S&DS 241 Lecture 11 (optional)

Random walk: Probability of eventual return

Drunkard's Walks in one dimension

A drunkard walks randomly in an idealized 1-dimensional city.¹ The city is infinite and arranged in 1-dimensional equally-spaced grid, and at every point, the drunkard chooses one of the 2 possible routes (including the one he came from) with equal probability. Formally, this is a symmetric random walk on the set of integers.

¹For instance, the drunkard wanders into a very long alley.

Drunkard's Walks in two or three dimensions

Drunkard's Walk

Question

Will the drunkard ever return to the starting point?

Drunkard's Walk

Question

Will the drunkard ever return to the starting point?

Answer

Always return in 1 or 2 dimensional space, but not necessarily in 3 and higher dimensional space.

"One may summarize these results by stating that one should not get drunk in more than two dimensions."

- Grinstead-Snell, p. 478

Let's start with one dimension

$P(\mathsf{eventual\ return}) = 1$

Method 1 Direct calculation Method 2 Proof by contradiction (indirect but easy to extend to higher dimensions)

Method 1: Direct calculation

Symmetric random walk

A particle starts at 0, and at each step it either moves 1 unit to the right with probability 1/2 or to the left with probability 1/2, independently.

Let S_n be the particle's position after n steps.

 $\mathsf{PMF} \text{ of } S_n$

Let

$$X_i = i^{\text{th}} \text{ step} = \begin{cases} +1 & \text{with prob } 1/2 \\ -1 & \text{with prob } 1/2 \end{cases}$$

Then

$$S_n = \underbrace{X_1 + \dots + X_n}_{\text{iid}}$$

PMF of S_n

Let

$$X_i = i^{\text{th}} \text{ step} = \begin{cases} +1 & \text{with prob } 1/2 \\ -1 & \text{with prob } 1/2 \end{cases}$$

Then

$$S_n = \underbrace{X_1 + \dots + X_n}_{\text{iid}}$$

Alternatively,

- Let X = number of steps to the right $\sim Bin(n, 1/2)$
- Then $S_n = 2X n \in \{-n, -n + 2, \dots, n 2, n\}$ and

$$P(S_n = j) = P(X = (n+j)/2) = {\binom{n}{\frac{n+j}{2}}}2^{-n}$$

Probability of eventual return

- Possible return time: 2, 4, 6, ... (all even numbers)
- According to the time of first return,

P(eventual return)

 $= P(\text{first return at time } 2) + P(\text{first return at time } 4) + \cdots$

$$= \sum_{n \ge 1} P(\text{first return at time } 2n)$$

First return at time 2

 $P(\text{first return at time }2)=P(S_2=0)$ $=P(\text{+-})+P(\text{-+})=2\times\frac{1}{2}\times\frac{1}{2}=\frac{1}{2}$

First return at time 4

$$\begin{split} P(\text{first return at time } 4) &= P(S_2 \neq 0, S_4 = 0) \\ &= P(\texttt{++--}) + P(\texttt{--++}) = 2 \times \frac{1}{2^4} = \frac{1}{8} \end{split}$$

First return at time 6

$$\begin{split} &P(\text{first return at time 6}) \\ &= P(S_2 \neq 0, S_4 \neq 0, S_6 = 0) \\ &= P(\texttt{+++--}) + P(\texttt{++-+--}) + P(\texttt{--+++}) + P(\texttt{--+++}) \\ &= \mathbf{4} \times \frac{1}{2^6} = \frac{1}{16} \end{split}$$

More generally:

 $P(\text{first return at time } 2n) = \frac{\text{number of paths } (0,0) \rightsquigarrow (2n,0) \text{ that stay above or below horizontal axis}}{2n}$

 2^{2n}

First return at time 2n

P(first return at time 2n)

First return at time 2n

P(first return at time 2n)

= P(never return to 0 before 2n, return to 0 at 2n)

P(first return at time 2n)

