
S&DS 241 Lecture 12
Mean, variance, deviation inequalities

B-H: 4.6, 10.1.3

1/48



Recall from Lecture 5: Expectation

The expectation (aka expected value or mean) of a discrete random

variable X is

E(X) =
∑
x∈X

xpX(x)

where pX(x) = P (X = x) is the PMF.
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Properties of expectation

• X is a nonnegative random variable =⇒ E(X) ≥ 0

• Linearity of expectation: For any constants a, b and any random

variables X and Y (not necessarily independent!)

E(aX + bY ) = aE(X) + bEY
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Interpretation of expectation: Center of gravity

E(X) =
∑
x∈X

xpX(x) = average of values weighted by PMF

1 2 3 4 5 6 1 2 3 4 5 6

• Expected value ̸= typical value!

• How close a random variable is to its expectation depends on many

things, e.g., variance

−10 100
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Variance: definition

Variance of a random variable X:

Var(X) = E((X − E(X))2)

• Other notations: σ2
X , V (X)

• Variance = mean-squared deviation from the expectation

• Significance: measures the uncertainty of a random variable/the

spread of a distribution
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Standard deviation

• Variance is quadratic in nature: for example

Units

X ft

E(X) ft

Var(X) sqft

SD(X) ft

• Standard deviation of X:

SD(X) = σX =
√

Var(X)

which is the root-mean-squared deviation from expectation
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Intuition

• Smaller Var(X) or SD(X) =⇒ PMF of X is more concentrated

around the mean

• Larger Var(X) or SD(X) =⇒ PMF of X is more spread out
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Example

−10

1
2
pX

10

1
2

0

1
2
pY

−1

1
8

1

1
8

−2

1
16

2

1
16

−3

1
16

3

1
16

• Mean: E(X) = EY = 0

• Variance:

Var(X) = E(X2)
LOTUS
=====

1

2
× (−10)2 +

1

2
× 102 = 100

Var(Y ) = E(Y 2)
LOTUS
=====

12 × 2

8
+

22 × 2 + 32 × 2

16
=

7

4

• Standard deviation:

SD(X) = 10, SD(Y ) ≈ 1.32

Indeed, Y is much more concentrated than X
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Alternative formula of variance

Var(X) = E(X2)− E(X)2

Proof.

Call µ = E(X). By linearity of expectation,

Var(X) = E((X − µ)2)

= E(X2 + µ2 − 2µX) = E(X2) + µ2 − 2µ · E(X)

= E(X2)− µ2

• First moment: E(X)

• Second moment: E(X2)

• kth moment: E(Xk)

• Variance = second moment −(first moment)2
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Example: dice

Let X be the outcome of a fair die. Find Var(X).

E(X) =
1

6
(1 + 2 + 3 + 4 + 5 + 6) =

7

2

E(X2) =
1

6
(12 + 22 + 32 + 42 + 52 + 62) =

91

6

Therefore

Var(X) =
91

6
−
(
7

2

)2

=
35

12

SD(X) =

√
35

12
≈ 1.71
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Question

Suppose X takes values in [−10, 10].

• What is the largest possible variance?

100

−10

1/2

10

1/2

0

• What is the smallest possible variance? 0

−10 10

1

Fact: Var(X) = 0 ⇔ X = constant (no randomness)
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Properties of mean, variance and std dev

• Shift does not change variance

Var(X + b) = Var(X)

• Scaling:

Var(aX) = a2Var(X)

• More generally:

E(aX + b) = aE(X) + b

Var(aX + b) = a2Var(X)

SD(aX + b) = |a|SD(X)
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Sum of independent variables

• For any X and Y

E(X + Y ) = E(X) + E(Y )

thanks to linearity of expectation

• For independent X and Y

Var(X + Y ) = Var(X) + Var(Y )

This can fail without independence, e.g., Y = −X.
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Sum of independent variables

For independent X and Y

Var(X + Y ) = Var(X) + Var(Y )

Proof.

Since shifting does not change variance, we can assume, without loss of

generality, that E(X) = E(Y ) = 0.

Then

Var(X + Y )

= E((X + Y )2) E(X + Y ) = 0

= E(X2 + Y 2 + 2XY )

= E(X2) + E(Y 2) + 2E(XY ) linearity of expectation

= E(X2) + E(Y 2) independence so E(XY ) = E(X)E(Y )

= Var(X) + Var(Y )
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Variance of sum of independent random variables

Let X1, . . . , Xn be independent random variables. Then

Var(X1 +X2 + · · ·+Xn) = Var(X1) + · · ·+Var(Xn)
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Variance of sum of iid random variables

Let X1, . . . , Xn be iid random variables. Then

Var(X1 +X2 + · · ·+Xn) = n ·Var(X1)

SD(X1 +X2 + · · ·+Xn) =
√
n · SD(X1)

in contrast

SD(X1 +X1 + · · ·+X1) = n · SD(X1)

Note:
√
n ≪ n for large n. Why does this happen?

Example: random

walk (Xi = ±1)

• X1 +X1 + · · ·+X1: all steps are aligned (either all + or all −).

