S&DS 241 Lecture 11 (optional)

Random walk: Probability of eventual return
A drunkard walks randomly in an idealized 1-dimensional city. The city is infinite and arranged in 1-dimensional equally-spaced grid, and at every point, the drunkard chooses one of the 2 possible routes (including the one he came from) with equal probability. Formally, this is a symmetric random walk on the set of integers.

\[\frac{1}{2} \quad \frac{1}{2} \]

\[-4 \quad -3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \]

\footnote{For instance, the drunkard wanders into a very long alley.}
Drunkard’s Walks in two or three dimensions
Drunkard’s Walk

Question
Will the drunkard ever return to the starting point?
Drunkard’s Walk

Question
Will the drunkard ever return to the starting point?

Answer
Always return in 1 or 2 dimensional space, but not necessarily in 3 and higher dimensional space.
“One may summarize these results by stating that one should not get drunk in more than two dimensions.”

— Grinstead-Snell, p. 478
Let’s start with one dimension
Two methods

\[P(\text{eventual return}) = 1 \]

Method 1 Direct calculation

Method 2 Proof by contradiction (indirect but easy to extend to higher dimensions)
Method 1: Direct calculation
Symmetric random walk

A particle starts at 0, and at each step it either moves 1 unit to the right with probability 1/2 or to the left with probability 1/2, independently.

Let S_n be the particle’s position after n steps.
PMF of S_n

Let

$$X_i = \text{ith step} = \begin{cases} +1 & \text{with prob } 1/2 \\ -1 & \text{with prob } 1/2 \end{cases}$$

Then

$$S_n = X_1 + \cdots + X_n$$
PMF of S_n

Let

$$X_i = \text{ith step} = \begin{cases} +1 & \text{with prob } 1/2 \\ -1 & \text{with prob } 1/2 \end{cases}$$

Then

$$S_n = X_1 + \cdots + X_n \underbrace{\text{iid}}$$

Alternatively,

- Let $X = \text{number of steps to the right} \sim \text{Bin}(n, 1/2)$
- Then $S_n = 2X - n \in \{-n, -n + 2, \ldots, n - 2, n\}$ and

$$P(S_n = j) = P(X = (n + j)/2) = \left(\frac{n}{n+j} \right) 2^{-n}$$
Probability of eventual return

- Possible return time: 2, 4, 6, ... (all even numbers)
- According to the time of first return,

\[
P(\text{eventual return})
= P(\text{first return at time 2}) + P(\text{first return at time 4}) + \cdots
= \sum_{n \geq 1} P(\text{first return at time } 2n)
\]
First return at time 2

\[P(\text{first return at time 2}) = P(S_2 = 0) \]

\[= P(+-) + P(-+) = 2 \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \]
First return at time 4

\[P(\text{first return at time 4}) = P(S_2 \neq 0, S_4 = 0) \]

\[= P(++++) + P(----) = 2 \times \frac{1}{2^4} = \frac{1}{8} \]
First return at time 6

\[P(\text{first return at time 6}) \]
\[= P(S_2 \neq 0, S_4 \neq 0, S_6 = 0) \]
\[= P(++++--) + P(+-+-++) + P(--+-++) + P(---+++) \]
\[= 4 \times \frac{1}{2^6} = \frac{1}{16} \]
First return at time $2n$

More generally:

$$P(\text{first return at time } 2n) = \frac{\text{number of paths } (0, 0) \rightsquigarrow (2n, 0) \text{ that stay above or below horizontal axis}}{2^{2n}}$$
First return at time $2n$

$$P(\text{first return at time } 2n)$$
First return at time $2n$

\[P(\text{first return at time } 2n) = P(\text{never return to 0 before } 2n, \text{ return to 0 at } 2n) \]
First return at time $2n$

\[
P(\text{first return at time } 2n) = P(\text{never return to 0 before } 2n, \text{ return to 0 at } 2n) - P(\text{return to 0 at } 2n \text{ but not for the first time})\]
First return at time $2n$

\[
P(\text{first return at time } 2n)
= P(\text{never return to 0 before } 2n, \text{ return to 0 at } 2n)
= P(\text{return to 0 at } 2n) - P(\text{return to 0 at } 2n \text{ but not for the first time})
= P(S_{2n} = 0) - P(S_t = 0 \text{ for some } 2 \leq t \leq 2n - 2, S_{2n} = 0)
\]