- = P(never return to 0 before 2n, return to 0 at 2n)
- = P(return to 0 at 2n) P(return to 0 at 2n but not for the first time)

P(first return at time 2n)

- = P(never return to 0 before 2n, return to 0 at 2n)
- = P(return to 0 at 2n) P(return to 0 at 2n but not for the first time)

$$= \underbrace{P(S_{2n} = 0)}_{\binom{2n}{n}2^{-2n}} - P(S_t = 0 \text{ for some } 2 \le t \le 2n - 2, S_{2n} = 0)$$

P(first return at time 2n)

- = P(never return to 0 before 2n, return to 0 at 2n)
- = P(return to 0 at 2n) P(return to 0 at 2n but not for the first time)

$$= \underbrace{P(S_{2n} = 0)}_{\binom{2n}{n}2^{-2n}} - P(S_t = 0 \text{ for some } 2 \le t \le 2n - 2, S_{2n} = 0)$$

By definition, $S_1 = \pm 1$, $S_{2n-1} = \pm 1$ — four possibilities.

Four scenarios

$$\begin{split} P(S_t &= 0 \text{ for some } 2 \leq t \leq 2n-2, S_{2n} = 0) \\ &= P(S_1 = \textbf{+1}, S_t = 0 \text{ for some } 2 \leq t \leq 2n-2, S_{2n-1} = \textbf{+1}, S_{2n} = 0) \\ &+ P(S_1 = \textbf{+1}, S_t = 0 \text{ for some } 2 \leq t \leq 2n-2, S_{2n-1} = \textbf{-1}, S_{2n} = 0) \\ &+ P(S_1 = \textbf{-1}, S_t = 0 \text{ for some } 2 \leq t \leq 2n-2, S_{2n-1} = \textbf{+1}, S_{2n} = 0) \\ &+ P(S_1 = \textbf{-1}, S_t = 0 \text{ for some } 2 \leq t \leq 2n-2, S_{2n-1} = \textbf{-1}, S_{2n} = 0) \\ &+ P(S_1 = \textbf{-1}, S_t = 0 \text{ for some } 2 \leq t \leq 2n-2, S_{2n-1} = \textbf{-1}, S_{2n} = 0) \end{split}$$

Four scenarios

$$\begin{split} P(S_t &= 0 \text{ for some } 2 \leq t \leq 2n-2, S_{2n} = 0) \\ &= P(S_1 = \textbf{+1}, S_t = 0 \text{ for some } 2 \leq t \leq 2n-2, S_{2n-1} = \textbf{+1}, S_{2n} = 0) \\ &+ P(S_1 = \textbf{+1}, S_t = 0 \text{ for some } 2 \leq t \leq 2n-2, S_{2n-1} = \textbf{-1}, S_{2n} = 0) \\ &+ P(S_1 = \textbf{-1}, S_t = 0 \text{ for some } 2 \leq t \leq 2n-2, S_{2n-1} = \textbf{+1}, S_{2n} = 0) \\ &+ P(S_1 = \textbf{-1}, S_t = 0 \text{ for some } 2 \leq t \leq 2n-2, S_{2n-1} = \textbf{-1}, S_{2n} = 0) \\ &+ P(S_1 = \textbf{-1}, S_t = 0 \text{ for some } 2 \leq t \leq 2n-2, S_{2n-1} = \textbf{-1}, S_{2n} = 0) \end{split}$$

