S&DS 241 Lecture 9
Poisson distribution

B-H: 4.7, 4.8, math appendix A.8, A.9
Poisson distribution

A random variable X is said to have a Poisson distribution with parameter $\lambda \geq 0$, denoted by $X \sim \text{Pois}(\lambda)$, if

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}, \quad k = 0, 1, 2, \ldots$$

i.e., $P(X = 0) = e^{-\lambda}$, $P(X = 1) = \lambda e^{-\lambda}$, etc.

\[\text{Pois}(20)\]

\[1\text{As a convention } 0! = 1.\]
Poisson distribution

\[P(x; \lambda) = e^{-\lambda} \frac{\lambda^x}{x!} \]

Siméon Denis Poisson
Application of Poisson distribution

Poisson distribution arises in studying many rare events

- Number of photons arriving at a detector in a fixed interval of time.
- Telephone traffic to base station / arrival of spam emails
- Modeling insurance claims
- Typos in a large document
Historical examples

- Abraham de Moivre (1711) and Simon Denis Poisson (1837): Theorized about the number of wrongful convictions in a given country during a time interval of given length.

\[\text{For dataset see Table 5.5 of Grinstead-Snell.}\]
Historical examples

• Abraham de Moivre (1711) and Simon Denis Poisson (1837): Theorized about the number of wrongful convictions in a given country during a time interval of given length

• Ladislaus von Bortkiewicz (1898): Investigated the number of soldiers in the Prussian army killed accidentally by horse kicks in 1875-1894.²

²For dataset see Table 5.5 of Grinstead-Snell.
• Poisson distribution is a good approximation of Bin\((n, p)\) when \(n\) is large and \(p\) is small.

• Specifically,
 ▶ when \(n\) is large (many independent trials)
 ▶ success probability \(p\) is inversely proportional to \(n\)
Specific example

Let X be the number of photons arriving at a detector in a time window of length T.

Partition the time interval into n small subintervals of length T/n.

- Assume that in each subinterval there is either one photon or none.
- Arrivals are independent.
- $P(\text{photon arrival}) \propto \text{duration of interval, say, } p = \alpha T n$, α = "arrival rate".

Then $X \sim \text{Bin}(n, \alpha T n)$.
Specific example

Let X be the number of photons arriving at a detector in a time window of length T.

- Partition the time interval into n small subintervals of length T/n.

Assume that
- In each subinterval there is either one photon or none.
- Arrivals are independent.
- $P(\text{photon arrival}) \propto \text{duration of interval, say, } p = \alpha T/n$, $\alpha =$ "arrival rate".

Then $X \sim \text{Bin}(n, \alpha T/n)$.

Question: When n is large (partition by milliseconds, nanoseconds, etc), how does X behave?
Specific example

Let X be the number of photons arriving at a detector in a time window of length T.

- Partition the time interval into n small subintervals of length T/n.

- Assume that
 - in each subinterval there is either one photon or none
 - arrivals are independent
 - $P(\text{photon arrival}) \propto \text{duration of interval}$, say, $p = \alpha T/n$, α = "arrival rate"

- Then $X \sim \text{Bin}(n, \alpha T/n)$

Question

When n is large (partition by milliseconds, nanoseconds, etc), how does X behave?
Specific example

Let X be the number of photons arriving at a detector in a time window of length T.

- Partition the time interval into n small subintervals of length T/n.

- Assume that
 - in each subinterval there is either one photon or none.

Question

When n is large (partition by milliseconds, nanoseconds, etc), how does X behave?
Specific example

Let X be the number of photons arriving at a detector in a time window of length T.

- Partition the time interval into n small subintervals of length T/n

- Assume that
 - in each subinterval there is either one photon or none
 - arrivals are independent

Question

When n is large (partition by milliseconds, nanoseconds, etc), how does X behave?
Specific example

Let X be the number of photons arriving at a detector in a time window of length T.

- Partition the time interval into n small subintervals of length T/n.