By definition, $S_1 = \pm 1, S_{2n-1} = \pm 1$— four possibilities.
First return at time $2n$

\[
P(\text{first return at time } 2n) = P(\text{never return to 0 before } 2n, \text{ return to 0 at } 2n)
\]
\[
= P(\text{return to 0 at } 2n) - P(\text{return to 0 at } 2n \text{ but not for the first time})
\]
\[
= P(S_{2n} = 0) - P(S_t = 0 \text{ for some } 2 \leq t \leq 2n - 2, S_{2n} = 0)
\]

By definition, $S_1 = \pm 1$, $S_{2n-1} = \pm 1$ — four possibilities.
$S_0 = 0, S_1 = 1, \ldots, S_{2n-1} = 1, S_{2n} = 0$
$S_0 = 0, S_1 = 1, \ldots, S_{2n-1} = -1, S_{2n} = 0$
$S_0 = 0, S_1 = -1, \ldots, S_{2n-1} = 1, S_{2n} = 0$
$S_0 = 0, S_1 = -1, \ldots, S_{2n-1} = -1, S_{2n} = 0$
Four scenarios

\[P(S_t = 0 \text{ for some } 2 \leq t \leq 2n - 2, S_{2n} = 0) \]

\[= P(S_1 = +1, S_t = 0 \text{ for some } 2 \leq t \leq 2n - 2, S_{2n-1} = +1, S_{2n} = 0) \]

\[+ P(S_1 = +1, S_t = 0 \text{ for some } 2 \leq t \leq 2n - 2, S_{2n-1} = -1, S_{2n} = 0) \]

\[+ P(S_1 = -1, S_t = 0 \text{ for some } 2 \leq t \leq 2n - 2, S_{2n-1} = +1, S_{2n} = 0) \]

\[+ P(S_1 = -1, S_t = 0 \text{ for some } 2 \leq t \leq 2n - 2, S_{2n-1} = -1, S_{2n} = 0) \]
Four scenarios

\[P(S_t = 0 \text{ for some } 2 \leq t \leq 2n - 2, S_{2n} = 0) \]
\[= P(S_1 = +1, S_t = 0 \text{ for some } 2 \leq t \leq 2n - 2, S_{2n-1} = +1, S_{2n} = 0) \]
\[+ P(S_1 = +1, S_t = 0 \text{ for some } 2 \leq t \leq 2n - 2, S_{2n-1} = -1, S_{2n} = 0) \]
\[+ P(S_1 = -1, S_t = 0 \text{ for some } 2 \leq t \leq 2n - 2, S_{2n-1} = +1, S_{2n} = 0) \]
\[+ P(S_1 = -1, S_t = 0 \text{ for some } 2 \leq t \leq 2n - 2, S_{2n-1} = -1, S_{2n} = 0) \]

We shall show that all four probabilities are equal to

\[\left(\frac{2n - 2}{n} \right) 2^{-2n} \]
Four scenarios

\[P(S_t = 0 \text{ for some } 2 \leq t \leq 2n - 2, S_{2n} = 0) \]
\[= P(S_1 = +1, S_t = 0 \text{ for some } 2 \leq t \leq 2n - 2, S_{2n-1} = +1, S_{2n} = 0) \]
\[+ P(S_1 = +1, S_t = 0 \text{ for some } 2 \leq t \leq 2n - 2, S_{2n-1} = -1, S_{2n} = 0) \]
\[+ P(S_1 = -1, S_t = 0 \text{ for some } 2 \leq t \leq 2n - 2, S_{2n-1} = +1, S_{2n} = 0) \]
\[+ P(S_1 = -1, S_t = 0 \text{ for some } 2 \leq t \leq 2n - 2, S_{2n-1} = -1, S_{2n} = 0) \]