We shall show that all four probabilities are equal to

$$\binom{2n-2}{n} 2^{-2n}$$

Four scenarios

$$\begin{split} P(S_t &= 0 \text{ for some } 2 \leq t \leq 2n-2, S_{2n} = 0) \\ &= P(S_1 = \textbf{+1}, S_t = 0 \text{ for some } 2 \leq t \leq 2n-2, S_{2n-1} = \textbf{+1}, S_{2n} = 0) \\ &+ P(S_1 = \textbf{+1}, S_t = 0 \text{ for some } 2 \leq t \leq 2n-2, S_{2n-1} = \textbf{-1}, S_{2n} = 0) \\ &+ P(S_1 = \textbf{-1}, S_t = 0 \text{ for some } 2 \leq t \leq 2n-2, S_{2n-1} = \textbf{+1}, S_{2n} = 0) \\ &+ P(S_1 = \textbf{-1}, S_t = 0 \text{ for some } 2 \leq t \leq 2n-2, S_{2n-1} = \textbf{-1}, S_{2n} = 0) \\ &+ P(S_1 = \textbf{-1}, S_t = 0 \text{ for some } 2 \leq t \leq 2n-2, S_{2n-1} = \textbf{-1}, S_{2n} = 0) \end{split}$$

We shall show that all four probabilities are equal to

$$\binom{2n-2}{n} 2^{-2n}$$

 $P(S_1 = +1, S_t = 0 \text{ for some } 2 \le t \le 2n - 2, S_{2n-1} = -1, S_{2n} = 0)$

$$\begin{split} P(S_1 = +1, S_t = 0 \text{ for some } 2 \leq t \leq 2n-2, S_{2n-1} = -1, S_{2n} = 0) \\ = P(S_1 = +1, S_{2n-1} = -1, S_{2n} = 0) \end{split}$$

$$\begin{split} P(S_1 = +1, S_t = 0 \text{ for some } 2 \leq t \leq 2n - 2, S_{2n-1} = -1, S_{2n} = 0) \\ = P(S_1 = +1, S_{2n-1} = -1, S_{2n} = 0) \\ = P(\text{first step}=\texttt{+}, \underbrace{\text{move from } +1 \text{ to } -1 \text{ in } 2n - 2 \text{ steps}}_{n \text{ "-" out of } 2n - 2 \text{ steps}}, \text{ last step}=\texttt{+}) \end{split}$$

$$\begin{split} P(S_1 &= +1, S_t = 0 \text{ for some } 2 \le t \le 2n - 2, S_{2n-1} = -1, S_{2n} = 0) \\ &= P(S_1 = +1, S_{2n-1} = -1, S_{2n} = 0) \\ &= P(\text{first step} = +, \underbrace{\text{move from } +1 \text{ to } -1 \text{ in } 2n - 2 \text{ steps}}_{n \text{ "-" out of } 2n - 2 \text{ steps}}, \text{ last step} = +) \\ &= \frac{1}{2} \times \binom{2n-2}{n} 2^{-(2n-2)} \times \frac{1}{2} = \binom{2n-2}{n} 2^{-2n} \end{split}$$

$$\begin{split} P(S_1 &= -1, S_t = 0 \text{ for some } 2 \le t \le 2n - 2, S_{2n-1} = +1, S_{2n} = 0) \\ &= P(S_1 = -1, S_{2n-1} = +1, S_{2n} = 0) \\ &= P(\text{first step} = -, \underbrace{\text{move from } -1 \text{ to } +1 \text{ in } 2n - 2 \text{ steps}}_{n \text{ "+" out of } 2n - 2 \text{ steps}}, \text{ last step} = -) \\ &= \binom{2n-2}{n} 2^{-2n} \end{split}$$

++

• Reflection principle (reflecting at the 1st crossing): For every path $(1,1) \rightsquigarrow (2n-1,1)$ that crosses the horizontal axis, there is another path $(1,-1) \rightsquigarrow (2n-1,1)$, and vice versa

• Reflection principle (reflecting at the 1st crossing): For every path $(1,1) \rightsquigarrow (2n-1,1)$ that crosses the horizontal axis, there is another path $(1,-1) \rightsquigarrow (2n-1,1)$, and vice versa

Therefore

$$\begin{split} P(S_1 &= +1, S_t = 0 \text{ for some } 2 \leq t \leq 2n - 2, S_{2n-1} = +1, S_{2n} = 0) \\ &= P(S_1 = -1, S_{2n-1} = +1, S_{2n} = 0) \\ &= \binom{2n-2}{n} 2^{-2n} \end{split}$$

