
S&DS 241 Lecture 11 (optional)

Random walk: Probability of eventual return
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Drunkard’s Walks in one dimension

A drunkard walks randomly in an idealized 1-dimensional city.1 The city

is infinite and arranged in 1-dimensional equally-spaced grid, and at every

point, the drunkard chooses one of the 2 possible routes (including the

one he came from) with equal probability. Formally, this is a symmetric

random walk on the set of integers.

−4 −3 −2 −1 0 1 2 3 4

1/21/2

1For instance, the drunkard wanders into a very long alley.
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Drunkard’s Walks in two or three dimensions
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Drunkard’s Walk

Question

Will the drunkard ever return to the starting point?

Answer

Always return in 1 or 2 dimensional space, but not necessarily in 3 and

higher dimensional space.
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“One may summarize these results by stating that one should not
get drunk in more than two dimensions.”

— Grinstead-Snell, p. 478
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Let’s start with one dimension



Two methods

P (eventual return) = 1

Method 1 Direct calculation

Method 2 Proof by contradiction (indirect but easy to extend to

higher dimensions)
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Method 1: Direct calculation



Symmetric random walk
A particle starts at 0, and at each step it either moves 1 unit to the right

with probability 1/2 or to the left with probability 1/2, independently.

−4 −3 −2 −1 0 1 2 3 4

1/21/2

Let Sn be the particle’s position after n steps.
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PMF of Sn

Let

Xi = ith step =

{
+1 with prob 1/2

−1 with prob 1/2

Then

Sn = X1 + · · ·+Xn︸ ︷︷ ︸
iid

Alternatively,

• Let X= number of steps to the right ∼ Bin(n, 1/2)

• Then Sn = 2X − n ∈ {−n,−n+ 2, . . . , n− 2, n} and

P (Sn = j) = P (X = (n+ j)/2) =

(
n

n+j
2

)
2−n
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Probability of eventual return

• Possible return time: 2, 4, 6, . . . (all even numbers)

• According to the time of first return,

P (eventual return)

= P (first return at time 2) + P (first return at time 4) + · · ·

=
∑
n≥1

P (first return at time 2n)
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First return at time 2

P (first return at time 2) = P (S2 = 0)

= P (+-) + P (-+) = 2× 1

2
× 1

2
=

1

2
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First return at time 4

0 1 2 3 4

P (first return at time 4) = P (S2 ̸= 0, S4 = 0)

= P (++--) + P (--++) = 2× 1

24
=

1

8
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First return at time 6

0 1 2 3 4 5 6

P (first return at time 6)

= P (S2 ̸= 0, S4 ̸= 0, S6 = 0)

= P (+++--) + P (++-+--) + P (---+++) + P (--+-++)

= 4× 1

26
=

1

16
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First return at time 2n

More generally:

P (first return at time 2n)

=
number of paths (0, 0)⇝ (2n, 0) that stay above or below horizontal axis

22n
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First return at time 2n

P (first return at time 2n)

= P (never return to 0 before 2n, return to 0 at 2n)

= P (return to 0 at 2n)− P (return to 0 at 2n but not for the first time)

= P (S2n = 0)︸ ︷︷ ︸
(2nn )2−2n

−P (St = 0 for some 2 ≤ t ≤ 2n− 2, S2n = 0)

By definition, S1 = ±1, S2n−1 = ±1 — four possibilities.
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++

0 1 2 3 4 5 6 7 8 9 10

S0 = 0, S1 = 1, . . . , S2n−1 = 1, S2n = 0
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+−

0 1 2 3 4 5 6 7 8 9 10

S0 = 0, S1 = 1, . . . , S2n−1 = −1, S2n = 0
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−+

0 1 2 3 4 5 6 7 8 9 10

S0 = 0, S1 = −1, . . . , S2n−1 = 1, S2n = 0
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−−

0 1 2 3 4 5 6 7 8 9 10

S0 = 0, S1 = −1, . . . , S2n−1 = −1, S2n = 0
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Four scenarios

P (St = 0 for some 2 ≤ t ≤ 2n− 2, S2n = 0)

=P (S1 = +1, St = 0 for some 2 ≤ t ≤ 2n− 2, S2n−1 = +1, S2n = 0)

+P (S1 = +1, St = 0 for some 2 ≤ t ≤ 2n− 2, S2n−1 = -1, S2n = 0)

+P (S1 = -1, St = 0 for some 2 ≤ t ≤ 2n− 2, S2n−1 = +1, S2n = 0)

+P (S1 = -1, St = 0 for some 2 ≤ t ≤ 2n− 2, S2n−1 = -1, S2n = 0)

We shall show that all four probabilities are equal to(
2n− 2

n

)
2−2n
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+−

0 1 2 3 4 5 6 7 8 9 10

P (S1 = +1, St = 0 for some 2 ≤ t ≤ 2n− 2, S2n−1 = −1, S2n = 0)