We shall show that all four probabilities are equal to

\[\binom{2n - 2}{n} 2^{-2n} \]
\[P(S_1 = +1, S_t = 0 \text{ for some } 2 \leq t \leq 2n - 2, S_{2n-1} = -1, S_{2n} = 0) \]
\[P(S_1 = +1, S_t = 0 \text{ for some } 2 \leq t \leq 2n - 2, S_{2n-1} = -1, S_{2n} = 0) \]

\[= P(S_1 = +1, S_{2n-1} = -1, S_{2n} = 0) \]
\[P(S_1 = +1, S_t = 0 \text{ for some } 2 \leq t \leq 2n - 2, S_{2n-1} = -1, S_{2n} = 0) \]
\[= P(S_1 = +1, S_{2n-1} = -1, S_{2n} = 0) \]
\[= P(\text{first step} = +, \text{ move from } +1 \text{ to } -1 \text{ in } 2n - 2 \text{ steps, last step} = +) \]
\[n \text{ "-" out of } 2n - 2 \text{ steps} \]
\[P(S_1 = +1, S_t = 0 \text{ for some } 2 \leq t \leq 2n - 2, S_{2n-1} = -1, S_{2n} = 0) \]
\[= P(S_1 = +1, S_{2n-1} = -1, S_{2n} = 0) \]
\[= P(\text{first step}=+\text{, move from } +1 \text{ to } -1 \text{ in } 2n-2 \text{ steps, last step}=+\text{)} \]
\[= \frac{1}{2} \times \binom{2n-2}{n} 2^{-(2n-2)} \times \frac{1}{2} = \binom{2n-2}{n} 2^{-2n} \]
\[
P(S_1 = -1, S_t = 0 \text{ for some } 2 \leq t \leq 2n - 2, S_{2n-1} = +1, S_{2n} = 0) \\
= P(S_1 = -1, S_{2n-1} = +1, S_{2n} = 0) \\
= P(\text{first step}=-, \text{ move from } -1 \text{ to } +1 \text{ in } 2n - 2 \text{ steps, last step}=--) \\
= \binom{2n-2}{n} 2^{-2n}
\]
• Reflection principle (reflecting at the 1st crossing): For every path \((1, 1) \rightarrow (2^n - 1, 1)\) that crosses the horizontal axis, there is another path \((1, -1) \rightarrow (2^n - 1, 1)\), and vice versa.

• Therefore \(P(S_1 = +1, S_{2^n} = 0) = P(S_1 = -1, S_{2^n - 1} = +1, S_{2^n} = 0)\).
Reflection principle (reflecting at the 1st crossing): For every path \((1,1) \rightsquigarrow (2n-1,1)\) that crosses the horizontal axis, there is another path \((1,-1) \rightsquigarrow (2n-1,1)\), and vice versa.
• Reflection principle (reflecting at the 1st crossing): For every path
$$(1, 1) \sim (2n - 1, 1)$$ that crosses the horizontal axis, there is another
path $$(1, -1) \sim (2n - 1, 1)$$, and vice versa

• Therefore

$$P(S_1 = +1, S_t = 0 \text{ for some } 2 \leq t \leq 2n - 2, S_{2n-1} = +1, S_{2n} = 0)$$
$$= P(S_1 = -1, S_{2n-1} = +1, S_{2n} = 0)$$
$$= \binom{2n - 2}{n} 2^{-2n}$$
• Reflection principle: For every path \((1, -1) \rightsquigarrow (2n - 1, -1)\) that crosses the horizontal axis, there is another path \((1, 1) \rightsquigarrow (2n - 1, -1)\), and vice versa
• Reflection principle: For every path \((1, -1) \leadsto (2n - 1, -1)\) that crosses the horizontal axis, there is another path \((1, 1) \leadsto (2n - 1, -1)\), and vice versa

• Therefore

\[
P(S_1 = -1, S_t = 0 \text{ for some } 2 \leq t \leq 2n - 2, S_{2n-1} = -1, S_{2n} = 0) = P(S_1 = +1, S_{2n-1} = -1, S_{2n} = 0)
= \left(\frac{2n - 2}{n}\right) 2^{-2n}
\]
Put everything together

\[P(\text{return to 0 at } 2n) = \binom{2n}{n} 2^{-2n} \]

\[P(\text{return to 0 at } 2n \text{ but not for the first time}) = 4 \times \binom{2n - 2}{n} 2^{-2n} \]