- Assume that
 - in each subinterval there is either one photon or none
 - arrivals are independent
 - P(photon arrival) \propto duration of interval, say,

 \[p = \frac{\alpha T}{n}, \quad \alpha = \text{“arrival rate”} \]
Specific example

Let X be the number of photons arriving at a detector in a time window of length T.

- Partition the time interval into n small subintervals of length T/n.

- Assume that
 - in each subinterval there is either one photon or none
 - arrivals are independent
 - $P($photon arrival$) \propto$ duration of interval, say,
 \[p = \frac{\alpha T}{n}, \quad \alpha = \text{“arrival rate”} \]

- Then $X \sim \text{Bin}(n, \frac{\alpha T}{n})$
Specific example

Let X be the number of photons arriving at a detector in a time window of length T.

- Partition the time interval into n small subintervals of length T/n.
- Assume that:
 - in each subinterval there is either one photon or none
 - arrivals are independent
 - $P(\text{photon arrival}) \propto \text{duration of interval}$, say,

 $$p = \frac{\alpha T}{n}, \quad \alpha = \text{“arrival rate”}$$

- Then $X \sim \text{Bin}(n, \frac{\alpha T}{n})$
Specific example

Let X be the number of photons arriving at a detector in a time window of length T.

- Partition the time interval into n small subintervals of length T/n.

- Assume that
 - in each subinterval there is either one photon or none
 - arrivals are independent
 - P(photon arrival) \propto duration of interval, say,

 $$p = \frac{\alpha T}{n}, \quad \alpha = \text{“arrival rate”}$$

- Then $X \sim \text{Bin}(n, \frac{\alpha T}{n})$

Question

When n is large (partition by milliseconds, nanoseconds, etc), how does X behave?
Poisson approximation of Binomial

Bin(10, 4/10)
Poisson approximation of Binomial

Bin(20, 4/20)
Poisson approximation of Binomial

Bin(30, 4/30)
Poisson approximation of Binomial

Bin\left(40, \frac{4}{40}\right)
Poisson approximation of Binomial

Bin(50, 4/50)
Poisson approximation of Binomial

Bin(60, 4/60)
Poisson approximation of Binomial

Bin(70, 4/70)
Poisson approximation of Binomial

Bin(80, 4/80)
Poisson approximation of Binomial

$\text{Bin}(90, \frac{4}{90})$
Poisson approximation of Binomial

Bin(100, 4/100)
Poisson approximation of Binomial

Bin(100, 4/100) vs Pois(4)
Poisson approximation of binomial distribution

• Precise statement:

\[\text{Bin} \left(n, \frac{\lambda}{n} \right) \rightarrow \text{Pois}(\lambda), \quad \text{as } n \rightarrow \infty \]

in the sense of convergence of PMF: for any fixed \(k \),

\[P \left(\text{Bin} \left(n, \frac{\lambda}{n} \right) = k \right) \xrightarrow{n \to \infty} P(\text{Pois}(\lambda) = k) \]
Poisson approximation of binomial distribution

• Precise statement:

$$\text{Bin}(n, \lambda/n) \rightarrow \text{Pois}(\lambda), \quad \text{as } n \rightarrow \infty$$

in the sense of convergence of PMF: for any fixed k,

$$P\left(\text{Bin}(n, \lambda/n) = k\right) \xrightarrow{n \rightarrow \infty} P(\text{Pois}(\lambda) = k)$$

• Example ($k = 0$):

$$P\left(\text{Bin}(n, \lambda/n) = 0\right) = \left(1 - \frac{\lambda}{n}\right)^n \rightarrow e^{-\lambda} = P(\text{Pois}(\lambda) = 0)$$

Fact from calculus [B-H A.2.5]: $\lim_{n \rightarrow \infty} (1 + \frac{x}{n})^n = e^x$
Poisson approximation of binomial distribution

In general: for fixed $k \geq 0$,

\[
P(\text{Bin}(n, \lambda/n) = k) = \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}
\]

\[
= \frac{n(n-1)\cdots(n-k+1)}{k!} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}
\]

\[
= \frac{\lambda^k}{k!} \cdot 1 \cdot \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right) \left(1 - \frac{k}{n}\right)^{-k} \left(1 - \frac{\lambda}{n}\right)^{n}
\]

\[
\rightarrow e^{-\lambda} \lambda^k
\]

\[
\rightarrow \frac{e^{-\lambda} \lambda^k}{k!}
\]
Properties of Poisson
Verify normalization of Poisson PMF

