S&DS 241 Lecture 11 (optional)

Random walk: Probability of eventual return
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Drunkard's Walks in one dimension

A drunkard walks randomly in an idealized 1-dimensional city.! The city
is infinite and arranged in 1-dimensional equally-spaced grid, and at every
point, the drunkard chooses one of the 2 possible routes (including the
one he came from) with equal probability. Formally, this is a symmetric
random walk on the set of integers.

/2 1/2

For instance, the drunkard wanders into a very long alley.
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Drunkard's Walks in two or three dimensions
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Drunkard's Walk

Question
Will the drunkard ever return to the starting point?
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Drunkard's Walk

Question
Will the drunkard ever return to the starting point?

Answer
Always return in 1 or 2 dimensional space, but not necessarily in 3 and
higher dimensional space.
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“One may summarize these results by stating that one should not
get drunk in more than two dimensions.”

— Grinstead-Snell, p. 478
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Let's start with one dimension



Two methods

P(eventual return) =1

Method 1 Direct calculation

Method 2 Proof by contradiction (indirect but easy to extend to
higher dimensions)
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Method 1: Direct calculation



Symmetric random walk

A particle starts at 0, and at each step it either moves 1 unit to the right
with probability 1/2 or to the left with probability 1/2, independently.
1/2 1/2
— —

°

-4 -3 -2 -1 0 1 2 3 4

Let S, be the particle’s position after n steps.
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PMF of S,

Let

+1 with prob 1/2
X; = ith step = P /
—1  with prob 1/2

Then
—_—
iid
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PMF of S,

Let

+1 with prob 1/2

X; = ith step = P /

—1  with prob 1/2

Then
—_—
iid

Alternatively,

® Let X= number of steps to the right ~ Bin(n,1/2)
® Then S, =2X —ne{-n,—n+2,...,n—2,n} and

P(S =) = POC= ()2 = (ol )2
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Probability of eventual return

® Possible return time: 2,4,6,... (all even numbers)

® According to the time of first return,

P(eventual return)

= P(first return at time 2) + P(first return at time 4) + - --

= Z P(first return at time 2n)

n>1
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First return at time 2

P(first return at time 2) = P(S2 =0)

= P(s) 4+ P(-+) =2 x

N | =
N | —
N | —
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First return at time 4

P(first return at time 4) = P(Sy # 0,5, =0)
1 1

= P(++--) + P(-- =2X — =—
(++==) + P(-—++) ><24 3
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First return at time 6

P(first return at time 6)
- P(SQ #07‘5‘4#07‘5‘6 :0)
= P(+++-=) + P(++=+-=) + P(=—=+++) + P(-—+-++)
1 1
= 4 _— = —
*96 7 16
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First return at time 2n

More generally:

P(first return at time 2n)

__number of paths (0,0) ~~ (2n,0) that stay above or below horizontal axis
- 22n
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First return at time 2n

P(first return at time 2n)
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First return at time 2n

P(first return at time 2n)

= P(never return to 0 before 2n, return to 0 at 2n)
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First return at time 2n

P(first return at time 2n)
= P(never return to 0 before 2n, return to 0 at 2n)
=P

(return to 0 at 2n) — P(return to 0 at 2n but not for the first time)
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First return at time 2n

P(first return at time 2n)

= P(never return to 0 before 2n, return to 0 at 2n)

= P(return to 0 at 2n) — P(return to 0 at 2n but not for the first time)

= P(S2, =0)—P(S; =0 for some 2 < t < 2n — 2,85, =0)
—_——

(2n)2,2n

n
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First return at time 2n

P(first return at time 2n)
= P(never return to 0 before 2n, return to 0 at 2n)
= P(return to 0 at 2n) — P(return to 0 at 2n but not for the first time)
= P(S2, =0)—P(S; =0 for some 2 < t < 2n — 2,85, =0)

—_——
(277')272n

n

By definition, S; = +1, S5,_1 = 1 — four possibilities.
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++

S():O,Sl:lw--vSanl :1aSZnZO
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50:0751 :17"'7321171:7175271:0
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So=0,51=—1,...,5, 1=1,5;,=0
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50:07511:*1,"'7527171 :7175271:0
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Four scenarios

P(S; =0 for some 2 <t <2n— 2,5, =0)
P(S1=+41,5; =0 for some 2 <t <2n—2,5, 1 =+1,5, =0)
+P(S; =+41,5, =0 for some 2 <t < 2n —2,S9,_1 =-1,5, =0)
(
(