So

\[P(\text{return to 0 at } 2n \text{ for the first time}) \]

\[= \binom{2n}{n} 2^{-2n} - 4 \binom{2n - 2}{n} 2^{-2n} = \left(1 - 4 \frac{n(n - 1)}{2n(2n - 1)} \right) \binom{2n}{n} 2^{-2n} \]

\[= \frac{1}{2n - 1} \binom{2n}{n} 2^{-2n} \]

First few values: \(\frac{1}{2}, \frac{1}{8}, \frac{1}{16}, \frac{5}{128}, \frac{7}{256}, \ldots \)
Probability of eventual return

\[P(\text{eventual return}) = \sum_{n \geq 1} P(\text{first return at time } 2n) = \sum_{n \geq 1} \frac{1}{2n - 1} \binom{2n}{n} 2^{-2n} = 1 \]

using Taylor expansion

\[1 - \sqrt{1 - 4x} = \sum_{n \geq 1} \frac{1}{2n - 1} \binom{2n}{n} x^n \]

with \(x = 1/4 \)
Method 2: Proof by contradiction
Returning finitely often

- Let $P_0 = P(\text{never returns to 0})$
Returning finitely often

- Let \(P_0 = P(\text{never returns to } 0) \)
- Define the event:

\[
E = \{ \text{drunkard returns to } 0 \text{ finitely often} \}
\]
Returning finitely often

- Let $P_0 = P(\text{never returns to 0})$
- Define the event:

$$E = \{\text{drunkard returns to 0 \underline{finitely} often}\}$$

- Here \underline{finitely often} means coming back finitely many times, e.g., 0 time, 1 time, 2 times, \cdots. Thus $P_0 \leq P(E)$.

Returning finitely often

• Let $P_0 = P(\text{never returns to 0})$
• Define the event:

$$E = \{\text{drunkard returns to 0 finitely often}\}$$

• Here finitely often means coming back finitely many times, e.g., 0 time, 1 time, 2 times, ... Thus $P_0 \leq P(E)$.

• **Question:** How to express $P(E)$ using P_0?
According to time of the last return

\[E = \{ \text{returns finitely often} \} = \{ \text{never turns} \} \cup \{ \text{returns at time 2, then never returns} \} \cup \{ \text{returns at time 4, then never returns} \} \cup \cdots \]
According to time of the last return

\[E = \{ \text{returns finitely often} \} = \{ \text{never turns} \} \cup \{ \text{returns at time 2, then never returns} \} \cup \{ \text{returns at time 4, then never returns} \} \cup \cdots \]

The union is over mutually exclusive events. Thus:

\[
P(E) = P(\text{never turns}) + P(\text{returns at time 2, then never returns}) + P(\text{returns at time 4, then never returns}) + \cdots
\]

\[= P_0 + P(S_2 = 0)P_0 + P(S_4 = 0)P_0 + \cdots \]
Therefore

\[P(E) = \left[1 + \sum_{n=1}^{\infty} P(S_{2n} = 0) \right] \cdot P_0, \]
Therefore

\[P(E) = \left[1 + \sum_{n=1}^{\infty} P(S_{2n} = 0) \right] \cdot P_0, \]

\[= +\infty \text{ (next slide)} \]
Therefore

\[
P(E) = \left[1 + \sum_{n=1}^{\infty} P(S_{2n} = 0) \right] \cdot P_0,
\]

Suppose \(P_0 \neq 0 \). Then \(P(E) = +\infty \). Contradiction! Thus it must be

\[P_0 = 0 \]
Stirling Approximation

- **Stirling’s formula:**

\[n! \sim \sqrt{2\pi n} \left(\frac{n}{e} \right)^n \]

where LHS \(\sim \) RHS means \(\frac{\text{LHS}}{\text{RHS}} \to 1 \) as \(n \to \infty \).
Stirling Approximation

• Stirling’s formula:

\[n! \sim \sqrt{2\pi n} \left(\frac{n}{e} \right)^n \]

where LHS \sim RHS means \(\frac{\text{LHS}}{\text{RHS}} \to 1 \) as \(n \to \infty \).