This leads to SD on the order of n.

• X1 +X2 + · · ·+Xn: some are + and some −. Cancellation leads

to SD on the order of
√
n.
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Statistical application: sample average

Let X1, . . . , Xn be iid random variables with mean µ and variance σ2.

• Sample average:

X =
1

n
(X1 + . . .+Xn)

• Then

E(X) = µ, Var(X) =
σ2

n
≪ σ2 for large n

• More data (larger sample size) =⇒ less uncertainty
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Summary

• Var(X) = SD(X)2 = E((X − E(X))2) ≥ 0

• Var(X) = 0 ⇔ X = constant

• Var(X) = E(X2)− (E(X))2

• Var(aX + b) = a2Var(X)

• Var(X + Y )
independence
========= Var(X) + Var(Y )
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Variance of common distributions



Bernoulli
X ∼ Bern(p). Then

Var(X) = E(X2)− (E(X))2 = p− p2 = p(1− p)

0 1
2

1

1
4

“most random”

“least random”

p

p(1− p)

20/48



Bernoulli
X ∼ Bern(p). Then

Var(X) = E(X2)− (E(X))2 = p− p2 = p(1− p)

0 1
2

1

1
4

“most random”

“least random”

p

p(1− p)

20/48



Binomial

X ∼ Bin(n, p). Then

Var(X) = np(1− p)

Proof.

X = X1 + · · ·+Xn︸ ︷︷ ︸
i.i.d. Bern(p)

=⇒ Var(X) = nVar(X1)

Exercise: Alternatively, find E(X2) using LOTUS rule and binomial

PMF, then apply E(X2)− (E(X))2.
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Poisson

X ∼ Pois(λ). Then

Var(X) = λ

Interpretation: Poisson as limiting Binomial

Bin
(
n,

λ

n

)
n→∞−−−→ Pois(λ)

so we expect:

Var = n
λ

n

(
1− λ

n

)
n→∞−−−→ λ
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Verify using Poisson PMF (B-H Example 4.7.2)

E(X2) =

∞∑
k=0

k2
e−λλk

k!

=
∞∑
k=1

k
e−λλk

(k − 1)!
=

∞∑
k=2

(k − 1)
e−λλk

(k − 1)!
+

∞∑
k=1

e−λλk

(k − 1)!

=
∞∑
k=2

e−λλk

(k − 2)!
+

∞∑
k=1

e−λλk

(k − 1)!

=
∞∑
j=0

e−λλj+2

j!
+

∞∑
j=0

e−λλj+1

j!

=λ2
∞∑
j=0

e−λλj

j!︸ ︷︷ ︸
=1

+λ
∞∑
j=0

e−λλj

j!︸ ︷︷ ︸
=1

= λ2 + λ

and Var(X) = E(X2)− (E(X))2 = λ+ λ2 − λ2 = λ
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Verify using Poisson PMF (B-H Example 4.7.2)
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PMF vs expectation
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PMF vs expectation
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PMF vs expectation
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As λ increases, PMF of Pois(λ) shifts to the right and becomes more

spread out.

27/48



PMF vs expectation

0 5 10 15 20 25 30
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pois(10)

As λ increases, PMF of Pois(λ) shifts to the right and becomes more

spread out.

27/48



Geometric

X ∼ Geom(p). Then

Var(X) =
1− p

p2

Exercise (see B-H Example 4.6.4)
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Deviation inequalities



Motivations

In statistics, we want to answer questions like the following:

1 Toss a fair coin 100 times. Getting at least 75 heads is probably

unlikely. How unlikely is it?

2 Toss a coin 100 times. Turns out there are 75 heads, which

indicates the coin is likely biased. How biased is it and how

confident are we about our estimate?

Useful tools: deviation inequalities (tail bounds)
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Preparation

If f ≤ g (i.e., f(x) ≤ g(x) for any x,)

then for any random variable X

E(f(X)) ≤ E(g(X))
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Markov’s inequality
Let X be a non-negative random variable and a > 0. Then

P (X ≥ a) ≤ E(X)

a

Proof.

f ≤ g =⇒ E(f(X)) ≤ E(g(X)).

0 a

1

g(x) = x/a

f(x) = 1{x≥a}

x
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Markov’s inequality

Let X be a non-negative random variable and a > 0. Then

P (X ≥ a) ≤ E(X)

a

• Intuition: if the average salary is $100, then the fraction of people

earning $300+ cannot exceed 1/3.

• Lesson: A non-negative random variable cannot far exceed its

expectation with high probability.
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Application: coin

Question

Toss a fair coin 100 times. How unlikely is it to get at least 75 heads?

Let X ∼ Bin(100, 1/2). Then E(X) = 50

Markov’s inequality =⇒ P (X ≥ 75) ≤ E(X)

75
=

2

3

• Useful estimate, but probably too conservative...

• Can we do better (using more information, e.g., variance)?
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Chebyshev’s inequality
Let X be an arbitrary random variable and d > 0. Then

P (|X − E(X)| ≥ d) ≤ Var(X)

d2

Proof.