_l’_

P 51:-I,St:0forsome2§t§2n—2,82n_1:+1,Sgn:0)
+P(S1 =-1,5, =0 for some 2 <t <2n —2,59,_1 =-1,5, =0)
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Four scenarios

P(S; =0 for some 2 <t <2n— 2,5, =0)

=P(S1 =+1,5; =0 for some 2 <t <2n — 2,59, 1 =+1,5, =0)

+P(S; =+41,5, =0 for some 2 <t < 2n —2,S9,_1 =-1,5, =0)
(
(

_l’_

P(S1=-1,5=0 for some 2 <t <2n—2,5, 1 =+1,5, =0)
+P(S1 =-1,5, =0 for some 2 <t <2n —2,59,_1 =-1,5, =0)

We shall show that all four probabilities are equal to
2n —2 9—2n
n

21/48



Four scenarios

P(S; =0 for some 2 <t <2n— 2,5, =0)

=P(S1 =+1,5; =0 for some 2 <t <2n — 2,59, 1 =+1,5, =0)

+P(S; =+41,5, =0 for some 2 <t < 2n— 2,59, 1 =-1,5, =0)
(
(

+P(S; =-1,5; =0 for some 2 <t <2n—2,89,_1 = +1,5,, =0)
+P(S; =-1,5, =0 for some 2 <t <2n—2,S9,_1 =-1,5, =0)

We shall show that all four probabilities are equal to
2n —2 9—2n
n
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P(S1 =+1,5; =0 for some 2 <t <2n—2,59,_1 = —1,53, =0)

22/48



12345678\53/0

P(S1 =+1,5; =0 for some 2 <t <2n—2,59,_1 = —1,53, =0)
:P(Sl = +17 S2n—1 = _17 SQn = O)
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12345678\53/0

P(S1 =+1,5; =0 for some 2 <t <2n—2,59,_1 = —1,53, =0)
:P(Sl = +17 S2n—1 = _17 SQn = O)
=P(first step=+, move from +1 to —1 in 2n — 2 steps, last step=+)

n “=" out of 2n — 2 steps
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12345678\53/0

P(S1 =+1,5; =0 for some 2 <t <2n—2,59,_1 = —1,53, =0)
:P(Sl = +17 S2n—1 = _17 SQn = O)
=P(first step=+, move from +1 to —1 in 2n — 2 steps, last step=+)

n “=" out of 2n — 2 steps

2 n 2 n
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P(S1=-1,5 =0 for some 2 <t <2n—2,S9,_1 = +1,53, =0)
:P(Sl =—1,8,_1=+1,859, = 0)
=P(first step=-, move from —1 to +1 in 2n — 2 steps, last step=-)

_ <2n - 2> o2
n

~
n “+" out of 2n — 2 steps
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10
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++

A

AN 1///2 3 /4 5 /6 7 8 9 10
%

e Reflection principle (reflecting at the 1st crossing): For every path

(1,1) ~» (2n — 1, 1) that crosses the horizontal axis, there is another
path (1, —1) ~» (2n — 1, 1), and vice versa
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++

e Reflection principle (reflecting at the 1st crossing): For every path
(1,1) ~» (2n — 1, 1) that crosses the horizontal axis, there is another
path (1, —1) ~» (2n — 1, 1), and vice versa

® Therefore

P(S1=+1,5: =0 for some 2 <t <2n—2,59,_1 = +1,53, =0)
:P(Sl = _175211—1 = +1752n = O)

_ <2n - 2> 020
n
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® Reflection principle: For every path (1,—1) ~» (2n — 1,—1) that

crosses the horizontal axis, there is another path
(1,1) ~ (2n — 1,—1), and vice versa
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® Reflection principle: For every path (1,—1) ~» (2n — 1,—1) that
crosses the horizontal axis, there is another path
(1,1) ~ (2n — 1,—1), and vice versa

® Therefore

P(S1=-1,5 =0 for some 2 <t <2n—2,59, 1 =—1,5, =0)
=P(S1 = +1, 52,1 = —1, 52, =0)

_ 2n —2 o—2n
n
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Put everything together

n

2
P(return to 0 at 2n) :< n) 272
o 2n—2\ __q9,
P(return to 0 at 2n but not for the first time) =4 x 2
n

So
P(return to 0 at 2n for the first time)
_ (2 o—2n 4 2n — 2 o2 _ (1 _4 n(n —1) 2n o—2n
n n 2n(2n — 1) n
1 2n
— 272n
2n—1 ( n >

First few values: 1. 1 L 5 T
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Probability of eventual return