<u>Reflection principle</u>: For every path (1, -1) → (2n - 1, -1) that crosses the horizontal axis, there is another path (1, 1) → (2n - 1, -1), and vice versa

• Reflection principle: For every path $(1, -1) \rightsquigarrow (2n - 1, -1)$ that crosses the horizontal axis, there is another path $(1, 1) \rightsquigarrow (2n - 1, -1)$, and vice versa

• Therefore

$$P(S_1 = -1, S_t = 0 \text{ for some } 2 \le t \le 2n - 2, S_{2n-1} = -1, S_{2n} = 0)$$

= $P(S_1 = +1, S_{2n-1} = -1, S_{2n} = 0)$
= $\binom{2n-2}{n} 2^{-2n}$

Put everything together

$$P(\text{return to 0 at } 2n) = \binom{2n}{n} 2^{-2n}$$
$$P(\text{return to 0 at } 2n \text{ but not for the first time}) = 4 \times \binom{2n-2}{n} 2^{-2n}$$

So

P(return to 0 at 2n for the first time)

$$= \binom{2n}{n} 2^{-2n} - 4\binom{2n-2}{n} 2^{-2n} = \left(1 - 4\frac{n(n-1)}{2n(2n-1)}\right) \binom{2n}{n} 2^{-2n}$$
$$= \frac{1}{2n-1} \binom{2n}{n} 2^{-2n}$$

First few values: $\frac{1}{2}, \frac{1}{8}, \frac{1}{16}, \frac{5}{128}, \frac{7}{256}, \dots$

Probability of eventual return

$$\begin{split} P(\text{eventual return}) &= \sum_{n \geq 1} P(\text{first return at time } 2n) \\ &= \sum_{n \geq 1} \frac{1}{2n-1} \binom{2n}{n} 2^{-2n} = \mathbf{1} \end{split}$$

using Taylor expansion

$$1 - \sqrt{1 - 4x} = \sum_{n \ge 1} \frac{1}{2n - 1} \binom{2n}{n} x^n$$

with x = 1/4

Method 2: Proof by contradiction

• Let $P_0 = P(\text{never returns to } 0)$

- Let $P_0 = P(\text{never returns to } 0)$
- Define the event:

 $E = \{ \mathsf{drunkard returns to } 0 \text{ <u>finitely often} \} \}$ </u>

- Let $P_0 = P(\text{never returns to } 0)$
- Define the event:

$E = \{ \mathsf{drunkard returns to } 0 \text{ <u>finitely often} \} \}$ </u>

 Here <u>finitely often</u> means coming back finitely many times, e.g., 0 time, 1 time, 2 times, ···. Thus P₀ ≤ P(E).

- Let $P_0 = P(\text{never returns to } 0)$
- Define the event:

$E = \{ \mathsf{drunkard returns to } 0 \text{ <u>finitely often} \} \}$ </u>

- Here <u>finitely often</u> means coming back finitely many times, e.g., 0 time, 1 time, 2 times, ···. Thus P₀ ≤ P(E).
- Question: How to express P(E) using P_0 ?

According to time of the last return

- $E = \{ \text{returns finitely often} \}$
 - $= \{ \mathsf{never turns} \}$
 - $\cup \{ \mathsf{returns} \text{ at time } 2 \mathsf{, then never returns} \}$
 - \cup {returns at time 4, then never returns}

 $\cup \cdots$

According to time of the last return

$$E = \{ \text{returns finitely often} \}$$

 $= \{ never turns \}$

 \cup {returns at time 2, then never returns} \cup {returns at time 4, then never returns} $\cup \cdots$

The union is over mutually exclusive events. Thus:

$$\begin{split} P(E) &= P(\text{never turns}) \\ &+ P(\text{returns at time 2, then never returns}) \\ &+ P(\text{returns at time 4, then never returns}) \\ &+ \cdots \\ &= P_0 + P(S_2 = 0)P_0 + P(S_4 = 0)P_0 + \cdots \end{split}$$