• Hence

\[
P(S_{2n} = 0) = \frac{(2n)!}{(n!)^2} \left(\frac{1}{2} \right)^{2n} \text{Stirling} \quad \frac{\sqrt{2\pi \cdot 2n} \left(\frac{2n}{e} \right)^{2n}}{(\sqrt{2\pi n} \left(\frac{n}{e} \right)^n)^2} \left(\frac{1}{2} \right)^{2n} = \frac{1}{\sqrt{\pi n}}
\]
Stirling Approximation

- **Stirling’s formula:**

\[n! \sim \sqrt{2\pi n} \left(\frac{n}{e} \right)^n \]

where LHS \(\sim \) RHS means \(\frac{\text{LHS}}{\text{RHS}} \rightarrow 1 \) as \(n \rightarrow \infty \).

- Hence

\[
P(S_{2n} = 0) = \frac{(2n)!}{(n!)^2} \left(\frac{1}{2} \right)^{2n} \text{Stirling} \sim \frac{\sqrt{2\pi \cdot 2n} \left(\frac{2n}{e} \right)^{2n}}{(\sqrt{2\pi n} \left(\frac{n}{e} \right)^n)^2} \left(\frac{1}{2} \right)^{2n} = \frac{1}{\sqrt{\pi n}}
\]

- Recall an important fact from calculus:

\[
\sum_{n \geq 1} \frac{1}{n^a} = \begin{cases}
\infty & a \leq 1 \\
\text{finite} & a > 1
\end{cases}
\]
Stirling Approximation

- **Stirling’s formula:**

\[n! \sim \sqrt{2\pi n} \left(\frac{n}{e} \right)^n \]

where LHS \(\sim \) RHS means \(\frac{\text{LHS}}{\text{RHS}} \to 1 \) as \(n \to \infty \).

- Hence

\[P (S_{2n} = 0) = \frac{(2n)!}{(n!)^2} \left(\frac{1}{2} \right)^{2n} \sim \frac{\sqrt{2\pi \cdot 2n \left(\frac{2n}{e} \right)^{2n}}}{(\sqrt{2\pi n \left(\frac{n}{e} \right)^n})^2} \left(\frac{1}{2} \right)^{2n} = \frac{1}{\sqrt{\pi n}} \]

- Recall an important fact from calculus:

\[\sum_{n\geq1} \frac{1}{n^a} = \begin{cases} \infty & a \leq 1 \\ \text{finite} & a > 1 \end{cases} \]

- Hence

\[\sum_{n=1}^{\infty} \frac{1}{\sqrt{\pi n}} = \infty \quad \Longrightarrow \quad \sum_{n=1}^{\infty} P (S_{2n} = 0) = \infty \]
Conclusion: 1-D random walk always comes back back

\[P_0 = P \text{ (the drunkard never returns to 0)} = 0, \]
\[P(E) = P \text{ (the drunkard returns to 0 finitely often)} = 0. \]

i.e.,

\[P \text{ (the drunkard returns to 0 eventually)} = 1, \]
\[P \text{ (the drunkard returns to 0 infinitely often)} = 1. \]
2 and 3-dim random walks
Drunkard’s Walks on the plane

A drunkard walks randomly in an idealized 2-dimensional city. The city is infinite and arranged in an equally-spaced square grid. At every intersection, the drunkard chooses one of the 4 directions: N/S/E/W, with equal probability. Formally, this is a random walk on \mathbb{Z}^2.

![Diagram of a 2D grid with arrows indicating directions: N/S/E/W]
Drunkard’s Walks on the plane

A drunkard walks randomly in an idealized 2-dimensional city. The city is infinite and arranged in an equally-spaced square grid. At every intersection, the drunkard chooses one of the 4 directions: N/S/E/W, with equal probability. Formally, this is a random walk on \mathbb{Z}^2.