• Recall: Taylor expansion

\[e^\lambda = 1 + \lambda + \frac{\lambda^2}{2!} + \frac{\lambda^3}{3!} + \cdots + \frac{\lambda^k}{k!} + \cdots \]

\[= \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} \]

• Hence

\[\sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} = 1 \]
Expectation

• $X \sim \text{Pois}(\lambda)$. Then

$$E(X) = \lambda,$$

Intuition: the expectation of $\text{Bin}(n, \frac{\lambda}{n})$ is λ, for any n.

• Direct verification:

$$E(X) = \sum_{k=0}^{\infty} k \frac{e^{-\lambda} \lambda^k}{k!} = \sum_{k=1}^{\infty} k \frac{e^{-\lambda} \lambda^k}{k!}$$

$$= \sum_{k=1}^{\infty} \frac{e^{-\lambda} \lambda^k}{(k-1)!}$$

$$= \sum_{j=0}^{\infty} \frac{e^{-\lambda} \lambda^{j+1}}{j!}$$

$$= \lambda \sum_{j=0}^{\infty} \frac{e^{-\lambda} \lambda^j}{j!} = \lambda$$
PMF vs expectation

Pois(0.5)
PMF vs expectation

Pois(2)
PMF vs expectation

Pois(4)
PMF vs expectation

Pois(10)
Sum of independent Poissons

Let $X \sim \text{Pois}(\lambda)$ and $Y \sim \text{Pois}(\mu)$ be independent. Then

$$X + Y \sim \text{Pois}(\lambda + \mu).$$
Sum of independent Poissons

Let $X \sim \text{Pois}(\lambda)$ and $Y \sim \text{Pois}(\mu)$ be independent. Then

$$X + Y \sim \text{Pois}(\lambda + \mu).$$

- This property is also inherited from Binomials: when $p \to 0$,

$$\text{Bin}\left(\frac{\lambda}{p}, p\right) \to \text{Pois}(\lambda)$$

$$\text{Bin}\left(\frac{\mu}{p}, p\right) \to \text{Pois}(\mu)$$

and from last lecture we know that

$$\text{Bin}\left(\frac{\lambda}{p}, p\right) + \text{Bin}\left(\frac{\mu}{p}, p\right) = \text{Bin}\left(\frac{\lambda + \mu}{p}, p\right) \to \text{Pois}(\lambda + \mu)$$

\[\text{independent}\]
Direct verification

Let \(X \sim \text{Pois}(\lambda) \) and \(Y \sim \text{Pois}(\mu) \) be independent.

\[
P(X + Y = k) = \sum_{j=0}^{k} P(X = j) P(Y = k - j)
\]

\[
= \sum_{j=0}^{k} \frac{e^{-\lambda} \lambda^j}{j!} \frac{e^{-\mu} \mu^{k-j}}{(k-j)!}
\]

\[
= \frac{e^{-(\lambda+\mu)}}{k!} \sum_{j=0}^{k} \binom{k}{j} \frac{\lambda^j \mu^{k-j}}{j! (k-j)!}
\]

\[
= \frac{e^{-(\lambda+\mu)}}{k!} \sum_{j=0}^{k} \binom{k}{j} \lambda^j \mu^{k-j}
\]

\[
= \frac{e^{-(\lambda+\mu)}}{k!} (\lambda + \mu)^k
\]

binomial expansion (Lec 8)
Conditioned on the sum

Let $X \sim \text{Pois}(\lambda)$ and $Y \sim \text{Pois}(\mu)$ be independent. What’s the distribution of X conditioned on $X + Y$?
Conditioned on the sum

Let $X \sim \text{Pois}(\lambda)$ and $Y \sim \text{Pois}(\mu)$ be independent. What’s the distribution of X conditioned on $X + Y$?