P(eventual return) = ZP(first return at time 2n)
n>1

:Z 1 2n 2—27’l:1
2n—1\'n

n>1

using Taylor expansion

1—\/@22 1 <2n>xn

2n—1\n
n>1

with x =1/4
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Method 2: Proof by contradiction



Returning finitely often

® Let Py = P(never returns to 0)
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Returning finitely often

® Let Py = P(never returns to 0)

® Define the event:

E = {drunkard returns to 0 finitely often}
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Returning finitely often

® Let Py = P(never returns to 0)

® Define the event:
E = {drunkard returns to 0 finitely often}

® Here finitely often means coming back finitely many times, e.g., 0
time, 1 time, 2 times, ---. Thus Py < P(E).
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Returning finitely often

Let Py = P(never returns to 0)

Define the event:

E = {drunkard returns to 0 finitely often}

Here finitely often means coming back finitely many times, e.g., 0
time, 1 time, 2 times, ---. Thus Py < P(E).

® Question: How to express P (E) using Py?
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According to time of the last return

E = {returns finitely often}
= {never turns}
U {returns at time 2, then never returns}
U {returns at time 4, then never returns}

U---

30/48



According to time of the last return

E = {returns finitely often}
= {never turns}
U {returns at time 2, then never returns}
U {returns at time 4, then never returns}

U---

The union is over mutually exclusive events. Thus:

P(E) = P(never turns)
+ P(returns at time 2, then never returns)
+ P(returns at time 4, then never returns)
4.
=P+ P(S2=0)Py+P(Sy =0)Py+ -~

30/48



Therefore

1+ip(52n20)

n=1

P(E) = - Py,
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Therefore

1+ip(52n20)

n=1

P(E) = - Py,

=400 (next slide)
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Therefore

P(E) = 1+ip(52n=0) Dy,

n=1

=400 (next slide)

Suppose Py # 0. Then P (E) = +oo. Contradiction! Thus it must be

Py=0
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Stirling Approximation

e Stirling's formula:

n n
n! ~vV2mn (—)
e

where LHS ~ RHS means FLQLHE — 1 asn — oo.
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Stirling Approximation

e Stirling's formula:

n n
n! ~vV2mn (—)
e

where LHS ~ RHS means EHS 1 as n — oo.

RHS
® Hence
@) (1) suning V2720 (2)™"
s =0 =05 (3) (Vamn (2))
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Stirling Approximation

e Stirling's formula:

n n
n! ~vV2mn (—)
e

where LHS ~ RHS means kﬂg — 1 asn— oo.

® Hence

P <52n=°>:%<;>2n o 27;7;”(2)6) <> - 7

® Recall an important fact from calculus:

1 00 a<l1

o1 finite a>1
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Stirling Approximation

e Stirling's formula:

n n
n! ~vV2mn (—)
e

where LHS ~ RHS means kﬂg — 1 asn— oo.

® Hence

i () s T (17

® Recall an important fact from calculus:

1 00 a<l1

o1 finite a>1
® Hence - -
1
D=0 = ) P(Sn=0)=
n=1 n=1

1
VTN
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Conclusion: 1-D random walk always comes back

Py = P (the drunkard never returns to 0) = 0,
P(E) = P (the drunkard returns to O finitely often) = 0.
ie.,
P (the drunkard returns to 0 eventually) = 1,

P (the drunkard returns to O infinitely often) = 1.

33/48



2 and 3-dim random walks



Drunkard’s Walks on the plane

A drunkard walks randomly in an idealized 2-dimensional city. The city is
infinite and arranged in an equally-spaced square grid. At every
intersection, the drunkard chooses one of the 4 directions: N/S/E/W,
with equal probability. Formally, this is a random walk on Z2.
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Drunkard’s Walks on the plane

A drunkard walks randomly in an idealized 2-dimensional city. The city is
infinite and arranged in an equally-spaced square grid. At every
intersection, the drunkard chooses one of the 4 directions: N/S/E/W,
with equal probability. Formally, this is a random walk on Z2.

Question
What is the probability of eventual return?
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Equivalent view
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Equivalent view

37/48



Equivalent view
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Equivalent view

We can consider the walk which moves to NE/NW/SW/SW:
(z,y) = (£ Ly+1)
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2 Dimensional Random Walk

® Two independent sequences of independent random variables:

P(X;=1)=P(X;=-1)=1/2 horizontal steps
PY,=1)=PY,=-1)=1/2 vertical steps

® Position at time n:

n

Sn = Z X, horizontal coordiate
i=1
n

T, = Z Y, vertical coordinate
i=1
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Apply the same reasoning

® Let Py = P(never returns).
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Apply the same reasoning
® Let Py = P(never returns).