Therefore

$$P(E) = \left[1 + \sum_{n=1}^{\infty} P(S_{2n} = 0)\right] \cdot P_0,$$

Therefore

$$P(E) = \left[1 + \sum_{n=1}^{\infty} P(S_{2n} = 0)\right] \cdot P_0,$$

=+\infty (next slide)

Therefore

$$P(E) = \left[1 + \sum_{\substack{n=1 \\ =+\infty \text{ (next slide)}}}^{\infty} P(S_{2n} = 0)\right] \cdot P_0,$$

Suppose $P_0 \neq 0$. Then $P(E) = +\infty$. Contradiction! Thus it must be

$$P_0 = 0$$

• Stirling's formula:

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

where LHS \sim RHS means $\frac{\rm LHS}{\rm RHS} \rightarrow 1$ as $n \rightarrow \infty.$

• Stirling's formula:

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

where LHS \sim RHS means $\frac{\rm LHS}{\rm RHS} \rightarrow 1$ as $n \rightarrow \infty.$

Hence

$$P(S_{2n} = 0) = \frac{(2n)!}{(n!)^2} \left(\frac{1}{2}\right)^{2n} \stackrel{\text{Stirling}}{\sim} \frac{\sqrt{2\pi \cdot 2n} \left(\frac{2n}{e}\right)^{2n}}{(\sqrt{2\pi n} \left(\frac{n}{e}\right)^n)^2} \left(\frac{1}{2}\right)^{2n} = \frac{1}{\sqrt{\pi n}}$$

• Stirling's formula:

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

where LHS \sim RHS means $\frac{\rm LHS}{\rm RHS} \rightarrow 1$ as $n \rightarrow \infty.$

• Hence

$$P\left(S_{2n}=0\right) = \frac{(2n)!}{(n!)^2} \left(\frac{1}{2}\right)^{2n} \stackrel{\text{Stirling}}{\sim} \frac{\sqrt{2\pi \cdot 2n} \left(\frac{2n}{e}\right)^{2n}}{(\sqrt{2\pi n} \left(\frac{n}{e}\right)^n)^2} \left(\frac{1}{2}\right)^{2n} = \frac{1}{\sqrt{\pi n}}$$

• Recall an important fact from calculus:

$$\sum_{n \ge 1} \frac{1}{n^a} = \begin{cases} \infty & a \le 1\\ \text{finite} & a > 1 \end{cases}$$

• Stirling's formula:

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

where LHS \sim RHS means $\frac{\rm LHS}{\rm RHS} \rightarrow 1$ as $n \rightarrow \infty.$

Hence

$$P\left(S_{2n}=0\right) = \frac{(2n)!}{(n!)^2} \left(\frac{1}{2}\right)^{2n} \stackrel{\text{Stirling}}{\sim} \frac{\sqrt{2\pi \cdot 2n} \left(\frac{2n}{e}\right)^{2n}}{(\sqrt{2\pi n} \left(\frac{n}{e}\right)^n)^2} \left(\frac{1}{2}\right)^{2n} = \frac{1}{\sqrt{\pi n}}$$

• Recall an important fact from calculus:

$$\sum_{n \ge 1} \frac{1}{n^a} = \begin{cases} \infty & a \le 1\\ \text{finite} & a > 1 \end{cases}$$

Hence

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{\pi n}} = \infty \implies \sum_{n=1}^{\infty} P\left(S_{2n} = 0\right) = \infty$$

Conclusion: 1-D random walk always comes back

$$P_0 = P($$
the drunkard never returns to $0) = 0,$

P(E) = P(the drunkard returns to 0 finitely often) = 0.

i.e.,

P (the drunkard returns to 0 eventually) = 1, P (the drunkard returns to 0 infinitely often) = 1.

