S&DS 241 Lecture 8

Distributions related to independent trials: Bern, Bin, Geo
B-H: 3.3, 4.3, math appendix A.8

(Example 1.5.1-1.5.3 for binomial identities)
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Bernoulli distribution

® A random variable X has a Bernoulli distribution with parameter p,
denoted by X ~ Bern(p), if P(X =1)=pand P(X =0)=1—p.

® Interpretation: Bernoulli trial

1 success
X =
{O fail
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® A random variable X has a Bernoulli distribution with parameter p,
denoted by X ~ Bern(p), if P(X =1)=pand P(X =0)=1—p.

® Interpretation: Bernoulli trial
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X =
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Binomial distribution

Binomial distribution arises in independent trials (repeated experiments):

® Perform n independent Bernoulli trials, each of which succeeds with
probability p

® | et X = the number of successes

® We say X has a binomial distribution with parameter n and p,
denoted by X ~ Bin(n,p),

e Clearly, Bin(1,p) is just Bern(p)
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Binomial = sum of independent Bernoullis

® Define the indicator random variables

1 4t trial succeeds
X; =

0 '™ trial fails

® Xi,...,X, are independent and identically distributed (iid)
according to Bern(p)

® Then

is the total number of successes
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Binomial PMF

Let X ~ Bin(n,p). How to find its PMF?
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Binomial PMF

Let X ~ Bin(n,p). How to find its PMF?
e X takes valuesin {0,1,...,n}
* P(X=0)=(1-p)",P(X=n)=)p"
* P(X=1)=np(l—p)"!
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Binomial PMF

Let X ~ Bin(n,p). Then the PMF of X is

P(X=k) = <Z>pk(1p)nk, k=0,1,...,n
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Binomial PMF

Let X ~ Bin(n,p). Then the PMF of X is

P(X =k)= <Z>pk:(1 *p)nila k=0,1,....n
Proof:
e (1) = ﬁlk), = number of ways to succeed k out of n trials
e p* = probability of k successes

® (1 —p)"* = probability of n — k failures
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Normalization

® Recall binomial expansion:

n n -
k=0

® Substitutingz =pand y=1—p:

> (Z)pk (1-p)" " =@+1-p)=1

k=0
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Binomial PMF: Bin(15,1/2) vs Bin(100,1/2)

. L L L L L
2 4 6 8 10 12

X ~Bin(n,1/2), P (X =k) = (”)i
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Binomial PMF
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Binomial PMF
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Binomial PMF

0.10

0.08 |-

0.04 |-
0.02 -

1 L PRIV 1 i I 4 i 4 " " | n n " It

20 40 60 80 100

Bin(100,2/10)

9/26



Binomial PMF
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Binomial PMF
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Binomial PMF
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Binomial PMF
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Binomial PMF
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Binomial PMF
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Binomial PMF
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Binomial PMF
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Mean of Bin(n, p)

X ~ Bin(n,p)
E(X)=np
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Mean of Bin(n, p)

X ~ Bin(n,p)
E(X)=np

Proof 1 Linearity of expecatation

EX)=EX1+...+X,)=E( X1 )+...

~—
Bern(p)

+E( X, )=mnp

Bern(p)
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Mean of Bin(n, p)

X ~ Bin(n,p)
E(X)=np

Proof 1 Linearity of expecatation

B(X) = B(X1+...+ Xn) = B( X1 )+ ..+ E( Xn ) =np
Bern(p) Bern(p)

Proof 2 Direct calculation via PMF

S O s

=1

where we applied n(}) = k(7~]) [B-H Example 1.5.2]
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Mean of Bin(n, p)

X ~ Bin(n,p)
E(X)=np

Proof 1 Linearity of expecatation

B(X) = E(Xi+...+ X)) = B( Xy ) ..+ B( Xy ) =np

Bern(p) Bern(p)

Proof 2 Direct calculation via PMF

S s

=1

where we applied n(}) = k(7~]) [B-H Example 1.5.2]
Mode (most likely value) of Bin(n,p) is [(n + 1)p|: (Exercise)
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Properties of binomial distributions

Let X ~ Bin(n,p).
® \What is the distribution of n — X7?
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Properties of binomial distributions

Let X ~ Bin(n,p).
® \What is the distribution of n — X7?

Bin(n,1 —p)

as number of failures in n trials

® Let Y ~ Bin(m, p) be independent of X. What is the distribution of
X+Y?
Bin(m + n, p)

as number of successes in m + n trials
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Properties of binomial distributions

Let X ~ Bin(n,p).
® \What is the distribution of n — X7?