Question

What is the probability of eventual return?
Equivalent view
We can consider the walk which moves to NE/NW/SW/SW:
\[(x, y) \rightarrow (x \pm 1, y \pm 1)\]
Equivalent view

We can consider the walk which moves to NE/NW/SW/SW: $(x, y) \rightarrow (x \pm 1, y \pm 1)$
Equivalent view

We can consider the walk which moves to NE/NW/SW/SW:

$$(x, y) \rightarrow (x \pm 1, y \pm 1)$$
2 Dimensional Random Walk

• Two independent sequences of independent random variables:

\[P (X_i = 1) = P (X_i = -1) = \frac{1}{2} \] horizontal steps

\[P (Y_i = 1) = P (Y_i = -1) = \frac{1}{2} \] vertical steps

• Position at time \(n \):

\[S_n = \sum_{i=1}^{n} X_i \] horizontal coordinate

\[T_n = \sum_{i=1}^{n} Y_i \] vertical coordinate
Apply the same reasoning

- Let $P_0 = P(\text{never returns})$.

It boils down to $P_n \geq \frac{39}{48}$.
Apply the same reasoning

- Let $P_0 = P(\text{never returns})$.
- Define the event:

$$E = \{\text{drunkard returns to origin finitely often}\}$$
Apply the same reasoning

- Let \(P_0 = P(\text{never returns}) \).
- Define the event:

\[
E = \{\text{drunkard returns to origin finitely often}\}
\]

- Key identity is the same as in one dimension:

\[
P(E) = \sum_{n=0}^{\infty} P(S_{2n} = 0, T_{2n} = 0) \times P_0
\]

It boils down to \(\sum_{n \geq 0} P(S_{2n} = 0, T_{2n} = 0) \overset{?}{=} \infty \)
Using Stirling’s formula again

\[P(S_{2n} = 0, T_{2n} = 0) = P(S_{2n} = 0) P(T_{2n} = 0) \sim \left(\frac{1}{\sqrt{\pi n}} \right)^2 \]

Important facts:

- \(P(S_{2n} = 0) \sim \frac{1}{\sqrt{\pi n}} \)
- \(\sum_{n=1}^{\infty} \frac{1}{n} = +\infty! \)

If \(P_0 \neq 0 \), then \(P(E) = +\infty \). Contradiction! Thus \(P_0 = 0 \)
Conclusion: 2-D random walk always comes back

\[P_0 = P(\text{the drunkard never returns}) = 0, \]
\[P(E) = P(\text{the drunkard returns finitely often}) = 0. \]

i.e.,

\[P(\text{the drunkard returns eventually}) = 1, \]
\[P(\text{the drunkard returns infinitely often}) = 1. \]
Drunkard’s Walks in space

A drunkard walks randomly in an idealized 3-dimensional city. The city is infinite and arranged in an equally-spaced cubic grid. At every intersection, the drunkard chooses one of the 6 directions: up/down/left/right/back/forth, with equal probability. Formally, this is a random walk on \mathbb{Z}^3.
(Simplified) 3-dimensional Walk

Three independent sequences of independent random variables:

\[
P(X_i = 1) = P(X_i = -1) = \frac{1}{2},
\]

\[
P(Y_i = 1) = P(Y_i = -1) = \frac{1}{2},
\]

\[
P(Z_i = 1) = P(Z_i = -1) = \frac{1}{2}.
\]

Position at time \(n\):

\[
S_n = \sum_{i=1}^{n} X_i, \quad T_n = \sum_{i=1}^{n} Y_i, \quad U_n = \sum_{i=1}^{n} Z_i.
\]

8 directions: \((x, y, z) \rightarrow (x \pm 1, y \pm 1, z \pm 1)\)
Key Difference

- The same reasoning leads to

\[P(E) = \sum_{n=0}^{\infty} P(S_{2n} = 0, T_{2n} = 0, U_{2n} = 0) \cdot P_0, \]

but now this is finite!