2 and 3-dim random walks

Drunkard's Walks on the plane

A drunkard walks randomly in an idealized 2-dimensional city. The city is infinite and arranged in an equally-spaced square grid. At every intersection, the drunkard chooses one of the 4 directions: N/S/E/W, with equal probability. Formally, this is a random walk on \mathbb{Z}^2 .

Drunkard's Walks on the plane

A drunkard walks randomly in an idealized 2-dimensional city. The city is infinite and arranged in an equally-spaced square grid. At every intersection, the drunkard chooses one of the 4 directions: N/S/E/W, with equal probability. Formally, this is a random walk on \mathbb{Z}^2 .

Question What is the probability of eventual return?

We can consider the walk which moves to NE/NW/SW/SW:

$$(x,y) \to (x \pm 1, y \pm 1)$$

2 Dimensional Random Walk

• Two independent sequences of independent random variables:

$$P(X_i = 1) = P(X_i = -1) = 1/2$$

$$P(Y_i = 1) = P(Y_i = -1) = 1/2$$

vertical steps

• Position at time n:

$$S_n = \sum_{i=1}^n X_i$$
$$T_n = \sum_{i=1}^n Y_i$$

horizontal coordiate

vertical coordinate

Apply the same reasoning

• Let $P_0 = P(\text{never returns})$.

Apply the same reasoning

- Let $P_0 = P(\text{never returns})$.
- Define the event:

 $E = \{ drunkard returns to origin finitely often \}$

Apply the same reasoning

- Let $P_0 = P(\text{never returns})$.
- Define the event:

 $E = \{ drunkard returns to origin finitely often \}$

• Key identity is the same as in one dimension:

$$P(E) = \sum_{n=0}^{\infty} \underbrace{P(S_{2n} = 0, T_{2n} = 0) \times P_{0}}_{P(\text{returns at time } 2n, \text{ then never returns})}$$

It boils down to $\sum_{n\geq 0} P\left(S_{2n}=0,T_{2n}=0\right) \stackrel{?}{=} \infty$

Using Stirling's formula again

$$P(S_{2n} = 0, T_{2n} = 0) = P(S_{2n} = 0) P(T_{2n} = 0) \sim \left(\frac{1}{\sqrt{\pi n}}\right)^2$$

Important facts:

• $P(S_{2n} = 0) \sim \frac{1}{\sqrt{\pi n}}$ • $\sum_{n=1}^{\infty} 1/n = +\infty!$ If $P_0 \neq 0$, then $P(E) = +\infty$. Contradiction! Thus $P_0 = 0$

40/48

Conclusion: 2-D random walk always comes back

$$P_0 = P(\text{the drunkard never returns }) = 0,$$

 $P\left(E
ight) \ = \ P\left(\text{the drunkard returns finitely often}
ight) = 0.$

i.e.,

P (the drunkard returns eventually) = 1, P (the drunkard returns infinitely often) = 1.

Drunkard's Walks in space

A drunkard walks randomly in an idealized 3-dimensional city. The city is infinite and arranged in an equally-spaced cubic grid. At every intersection, the drunkard chooses one of the 6 directions:

up/down/left/right/back/forth, with equal probability. Formally, this is a random walk on \mathbb{Z}^3 .

(Simplified) 3-dimensional Walk

Three independent sequences of independent random variables:

$$P(X_i = 1) = P(X_i = -1) = 1/2,$$

$$P(Y_i = 1) = P(Y_i = -1) = 1/2,$$

$$P(Z_i = 1) = P(Z_i = -1) = 1/2.$$

Position at time n:

$$S_n = \sum_{i=1}^n X_i, \ T_n = \sum_{i=1}^n Y_i, \ U_n = \sum_{i=1}^n Z_i$$

8 directions:
$$(x, y, z) \rightarrow (x \pm 1, y \pm 1, z \pm 1)$$

Key Difference

• The same reasoning leads to

$$P(E) = \underbrace{\sum_{n=0}^{\infty} P(S_{2n} = 0, T_{2n} = 0, U_{2n} = 0)}_{\text{but now this is finite!}} \cdot P_0,$$

since

$$P(S_{2n} = 0, T_{2n} = 0, U_{2n} = 0) = P(S_{2n} = 0) P(T_{2n} = 0) P(U_{2n} = 0)$$
$$\sim \left(\frac{1}{\sqrt{\pi n}}\right)^3$$

and
$$\sum\limits_{n=1}^{\infty} \frac{1}{n^{1.5}} \approx 2.6 < \infty$$
Key Difference