Bin(n,1 —p)

as number of failures in n trials

® Let Y ~ Bin(m, p) be independent of X. What is the distribution of
X+Y?
Bin(m + n, p)

as number of successes in m + n trials

As a warm-up exercise, let's verify these by PMF.
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Direct verification

Let X ~ Bin(n,p). Let Z =n — X, wihch is a function of X. Then
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Direct verification

Let X ~ Bin(n,p). Let Z =n — X, wihch is a function of X. Then

P(Z=k)=P(X =n—k)

= (n>(1 —p)fpF [B-H Example 1.5.1]

which is the PMF of Bin(n,1 — p) evaluated at k
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Direct verification

Let X ~ Bin(n,p) and Y ~ Bin(m,p) be independent. Let S = X + Y.
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Direct verification
Let X ~ Bin(n,p) and Y ~ Bin(m,p) be independent. Let S = X + Y.

k
P(S=k)=> P(X=i)P(Y =k — i)
=0
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Direct verification

Let X ~ Bin(n,p) and Y ~ Bin(m,p) be independent. Let S = X + Y.

k

P(S=k)=> P(X=i)P(Y =k — i)
=0
k
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Direct verification
Let X ~ Bin(n,p) and Y ~ Bin(m,p) be independent. Let S = X + Y.
k
P(S=k)=> P(X=i)P(Y =k — i)
Sy |
= Z{:} <Z.>pl(1 —p)" (k B i>p’”(1 —p)"

]

= pF(1 = pyminh Zk: <7Z> (kﬂj z)

1=0

~~

:(mz—ﬂ) [B-H Example 1.5.3]

which is the PMF of Bin(m + n,p) evaluated at k
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Example: Best of five

Alice plays against Bob in a best-of-five match, and wins each game with
probability 1/2 independently. Let Y be the total number of games
played. Find PMF of Y.
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® YVcanbe3,40rb5
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Example: Best of five

Alice plays against Bob in a best-of-five match, and wins each game with
probability 1/2 independently. Let Y be the total number of games
played. Find PMF of Y.

® YVcanbe3,40rb5
® Denote the score by A:B
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Example: Best of five

Alice plays against Bob in a best-of-five match, and wins each game with
probability 1/2 independently. Let Y be the total number of games
played. Find PMF of Y.

® YVcanbe3,40rb5
® Denote the score by A:B
* P(Y=3)=P(3:0)+P0:3)=1t+1=1

14/26



Example: Best of five

P(Y =4)=P(3:1)+ P(1:3)
=2P(3:1)
= 2P(A wins 2 out of the first 3 games) x P(A wins 4th game)

3\ 1 1
:2 — X =
2237 2

3

8

since the number of games won by A in the first 3 games ~ Bin(3,1/2)

15/26



Example: Best of five

P(Y =5)=P(3:2)+ P(2:3)
= 2P(3:2)
= 2P(A wins 2 out of the first 4 games) x P(A wins 5th game)

4\1 1
=2 — X =
2)24 7 2

3

8

since the number of games won by A in the first 4 games ~ Bin(4,1/2)
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Geometric distribution: time till first success

e Perform independent Bernoulli trials with success p.

® Define the random variable

L = number of failures till the first success

® We say L follows a geometric distribution with parameter p, denoted

by L ~ Geom(p)
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PMF of Geom(p)

o [ takes values in {0,1,2,3,...}, the set of non-negative integers
(countably infinite)
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PMF of Geom(p)

o [ takes values in {0,1,2,3,...}, the set of non-negative integers
(countably infinite)
e PMF: for each k£ > 0,

P(L = k) = P(fail first k attempts, succeed in the (k + 1))
= (1-p)"p

which decays geometrically as k increases

18/26



PMF of Geom(p)

o [ takes values in {0,1,2,3,...}, the set of non-negative integers
(countably infinite)
e PMF: for each k£ > 0,
P(L = k) = P(fail first k attempts, succeed in the (k + 1))
= (1—p)p

which decays geometrically as k increases
® Sanity check:

S PL=k) =3 (1-pfp=1

k>0 k>0

Recall geometric series (B-H Math Appendix A.8.2):

Z k ako first term
C\f = pr -

l—«o 1 — ratio
k>ko
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Geom(0.5) vs Geom(0.2)
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Mean of Geom(p)

L ~ Geom(p)

Interpretation: average number of attempts to reach first success is
inversely proportional to the success probability
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Mean of Geom(p)

L ~ Geom(p)

Interpretation: average number of attempts to reach first success is
inversely proportional to the success probability

B-H Example 4.3.6.

BE(L) = S kPL=k) =3 k1 -p)fpZ 5 x 1 —pp=—L

k>0 k>1
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Mean of Geom(p)

L ~ Geom(p)

Interpretation: average number of attempts to reach first success is
inversely proportional to the success probability

B-H Example 4.3.6.