=P (S1 = +1, S2n−1 = −1, S2n = 0)

=P (first step=+, move from +1 to −1 in 2n− 2 steps︸ ︷︷ ︸
n “-” out of 2n− 2 steps

, last step=+)

=
1

2
×

(
2n− 2

n

)
2−(2n−2) × 1

2
=

(
2n− 2

n

)
2−2n
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−+

0 1 2 3 4 5 6 7 8 9 10

P (S1 = −1, St = 0 for some 2 ≤ t ≤ 2n− 2, S2n−1 = +1, S2n = 0)

=P (S1 = −1, S2n−1 = +1, S2n = 0)

=P (first step=-, move from −1 to +1 in 2n− 2 steps︸ ︷︷ ︸
n “+” out of 2n− 2 steps

, last step=-)

=

(
2n− 2

n

)
2−2n
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++

0 1 2 3 4 5 6 7 8 9 10

• Reflection principle (reflecting at the 1st crossing): For every path

(1, 1)⇝ (2n− 1, 1) that crosses the horizontal axis, there is another

path (1,−1)⇝ (2n− 1, 1), and vice versa
• Therefore

P (S1 = +1, St = 0 for some 2 ≤ t ≤ 2n− 2, S2n−1 = +1, S2n = 0)

=P (S1 = −1, S2n−1 = +1, S2n = 0)

=

(
2n− 2

n

)
2−2n
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−−

0 1 2 3 4 5 6 7 8 9 10

• Reflection principle: For every path (1,−1)⇝ (2n− 1,−1) that

crosses the horizontal axis, there is another path

(1, 1)⇝ (2n− 1,−1), and vice versa

• Therefore

P (S1 = −1, St = 0 for some 2 ≤ t ≤ 2n− 2, S2n−1 = −1, S2n = 0)
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n
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Put everything together

P (return to 0 at 2n) =

(
2n

n

)
2−2n

P (return to 0 at 2n but not for the first time) =4×
(
2n− 2

n

)
2−2n

So

P (return to 0 at 2n for the first time)

=

(
2n

n

)
2−2n − 4

(
2n− 2

n

)
2−2n =

(
1− 4

n(n− 1)

2n(2n− 1)

)(
2n

n

)
2−2n

=
1

2n− 1

(
2n

n

)
2−2n

First few values: 1
2 ,

1
8 ,

1
16 ,

5
128 ,

7
256 , . . .
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Probability of eventual return

P (eventual return) =
∑
n≥1

P (first return at time 2n)

=
∑
n≥1

1

2n− 1

(
2n

n

)
2−2n = 1

using Taylor expansion

1−
√
1− 4x =

∑
n≥1

1

2n− 1

(
2n

n

)
xn

with x = 1/4
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Method 2: Proof by contradiction



Returning finitely often

• Let P0 = P (never returns to 0)

• Define the event:

E = {drunkard returns to 0 finitely often}

• Here finitely often means coming back finitely many times, e.g., 0

time, 1 time, 2 times, · · · . Thus P0 ≤ P (E).

• Question: How to express P (E) using P0?
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According to time of the last return

E = {returns finitely often}
= {never turns}

∪ {returns at time 2, then never returns}
∪ {returns at time 4, then never returns}
∪ · · ·

The union is over mutually exclusive events. Thus:

P (E) = P (never turns)

+ P (returns at time 2, then never returns)

+ P (returns at time 4, then never returns)

+ · · ·
= P0 + P (S2 = 0)P0 + P (S4 = 0)P0 + · · ·
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Therefore

P (E) =

[
1 +

∞∑
n=1

P (S2n = 0)

]
· P0,

Suppose P0 ̸= 0. Then P (E) = +∞. Contradiction! Thus it must be

P0 = 0
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Therefore
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n=1
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=+∞ (next slide)
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Stirling Approximation
• Stirling’s formula:

n! ∼
√
2πn

(n
e

)n

where LHS ∼ RHS means LHS
RHS → 1 as n → ∞.

• Hence

P (S2n = 0) =
(2n)!

(n!)2

(
1

2

)2n
Stirling∼

√
2π · 2n

(
2n
e

)2n
(
√
2πn

(
n
e

)n
)2

(
1

2

)2n

=
1√
πn

• Recall an important fact from calculus:∑
n≥1

1

na
=

{
∞ a ≤ 1

finite a > 1

• Hence
∞∑
n=1

1√
πn

= ∞ =⇒
∞∑
n=1

P (S2n = 0) = ∞
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Conclusion: 1-D random walk always comes back

P0 = P (the drunkard never returns to 0) = 0,

P (E) = P (the drunkard returns to 0 finitely often) = 0.

i.e.,

P (the drunkard returns to 0 eventually) = 1,

P (the drunkard returns to 0 infinitely often) = 1.

