A] A7) = - x

n—1
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Pairwise intersection
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Pairwise intersection

1 1 (n —2)!
Total number of pairs: (g) = 2!(+l2)|
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Triple intersection

1 1 1
n n—1 n—2

P(AiAjAy) = P(Ai)P(A;j]Ai) P(Ag|AiAj) =
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Triple intersection

1 1 1 - 3)!
P(AZA]Ak) = P(AZ)P(AJ‘AZ)P(Ak‘AiA]) = —X X = (n )

n n—1 n-—2 n!
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Triple intersection

1 1 1 - 3)!
P(AZA]Ak) = P(Al)P(AJ‘Al)P(Ak‘AiAJ) = —X X = (n )

n n—1 n-—2 n!

Total number of pairs: (g) = 3,(%;3).
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Intersection of all

P (A4 Ay) = =
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Inclusion-exclusion principle

P<A1UA2U"'UA¢L)

= P(4)
=1

— Y P(Ai4)
1<i<j<n

1<i<j<k<n

+ (=) P (A1 Ay Ay) .

n terms

(") pair
a 2 pairs
[l " triples
a
3 p
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Inclusion-exclusion principle
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Inclusion-exclusion principle

1
n—1
+(=1)"
1 1 oy 1
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Therefore

P(X =0)
:1—P(A1UA2U'”UA»,Z)
1 1 n—1 1
= 4= (=)™t

2l 3l n!
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Therefore

P(X =0)
:1—P(A1UA2U"’UA’VZ)

11 1 nooo 1
= (—) S Y D 2 36.8%

21 3! n! e
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Therefore

P(X =0)
:1—P(A1UA2U"'UAH>

1 1 n—1 1 oo 1~
o T O O L 2./

If there are many people, P(nobody gets own hat) ~ 1/e
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Therefore

P(X = 0)

:1—P(A1UA2U"'UA>

1 1 n— 1]- n—oo 1
gt (FD)MT 2 S v 56.8%

If there are many people, P(nobody gets own hat) ~ 1/e
Why?
® Taylor expansion: [B-H: Math Appendix A.8.3]
2?2 23
e’ —l—i-a:—i—g—i- 3 + e

® Expand at x = —1: 6*1:1—1-1-%_%4_...
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Therefore

P(X = 0)

:1—P(A1UA2U"'UA>

1 1 n— 1]- n—oo 1
gt (FD)MT 2 S v 56.8%

If there are many people, P(nobody gets own hat) ~ 1/e
Why?
® Taylor expansion: [B-H: Math Appendix A.8.3]
2 .3

xr
=1 - ..
e’ +m+2‘+3+

® Expand at x = —1: 6*1:1—1-1-%_%4_...
What about P(X = 1)7
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Is 1/e surprising?

® |et's suppose, hypothetically, A;'s were independent. Then the
probability of nobody gets own hat would be

1_l nn%oo 1
n e
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Is 1/e surprising?

® |et's suppose, hypothetically, A;'s were independent. Then the
probability of nobody gets own hat would be

1_l nn%oo 1
n e

® Of course they are dependent, for example,

P the 1st person getting own hat increases the chance that 2nd person
gets own hat (Why?)
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Is 1/e surprising?

® |et's suppose, hypothetically, A;'s were independent. Then the
probability of nobody gets own hat would be

1_l nn%oo 1
n e

® Of course they are dependent, for example,
P the 1st person getting own hat increases the chance that 2nd person
gets own hat (Why?)
> P(As|A) =L >P(4y) =1
® Nevertheless, the dependence is rather weak when n is large, and
inclusion-exclusion principle makes it possible to rigorously compute
It.
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Let's prove the inclusion-exclusion principle



Recall: indicator random variable

® For every event A, we define a binary-valued random variable:

1 A occurs
14 =
0 A does not occur

¢ Important relation (“fundamental bridge"):

E(14) = P(4)
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Recall: indicator random variable

® For every event A, we define a binary-valued random variable:

1 A occurs
14 =
0 A does not occur

¢ Important relation (“fundamental bridge"):

E(14) = P(4)

e Calculus of indicators (shorthand: AB = AN B)
> 14, x1g=14p
> 1 =1-14
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Proof of the Inclusion and Exclusion Principle

1A1UA2U"-UAn
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Proof of the Inclusion and Exclusion Principle

14,045,004, =1 — Lacag...ac
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Proof of the Inclusion and Exclusion Principle

14,045,004, =1 — Lacag...ac
:1_1A§ X L1ag X -+ X 1ge
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Proof of the Inclusion and Exclusion Principle

14,045,004, =1 — Lacag...ac
=1 —T14c X145 X+ X1ge
=1—(1—-14,) (1 =14,) - (1—14,)
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Proof of the Inclusion and Exclusion Principle

14,045,004, =1 — Lacag...ac
=1 —T14c X145 X+ X1ge
=1—(1—-14,) (1 =14,) - (1—14,)

n
= Z 14,
i=1
n
N Z La;a

1<i<j<n
n

+ Z 14,44,

1<i<j<k<n

+(=1)" " 1A, 454,
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Proof of the Inclusion and Exclusion Principle

Take expectation on both sides and invoke linearity of expectation:

E(]-AlUAQU"'UAn)

n
> E(1a,)
=1
n
- Z E(14;4,)
1<i<j<n
n
+ Z E(lAiAjAk)
1<i<j<k<n

+(-1)"" E(1a,45-0,)
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Proof of the Inclusion and Exclusion Principle

Thus

P(AUAU---UA,) = > P(A)
i=1

n

- > P(A4y)
1<i<j<n

1<i<j<k<n

+ (=)t P(A14y- Ay .
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Union bound via indicators

Union bound can be easily shown using indicator random variables:
® Fact 1: if X <Y, then E(X) < E(Y)
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Union bound via indicators

Union bound can be easily shown using indicator random variables:
® Fact 1: if X <Y, then E(X) < E(Y)

® [Fact 2: 1A1UA2U~~UAn S 1A1 + - 1A

n
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Union bound via indicators

Union bound can be easily shown using indicator random variables:
® Fact 1: if X <Y, then E(X) < E(Y)
® Fact 2: 1A1UA2U~~UAn < 1A1 —+ .- 1A

n

® Taking expectations on both sides and applying linearity —

P(AjU...UA,)<P(A)+...+ P(A,)
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Union bound via indicators

Union bound can be easily shown using indicator random variables:
Fact 1: if X <Y, then E(X) < E(Y)

Fact 2: 1A1UA2U~~UAn < 1A1 —+ .- 1A

n

Taking expectations on both sides and applying linearity —>

P(AjU...UA,)<P(A)+...+ P(A,)

Using similar reasoning, we can show (Exercise)

P(A1U...UA,) > P(A)+...+ P(A,) = Y P(AiA)

1<J
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