
S&DS 241 Lecture 9
Poisson distribution

B-H: 4.7,4.8, math appendix A.8,A.9
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Poisson distribution
A random variable X is said to have a Poisson distribution with

parameter λ ≥ 0, denoted by X ∼ Pois(λ), if1

P (X = k) =
e−λλk

k!
, k = 0, 1, 2, . . .

i.e., P (X = 0) = e−λ, P (X = 1) = λe−λ, etc.
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1As a convention 0! = 1.
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Poisson distribution

Siméon Denis Poisson
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Application of Poisson distribution

Poisson distribution arises in studying many rare events

• Number of photons arriving at a detector in a fixed interval of time.

• Telephone traffic to base station / arrival of spam emails

• Modeling insurance claims

• Typos in a large document
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Historical examples

• Abraham de Moivre (1711) and Simon Denis Poisson (1837):

Theorized about the number of wrongful convictions in a given

country during a time interval of given length

• Ladislaus von Bortkiewicz (1898): Investigated the number of

soldiers in the Prussian army killed accidentally by horse kicks in

1875-1894.2

2For dataset see Table 5.5 of Grinstead-Snell.
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Relations between Poisson and Binomial distributions

• Poisson distribution is a good approximation of Bin(n, p) when n is

large and p is small.

• Specifically,
▶ when n is large (many independent trials)
▶ success probability p is inversely proportional to n
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Specific example
Let X be the number of photons arriving at a detector in a time window

of length T .

• Partition the time interval into n small subintervals of length T/n

• Assume that

▶ in each subinterval there is either one photon or none
▶ arrivals are independent
▶ P (photon arrival) ∝ duration of interval, say,

p =
αT

n
, α = “arrival rate”

• Then X ∼ Bin(n, αTn )

Question

When n is large (partition by milliseconds, nanoseconds, etc), how does

X behave?
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Poisson approximation of Binomial
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Poisson approximation of Binomial
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Poisson approximation of Binomial
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Poisson approximation of Binomial
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Poisson approximation of Binomial
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Poisson approximation of Binomial
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Poisson approximation of Binomial
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Poisson approximation of Binomial
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Poisson approximation of Binomial
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Poisson approximation of Binomial
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Poisson approximation of Binomial
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Poisson approximation of binomial distribution

• Precise statement:

Bin (n, λ/n) → Pois(λ), as n → ∞

in the sense of convergence of PMF: for any fixed k,

P (Bin (n, λ/n) = k)
n→∞−−−→ P (Pois(λ) = k)

• Example (k = 0):

P (Bin (n, λ/n) = 0) =

(
1− λ

n

)n

→ e−λ = P (Pois(λ) = 0)

Fact from calculus [B-H A.2.5]: limn→∞(1 + x
n)

n = ex
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Poisson approximation of binomial distribution

In general: for fixed k ≥ 0,

P (Bin (n, λ/n) = k)

=

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k

=
n (n− 1) · · · · · (n− k + 1)

k!

(
λ

n

)k (
1− λ

n

)n−k

=
λk

k!
· 1 ·

(
1− 1

n

)
︸ ︷︷ ︸

→1

· · · · ·
(
1− k − 1

n

)
︸ ︷︷ ︸

→1

(
1− λ

n

)−k

︸ ︷︷ ︸
→1

(
1− λ

n

)n

︸ ︷︷ ︸
→e−λ

→ e−λλk

k!
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Properties of Poisson



Verify normalization of Poisson PMF

• Recall: Taylor expansion

eλ = 1 + λ+
λ2

2!
+

λ3

3!
+ · · ·+ λk

k!
+ · · ·

=

∞∑
k=0

λk

k!

• Hence
∞∑
k=0

e−λλk

k!
= 1
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Expectation

• X ∼ Pois(λ). Then

E(X) = λ,

Intuition: the expectation of of Bin(n, λn) is λ, for any n.

• Direct verification:

E(X) =

∞∑
k=0

k
e−λλk

k!
=

∞∑
k=1

k
e−λλk

k!

=

∞∑
k=1

e−λλk

(k − 1)!

=

∞∑
j=0

e−λλj+1

j!

=λ

∞∑
j=0

e−λλj

j!
= λ
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PMF vs expectation
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PMF vs expectation
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PMF vs expectation
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PMF vs expectation
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Sum of independent Poissons
Let X ∼ Pois(λ) and Y ∼ Pois(µ) be independent. Then

X + Y ∼ Pois(λ+ µ).

• This property is also inherited from Binomials: when p → 0,

Bin
(λ
p
, p
)
→ Pois(λ)

Bin
(µ
p
, p
)
→ Pois(µ)

and from last lecture we know that

Bin
(λ
p
, p
)
+ Bin

(µ
p
, p
)

︸ ︷︷ ︸
independent

= Bin
(λ+ µ

p
, p
)
→ Pois(λ+ µ)

18/25



Sum of independent Poissons
Let X ∼ Pois(λ) and Y ∼ Pois(µ) be independent. Then

X + Y ∼ Pois(λ+ µ).