$$P(X = j | X + Y = k) = \frac{P(X = j, X + Y = k)}{P(X + Y = k)} = \frac{P(X = j)P(Y = k - j)}{P(X + Y = k)}$$

$$= \frac{e^{-\lambda} \frac{\lambda^j}{j!} e^{-\mu} \frac{\mu^{k-j}}{(k-j)!}}{e^{-(\lambda + \mu)} \frac{(\lambda + \mu)^k}{k!}} = \binom{k}{j} \left(\frac{\lambda}{\lambda + \mu} \right)^j \left(\frac{\mu}{\lambda + \mu} \right)^{k-j}$$
Conditioned on the sum

Let $X \sim \text{Pois}(\lambda)$ and $Y \sim \text{Pois}(\mu)$ be independent. What's the distribution of X conditioned on $X + Y$?

$$P(X = j | X + Y = k) = \frac{P(X = j, X + Y = k)}{P(X + Y = k)} = \frac{P(X = j)P(Y = k - j)}{P(X + Y = k)}$$

$$= \frac{\frac{e^{-\lambda} \lambda^j}{j!} \frac{e^{-\mu} \mu^{k-j}}{(k-j)!}}{\frac{e^{-(\lambda+\mu)}(\lambda + \mu)^k}{k!}} = \binom{k}{j} \left(\frac{\lambda}{\lambda + \mu} \right)^j \left(\frac{\mu}{\lambda + \mu} \right)^{k-j}$$

Conditioned on the sum $X + Y = k$, X is distributed as $\text{Bin}(k, \frac{\lambda}{\lambda + \mu})$.
Poisson approximation of binomial distribution

- Replace $\text{Bin}(n, p)$ by $\text{Pois}(np)$.
- We know this is accurate when $n \to \infty$ and np converges to a constant.
Poisson approximation

Poisson paradigm

Let A_1, \ldots, A_n be a collection of events (e.g. indexed by time or space)

- n is large
- $p_j = P(A_j)$ small
- A_j are (approximately) independent

Let $X = \sum_{j=1}^{n} 1_{A_j}$ count how many of the events A_j’s occur. Then X is approximately Poisson distributed as $\text{Pois}(\sum_{j=1}^{n} p_j)$
Example

Consider the statistics of flying bomb hits in the south of London during World War II.

- The entire area is divided into a grid of $N = 576$ small areas of size $\frac{1}{4}\text{km}^2$ each.
- The total number of hits is 537.
- The average number of hits per square is $\frac{537}{576} = 0.93$ hits per square.

Grinstead-Snell Example 5.4 and Feller vol I Sec VI.7(b).
London bombing data fitted by Poisson

<table>
<thead>
<tr>
<th>Number of hits k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of areas with k hits</td>
<td>229</td>
<td>211</td>
<td>93</td>
<td>35</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>$576 \cdot P(X = k)$, $X \sim \text{Pois}(0.93)$</td>
<td>227</td>
<td>211</td>
<td>99</td>
<td>31</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>

Figure: Empirical proportions vs. Pois(0.93)
Poisson distribution is surprisingly good; as judged by the χ^2-criterion, under ideal conditions some 88 per cent of comparable observations should show a worse agreement. It is interesting to note that most people believed in a tendency of the points of impact to cluster. If this were true, there would be a higher frequency of areas with either many hits or no hit and a deficiency in the intermediate classes. Table 4 indicates perfect randomness and homogeneity of the area; we have here an instructive illustration of the established fact that to the untrained eye randomness appears as regularity or tendency to cluster.

Table 4

Example (b): Flying-bomb Hits on London

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5 and over</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_k</td>
<td>229</td>
<td>211</td>
<td>93</td>
<td>35</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>$Np(k; 0.9323)$</td>
<td>226.74</td>
<td>211.39</td>
<td>98.54</td>
<td>30.62</td>
<td>7.14</td>
<td>1.57</td>
</tr>
</tbody>
</table>

Table 5 records the result of eleven different series of experiments. The last column indicates the approximate percentage of ideal cases in which chance fluctuations would produce a worse agreement (as judged by the χ^2-standard). The agreement between theory and observation is striking.