• The same reasoning leads to

$$P(E) = \underbrace{\sum_{n=0}^{\infty} P(S_{2n} = 0, T_{2n} = 0, U_{2n} = 0)}_{\text{but now this is finite!}} \cdot P_0,$$

since

$$P(S_{2n} = 0, T_{2n} = 0, U_{2n} = 0) = P(S_{2n} = 0) P(T_{2n} = 0) P(U_{2n} = 0)$$
$$\sim \left(\frac{1}{\sqrt{\pi n}}\right)^3$$

and
$$\sum\limits_{n=1}^{\infty} \frac{1}{n^{1.5}} \approx 2.6 < \infty$$

• Thus it is not immediately clear whether $P_0 = 0$ or not.

• Suppose, for the sake of contradiction, that $P_0 = 0$.

- Suppose, for the sake of contradiction, that $P_0 = 0$.
- Then P(E) = P(return to (0,0,0) finitely often) = 0, i.e.,

 $P(\ensuremath{\mathsf{return}}\xspace \ 0,0,0)$ infinitely often) = 1

- Suppose, for the sake of contradiction, that $P_0 = 0$.
- Then P(E) = P(return to (0,0,0) finitely often) = 0, i.e.,

P(return to (0,0,0) infinitely often) = 1

• Let X = number of returns. Then

$$X = \sum_{n \ge 0} \mathbf{1}_{\{S_{2n} = 0, T_{2n} = 0, U_{2n} = 0\}}$$

- Suppose, for the sake of contradiction, that $P_0 = 0$.
- Then P(E) = P(return to (0,0,0) finitely often) = 0, i.e.,

P(return to (0,0,0) infinitely often) = 1

• Let X = number of returns. Then

$$X = \sum_{n \ge 0} \mathbf{1}_{\{S_{2n} = 0, T_{2n} = 0, U_{2n} = 0\}}$$

• We know $X = +\infty$ with probability 1, but

$$E(X) = \sum_{n=0}^{\infty} P(S_{2n} = 0, T_{2n} = 0, U_{2n} = 0) < +\infty$$

contradition!

Conclusion: 3-D random walk might not return

 $P(\text{never return}) > 0^{\dagger}$

 $^{\dagger}P(\text{never return}) \approx 72\%$

Conclusion: 3-D random walk might not return

 $P(\text{never return}) > 0^{\dagger}$

The same holds for

- the original 3-D walk with 6 directions (Grinstead-Snell, Sec 12.1 Ex 14): $P(\text{never return}) \approx 66\%$
- walks in higher dimensions

George Pólya

 $^{\dagger}P(\text{never return}) \approx 72\%$

Summary

What we have learned: a dichotomy

$$\begin{split} &\sum_{k\geq 0} P(\text{return at time } k) = \infty \Leftrightarrow P(\text{never return}) = 0 \\ &\sum_{k\geq 0} P(\text{return at time } k) < \infty \Leftrightarrow P(\text{never return}) > 0 \end{split}$$

This is applicable to analyzing other walks, e.g., asymmetric ones (HW)

More precisely

• If
$$\sum_{k\geq 0} P(\text{return at time } k) = \infty$$
, then

P(return finitely often) = 0P(never return) = 0

• If $\sum_{k\geq 0} P(\text{return at time } k) < \infty$, since $EX < \infty$, X is finite with probability one, then

$$P(\text{return finitely often}) = 1$$

$$P(\text{never return}) = \frac{1}{\sum_{k \geq 0} P(\text{return at time } k)}$$