® Define the event:

E = {drunkard returns to origin finitely often}
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Apply the same reasoning

® Let Py = P(never returns).

® Define the event:
E = {drunkard returns to origin finitely often}

® Key identity is the same as in one dimension:

P(E):Z P (S2, =0, T3, = 0) x Py

n

=0 P(returns at time 2n, then never returns)

It boils down to ano P (S2, =0,T, =0) NS
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Using Stirling's formula again

1 2
P(SQTL:OvTQTL:O):P(S2n:O)P(T2n:O)N <\/ﬁ>

Important facts:

® P(Sn=0)~ =

oo
* > 1/n=+od!
n=1

If Py # 0, then P (E) = 4o00. Contradiction! Thus Py =0
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Conclusion: 2-D random walk always comes back

Py = P (the drunkard never returns ) = 0,
P(E) = P (the drunkard returns finitely often) = 0.
ie.,
P (the drunkard returns eventually) = 1,
P (the drunkard returns infinitely often) = 1.
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Drunkard’s Walks in space

A drunkard walks randomly in an idealized 3-dimensional city. The city is
infinite and arranged in an equally-spaced cubic grid. At every
intersection, the drunkard chooses one of the 6 directions:

up/down/left/right/back/forth, with equal probability. Formally, this is a
random walk on Z3.
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(Simplified) 3-dimensional Walk

Three independent sequences of independent random variables:

P(X;=1) = P(X;=-1)=1/2,
P(Yi=1) = P(Y;=-1)=1/2,
P(Zi=1) = P(Z=-1)=1/2

Position at time n:

n n n
Sn=Y X0 Tn=) Y, U=> Z.
=1 =1 =1

8 directions: (z,y,2) » (zx1,y+£1,z+1)
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Key Difference

® The same reasoning leads to

P(E) = ZP(SQn = 07T2n - 07U2n = O) -P(),
n=0

but now this is finite!

since

P (Son, = 0,15, = 0,Usp, = 0) =P (S2p, = 0) P (T3, = 0) P (Uz, =0)

8

n=1
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Key Difference

® The same reasoning leads to

P(E) = ZP(SQn = 07T2n - 07U2n = O) -P(),
n=0

but now this is finite!

since

P (Son, = 0,15, = 0,Usp, = 0) =P (S2p, = 0) P (T3, = 0) P (Uz, =0)

nis

o0
and ¥ 15~ 2.6 < 00
n=1
® Thus it is not immediately clear whether Py = 0 or not.
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In fact: Fy > 0
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In fact: Fy > 0

® Suppose, for the sake of contradiction, that Py = 0.
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In fact: Fy > 0

® Suppose, for the sake of contradiction, that Py = 0.
® Then P(E) = P(return to (0,0,0) finitely often) =0, i.e.,

P(return to (0,0,0) infinitely often) =1
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In fact: Fy > 0

® Suppose, for the sake of contradiction, that Py = 0.
® Then P(E) = P(return to (0,0,0) finitely often) =0, i.e.,

P(return to (0,0,0) infinitely often) =1

® |et X = number of returns. Then

X = Z 1{32n:0aT2n:0aU2n:0}
n>0
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In fact: Fy > 0

Suppose, for the sake of contradiction, that Py = 0.
Then P(E) = P(return to (0,0,0) finitely often) =0, i.e.,

P(return to (0,0,0) infinitely often) =1

® |et X = number of returns. Then

X = Z 1{SQn:0aT2n:0aU2n:0}
n>0

We know X = 400 with probability 1, but

E(X) =" P (S =0,Tp, = 0,Us, = 0) < +00

n=0
contradition!
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Conclusion: 3-D random walk might not return

P(never return) > 0f

T P(never return) ~ 72%
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Conclusion: 3-D random walk might not return

P(never return) > 0f

The same holds for

® the original 3-D walk with 6 directions (Grinstead-Snell, Sec 12.1 Ex
14): P(never return) ~ 66%

® walks in higher dimensions

¥

l

5
-
/

97

George Pdlya

T P(never return) ~ 72%
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Summary

What we have learned: a dichotomy

Z P(return at time k) = co < P(never return) =0
k>0

ZP(return at time k) < oo < P(never return) > 0
k>0

This is applicable to analyzing other walks, e.g., asymmetric ones (HW)
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More precisely

® If > 450 P(return at time k) = oo, then

P(return finitely often) = 0

P(never return) = 0

® If > k5o P(return at time k) < oo, since EX < oo, X is finite with
probability one, then

P(return finitely often) = 1
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