BE(L) = S kPL=k) =3 k1 -p)fpZ 5 x 1 —pp=—L

k>0 k>1

Auxilliary result (x): for |o| < 1,

-1 d(Oék)_ d . d 0% - 1
Sty )y e 2 () -

E>1 k>1 E>1
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Intuitive explanation: “first-step analysis”

e Conditioned on the result of the first trial, we have
E(L)y=px0+(1—p)E(1+L')

where L’ is the number of trials in addition to the first failed trial till
reaching success.

® Note that L’ and L have the same distribution, hence same mean.
So
E(L)=(1-p)(1+ E(L))

Solving this equation gives E(L) = (1 — p)/p.
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Memoryless property of geometric distribution

P(L=k+{L>k)=P(L=40), k>0

Interpretation: Having failed k£ times already, the probability that one
fails another ¢ times is the same as failing £ times from the fresh start, as
if the past is “forgotten.”

Alternatively, P(L > k) = P(first k trials all failed) = (1 — p)*.
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Memoryless property of geometric distribution

P(L=k+{L>k)=P(L=40), k>0

Interpretation: Having failed k£ times already, the probability that one
fails another ¢ times is the same as failing £ times from the fresh start, as
if the past is “forgotten.”

Proof.
P(L > k)= ijk P(L =j) = ijkp(l —p) = (1—p)*.! Then

_ o k+¢
R e L e )

P(L=¢)

Alternatively, P(L > k) = P(first k trials all failed) = (1 — p)*.
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Example: coupon collector

® There are n different coupons

® Each box of cereal contains one of n coupons chosen uniformly at
random and independently

® A coupon aficionado keeps buying until all n coupons have been
collected

® How many need to buy on average to complete the collection?
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Observations

o |f extremely lucky, first n boxes contain all distinct coupons
(Exercise: what is the chance?)
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® A coupon aficionado keeps buying until all n coupons have been
collected

® How many need to buy on average to complete the collection?
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o |f extremely lucky, first n boxes contain all distinct coupons
(Exercise: what is the chance?)

® Typically need to buy more than n because of repetitions. Question:
how much more? 2n? 10n?
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Example: coupon collector

® There are n different coupons

® Each box of cereal contains one of n coupons chosen uniformly at
random and independently

® A coupon aficionado keeps buying until all n coupons have been
collected

® How many need to buy on average to complete the collection?

Observations
o |f extremely lucky, first n boxes contain all distinct coupons
(Exercise: what is the chance?)
® Typically need to buy more than n because of repetitions. Question:
how much more? 2n? 10n?
Let X = number of boxes bought till completing the collection. Find
E(X).
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Example: coupon collector

® Having collected ¢ — 1 distinct coupons, let X; the number of boxes
to buy till the next new one appears, i =1,2,...,n.
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Example: coupon collector

® Having collected i — 1 distinct coupons, let X; the number of boxes

to buy till the next new one appears, i =1,2,...,n.
® Then i1 n
Xileeom<1 >, EX)=——
n—i+1
P(new)
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Example: coupon collector

® Having collected i — 1 distinct coupons, let X; the number of boxes

to buy till the next new one appears, i =1,2,...,n.
® Then i1 n
Xileeom< >, EX)=——
n—i1+1
P(new)
® Then X = X7 +---+ X, and
E(X)=EX1)+ -+ E(X,-1)
n 1[BHA8M
=1 Z il
+ n—1 2 + )

harder and harder to find new coupon

On average need to buy an unbounded factor of Inn more
(e.g. n =100, E(X) ~ 519)

nn
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Example: coupon collector

® Having collected i — 1 distinct coupons, let X; the number of boxes

to buy till the next new one appears, i =1,2,...,n.
® Then i1 n
Xileeom< >, EX)=——
n—i1+1
P(new)
® Then X = X7 +---+ X, and
E(X)=EX1)+ -+ E(X,-1)
n 1[BHA8M
=1 Z il
+ n—1 2 + ) o

harder and harder to find new coupon

On average need to buy an unbounded factor of Inn more
(e.g. n =100, E(X) ~ 519)
e In fact, Xi,---, X, are independent (not needed for finding E(X))
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Summary

® Bern(p): 1 parameter. Indicator for the success of a single trial

® Bin(n,p): 2 parameters. Number of successes in n independent
trials

Bin(n,p) = sum of n iid Bern(p) random variables

® Geom(p): 1 parameter. Number of failures till first success.
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Binomial identities

i()k”k(ﬁy)”

()" (")
()= ()
Exercise: c.f. B-H Sec 1.5 Story proofs
(o) ()=
> (1) - ()
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