33/48



2 and 3-dim random walks



Drunkard’s Walks on the plane

A drunkard walks randomly in an idealized 2-dimensional city. The city is

infinite and arranged in an equally-spaced square grid. At every

intersection, the drunkard chooses one of the 4 directions: N/S/E/W,

with equal probability. Formally, this is a random walk on Z2.

Question

What is the probability of eventual return?
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Equivalent view
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Equivalent view

We can consider the walk which moves to NE/NW/SW/SW:

(x, y) → (x± 1, y ± 1)
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2 Dimensional Random Walk

• Two independent sequences of independent random variables:

P (Xi = 1) = P (Xi = −1) = 1/2 horizontal steps

P (Yi = 1) = P (Yi = −1) = 1/2 vertical steps

• Position at time n:

Sn =

n∑
i=1

Xi horizontal coordiate

Tn =
n∑

i=1

Yi vertical coordinate
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Apply the same reasoning

• Let P0 = P (never returns).

• Define the event:

E = {drunkard returns to origin finitely often}

• Key identity is the same as in one dimension:

P (E) =

∞∑
n=0

P (S2n = 0, T2n = 0)× P0︸ ︷︷ ︸
P (returns at time 2n, then never returns)

It boils down to
∑

n≥0 P (S2n = 0, T2n = 0)
?
= ∞

39/48
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Using Stirling’s formula again

P (S2n = 0, T2n = 0) = P (S2n = 0)P (T2n = 0) ∼
(

1√
πn

)2

Important facts:

• P (S2n = 0) ∼ 1√
πn

•
∞∑
n=1

1/n = +∞!

If P0 ̸= 0, then P (E) = +∞. Contradiction! Thus P0 = 0
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Conclusion: 2-D random walk always comes back

P0 = P (the drunkard never returns ) = 0,

P (E) = P (the drunkard returns finitely often) = 0.

i.e.,

P (the drunkard returns eventually) = 1,

P (the drunkard returns infinitely often) = 1.
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Drunkard’s Walks in space

A drunkard walks randomly in an idealized 3-dimensional city. The city is

infinite and arranged in an equally-spaced cubic grid. At every

intersection, the drunkard chooses one of the 6 directions:

up/down/left/right/back/forth, with equal probability. Formally, this is a

random walk on Z3.
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(Simplified) 3-dimensional Walk

Three independent sequences of independent random variables:

P (Xi = 1) = P (Xi = −1) = 1/2,

P (Yi = 1) = P (Yi = −1) = 1/2,

P (Zi = 1) = P (Zi = −1) = 1/2.

Position at time n:

Sn =

n∑
i=1

Xi, Tn =

n∑
i=1

Yi, Un =

n∑
i=1

Zi.

8 directions: (x, y, z) → (x± 1, y ± 1, z ± 1)
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Key Difference

• The same reasoning leads to

P (E) =

∞∑
n=0

P (S2n = 0, T2n = 0, U2n = 0)︸ ︷︷ ︸
but now this is finite!

·P0,

since

P (S2n = 0, T2n = 0, U2n = 0) =P (S2n = 0)P (T2n = 0)P (U2n = 0)

∼
(

1√
πn

)3

and
∞∑
n=1

1
n1.5 ≈ 2.6 < ∞

• Thus it is not immediately clear whether P0 = 0 or not.
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In fact: P0 > 0

• Suppose, for the sake of contradiction, that P0 = 0.

• Then P (E) = P (return to (0, 0, 0) finitely often) = 0, i.e.,

P (return to (0, 0, 0) infinitely often) = 1

• Let X = number of returns. Then

X =
∑
n≥0

1{S2n=0,T2n=0,U2n=0}

• We know X = +∞ with probability 1, but

E(X) =
∞∑
n=0

P (S2n = 0, T2n = 0, U2n = 0) < +∞

contradition!
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Conclusion: 3-D random walk might not return

P (never return) > 0†

The same holds for

• the original 3-D walk with 6 directions (Grinstead-Snell, Sec 12.1 Ex

14): P (never return) ≈ 66%

• walks in higher dimensions

George Pólya

†P (never return) ≈ 72%
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Summary

What we have learned: a dichotomy∑
k≥0

P (return at time k) = ∞ ⇔ P (never return) = 0

∑
k≥0

P (return at time k) < ∞ ⇔ P (never return) > 0

This is applicable to analyzing other walks, e.g., asymmetric ones (HW)
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More precisely

• If
∑

k≥0 P (return at time k) = ∞, then

P (return finitely often) = 0

P (never return) = 0

• If
∑

k≥0 P (return at time k) < ∞, since EX < ∞, X is finite with

probability one, then

P (return finitely often) = 1

P (never return) =
1∑

k≥0 P (return at time k)
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