since

\[P(S_{2n} = 0, T_{2n} = 0, U_{2n} = 0) = P(S_{2n} = 0) \cdot P(T_{2n} = 0) \cdot P(U_{2n} = 0) \]

\[\sim \left(\frac{1}{\sqrt{\pi n}} \right)^3 \]

and \(\sum_{n=1}^{\infty} \frac{1}{n^{1.5}} \approx 2.6 < \infty \)
Key Difference

- The same reasoning leads to

\[P(E) = \sum_{n=0}^{\infty} P(S_{2n} = 0, T_{2n} = 0, U_{2n} = 0) \cdot P_0, \]

but now this is finite!

since

\[P(S_{2n} = 0, T_{2n} = 0, U_{2n} = 0) = P(S_{2n} = 0) \cdot P(T_{2n} = 0) \cdot P(U_{2n} = 0) \]

\[\sim \left(\frac{1}{\sqrt{\pi n}} \right)^3 \]

and \[\sum_{n=1}^{\infty} \frac{1}{n^{1.5}} \approx 2.6 < \infty \]

- Thus it is not immediately clear whether \(P_0 = 0 \) or not.
In fact: $P_0 > 0$
In fact: $P_0 > 0$

- Suppose, for the sake of contradiction, that $P_0 = 0$.
In fact: $P_0 > 0$

- Suppose, for the sake of contradiction, that $P_0 = 0$.
- Then $P(E) = P(\text{return to } (0,0,0) \text{ finitely often}) = 0$, i.e.,

$$P(\text{return to } (0,0,0) \text{ infinitely often}) = 1$$
In fact: $P_0 > 0$

- Suppose, for the sake of contradiction, that $P_0 = 0$.
- Then $P(E) = P(\text{return to } (0,0,0) \text{ finitely often}) = 0$, i.e.,

$$P(\text{return to } (0,0,0) \text{ infinitely often}) = 1$$

- Let $X = \text{number of returns}$. Then

$$X = \sum_{n \geq 0} 1_{\{S_{2n}=0,T_{2n}=0,U_{2n}=0\}}$$
In fact: $P_0 > 0$

- Suppose, for the sake of contradiction, that $P_0 = 0$.
- Then $P(E) = P(\text{return to } (0,0,0) \text{ finitely often}) = 0$, i.e.,
 \[
P(\text{return to } (0,0,0) \text{ infinitely often}) = 1
 \]
- Let $X = \text{number of returns}$. Then
 \[
 X = \sum_{n \geq 0} 1_{\{S_{2n}=0,T_{2n}=0,U_{2n}=0\}}
 \]
- We know $X = +\infty$ with probability 1, but
 \[
 E(X) = \sum_{n=0}^{\infty} P(S_{2n} = 0, T_{2n} = 0, U_{2n} = 0) < +\infty
 \]
 contradiction!
Conclusion: 3-D random walk might not return

\[P(\text{never return}) > 0^\dagger \]

\[^\dagger P(\text{never return}) \approx 72\% \]
Conclusion: 3-D random walk might not return

\[P(\text{never return}) > 0^\dagger \]

The same holds for

- the original 3-D walk with 6 directions (Grinstead-Snell, Sec 12.1 Ex 14): \(P(\text{never return}) \approx 66\% \)
- walks in higher dimensions

\[^\dagger P(\text{never return}) \approx 72\% \]
Summary

What we have learned: a dichotomy

\[
\sum_{k \geq 0} P(\text{return at time } k) = \infty \iff P(\text{never return}) = 0
\]

\[
\sum_{k \geq 0} P(\text{return at time } k) < \infty \iff P(\text{never return}) > 0
\]

This is applicable to analyzing other walks, e.g., asymmetric ones (HW)
More precisely

- If \(\sum_{k \geq 0} P(\text{return at time } k) = \infty \), then

\[
P(\text{return finitely often}) = 0
\]

\[
P(\text{never return}) = 0
\]

- If \(\sum_{k \geq 0} P(\text{return at time } k) < \infty \), since \(EX < \infty \), \(X \) is finite with probability one, then

\[
P(\text{return finitely often}) = 1
\]

\[
P(\text{never return}) = \frac{1}{\sum_{k \geq 0} P(\text{return at time } k)}
\]