• This property is also inherited from Binomials: when p → 0,

Bin
(λ
p
, p
)
→ Pois(λ)

Bin
(µ
p
, p
)
→ Pois(µ)

and from last lecture we know that

Bin
(λ
p
, p
)
+ Bin

(µ
p
, p
)

︸ ︷︷ ︸
independent

= Bin
(λ+ µ

p
, p
)
→ Pois(λ+ µ)

18/25



Direct verification

Let X ∼ Pois(λ) and Y ∼ Pois(µ) be independent.

P (X + Y = k) =

k∑
j=0

P (X = j)P (Y = k − j)

=

k∑
j=0

e−λλj

j!

e−µµk−j

(k − j)!

=
e−(λ+µ)

k!

k∑
j=0

k!
λj

j!

µk−j

(k − j)!

=
e−(λ+µ)

k!

k∑
j=0

(
k

j

)
λjµk−j

=
e−(λ+µ)

k!
(λ+ µ)k binomial expansion (Lec 8)
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Conditioned on the sum

Let X ∼ Pois(λ) and Y ∼ Pois(µ) be independent. What’s the

distribution of X conditioned on X + Y ?

P (X = j|X + Y = k)

=
P (X = j,X + Y = k)

P (X + Y = k)
=

P (X = j)P (Y = k − j)

P (X + Y = k)

=

e−λλj

j!
e−µµk−j

(k−j)!

e−(λ+µ)

k! (λ+ µ)k
=

(
k

j

)(
λ

λ+ µ

)j ( µ

λ+ µ

)k−j

Conditioned on the sum X + Y = k, X is distributed as Bin(k, λ
λ+µ).
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Poisson approximation of binomial distribution

• Replace Bin(n, p) by Pois(np).

• We know this is accurate when n → ∞ and np converges to a

constant.
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Poisson approximation

Poisson paradigm

Let A1, . . . , An be a collection of events (e.g. indexed by time or space)

• n is large

• pj = P (Aj) small

• Aj are (approximately) independent

Let X =
∑n

j=1 1Aj count how many of the events Aj ’s occur. Then X

is approximately Poisson distributed as Pois(
∑n

j=1 pj)
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Example
Consider the statistics of flying bomb hits in the south of London during

World War II.

• The entire area is divided into a grid of N = 576 small areas of size
1
4km

2 each.

• The total number of hits is 537.

• The average number of hits per square is 537/576 = 0.93 hits per

square.

Grinstead-Snell Example 5.4 and Feller vol I Sec VI.7(b).
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London bombing data fitted by Poisson

Number of hits k 0 1 2 3 4 5+

Number of areas with k hits 229 211 93 35 7 1

576 · P (X = k), X ∼ Pois (0.93) 227 211 99 31 7 2
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Figure: Empirical proportions vs. Pois(0.93)
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Interpretation

Vr.7] OBSERVATIONS FITTING THE POISSON DISTRIBUTION 161 

Poisson distribution is surprisingly good; as judged by the x2-criterion, 
under ideal conditiops some 88 per cent of comparable observations should 
show a worse agreement. It is interesting to note that most people believed 
in a tendency of the points of impact to cluster. If this were true, there 
would be a higher frequency of areas with either many hits or no hit and a 
deficiency in the intermediate classes. Table 4 indicates perfect randomness 
and homogeneity of the area; we have here an instructive illustration of 
the established fact that to the untrained eye randomness appears as 
regularity or tendency to cluster. 

TABLE 4 
EXAMPLE (b): FLYING-BOMB HITS ON LONDON 

k 
Nk 
Np(k; 0.9323) 

o 1 
229 211 
226.74 211.39 

2 
93 
98.54 

3 
35 
30.62 

4 5 and over 
7 1 
7.14 1.57 

( c) Chromosome Interchanges In cells. IrradIaflon by X-rays produces 
certain processes in organic cells which we call chromosome interchanges. 
As long as radiation continues, the probability of such interchanges re
mains constant, and, according to theory, the numbers Nk of cells with 
exactly k interchanges should follow a Poisson distribution. The theory 
is also able to predict the dependence of the parameter A on the intensity 
of radIaflon, the temperature, etc., but we shaII not enter mto these detaIls. 
Table 5 records. the result of eleven different series of experiments.15 

These are arranged according to goodness of fit. The last column indicates 
the approximate percentage of ideal cases in which chance fluctuations 
wOllld prodllce a worse agreement (as judged by the X2-standard) The 
agreement between theory and observation is striking. 

(d) Connections to wrong number. Table 6 shows statistics of telephone 
connections to a wrong number.16 A total of N = 267 numbers was 
observed; Nk indicates how many numbers had exactly k wrong con-
nectIOns. I he POisson dIstnbutIOn p(k; 8. 74) shows agam an exceIIent 
fit (As judged by the x2-criterion the deviations are near the median 
value.) In Thorndike's paper the reader will find other telephone statistics 

15 D. G. Catcheside, D. E. Lea, and J. M. Thoday, Types of chromosome structural 
change induced by the irradiation of Tradescantia microspores, Journal of Genetics, 
vol. 47 (1945--46), pp. 113 136. OUf tabl~ is tabl~ IX of this paper, except that the 
x2-levels were recomputed, using~e.. ~f freedom. 

16 The observations are taken from F. Thorndike, Applications of Poisson's probability 
summation, The Bell System Technical Journal, vol. 5 (1926), pp. 604-624. This paper 
contains a graphical analysis of 32 different statistics. 
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