Let µ = E(X). LHS = P ((X − µ)2 ≥ d2). Apply Markov’s inequality to

the nonnegative random variable (X − µ)2. Or, see picture below:

µ− d µ µ+ d

1

g(x) = (x− µ)2/d2

f(x) = 1{|x−µ|≥d}
x
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Application: coin

Question

Toss a fair coin 100 times. How unlikely is it to get at least 75 heads?

Let X ∼ Bin(100, 1/2). Then E(X) = 50 and Var(X) = 25

Chebyshev =⇒ P (X ≥ 75) ≤ P (|X − 50| ≥ 25) ≤ 25

252
= 4%

• Much better than Markov (we used both mean and variance)

• Actually value: 2.8× 10−7

• Central limit theorem (Lec 16) gives accurate estimate: 2.9× 10−7
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Standard deviation

Equivalent formulation of Chebyshev:

P (|X − E(X)| ≥ C · σX) ≤ 1

C2
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Application: Confidence Interval (CI)

Question

Toss a coin 100 times. Turns out there are 75 heads. How biased is the

coin and how confident are we about our estimate?

• Let X ∼ Bin(n, p), where n = 100 and the bias p is unknown.
• Observe X = 75.
• Empirical frequency of heads is

p̂ =
X

n
= 0.75,

a reasonable estimate of p.
• More refined estimate: confidence interval. If

P (p ∈ [p̂− ϵ, p̂+ ϵ]) ≥ c, for any p

we say [p̂− ϵ, p̂+ ϵ] is a confidence interval with confidence level c,

e.g. c = 95%.

38/48



Application: Confidence Interval (CI)

Question

Toss a coin 100 times. Turns out there are 75 heads. How biased is the

coin and how confident are we about our estimate?

• Let X ∼ Bin(n, p), where n = 100 and the bias p is unknown.
• Observe X = 75.

• Empirical frequency of heads is

p̂ =
X

n
= 0.75,

a reasonable estimate of p.
• More refined estimate: confidence interval. If

P (p ∈ [p̂− ϵ, p̂+ ϵ]) ≥ c, for any p

we say [p̂− ϵ, p̂+ ϵ] is a confidence interval with confidence level c,

e.g. c = 95%.

38/48



Application: Confidence Interval (CI)

Question

Toss a coin 100 times. Turns out there are 75 heads. How biased is the

coin and how confident are we about our estimate?

• Let X ∼ Bin(n, p), where n = 100 and the bias p is unknown.
• Observe X = 75.
• Empirical frequency of heads is

p̂ =
X

n
= 0.75,

a reasonable estimate of p.

• More refined estimate: confidence interval. If

P (p ∈ [p̂− ϵ, p̂+ ϵ]) ≥ c, for any p

we say [p̂− ϵ, p̂+ ϵ] is a confidence interval with confidence level c,

e.g. c = 95%.

38/48



Application: Confidence Interval (CI)

Question

Toss a coin 100 times. Turns out there are 75 heads. How biased is the

coin and how confident are we about our estimate?

• Let X ∼ Bin(n, p), where n = 100 and the bias p is unknown.
• Observe X = 75.
• Empirical frequency of heads is

p̂ =
X

n
= 0.75,

a reasonable estimate of p.
• More refined estimate: confidence interval. If

P (p ∈ [p̂− ϵ, p̂+ ϵ]) ≥ c, for any p

we say [p̂− ϵ, p̂+ ϵ] is a confidence interval with confidence level c,

e.g. c = 95%.
38/48



Examples

• Conflicting goals: higher confidence and narrower interval.
▶ [0, 1] is a CI of confidence level 100%, but not very useful

▶ Need a tool to assess the chance of being off: let’s use Chebyshev

inequality

• Var(p̂) = Var(X/n) = 1
n2Var(X) = p(1−p)

n

• Thus

P (p ̸∈ [p̂− ϵ, p̂+ ϵ]) = P (|p̂− p| > ϵ) ≤ Var(p̂)

ϵ2
=

p(1− p)

nϵ2
≤ 1

4nϵ2

• Since n = 100, if we take ϵ = 0.1, then 1
4nϵ2

= 0.25.

• Upon observing X = 75, [0.75± 0.1] is a CI of level 75%
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What to do if we desire higher confidence?

• Want confidence level 99%. Then

P (p ̸∈ [p̂− ϵ, p̂+ ϵ]) ≤ 1

4nϵ2
≤ 1%

n=100
====⇒ ϵ ≥ 0.5

therefore the CI is [p̂± 0.5] — too wide to be very useful.

• How to get a CI [p̂± 0.1] of level 99%? Increase the sample size!

1

4nϵ2
≤ 1%

ϵ=0.1
====⇒ n ≥ 2500

(Better tools than Chebyshev =⇒ n ≥ 169)

• Lesson: More data leads to more accurate estimate.

Here Var(p̂) ∝ 1
n .
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Same story: Polling
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Same story: Polling

• Poll n people out of a population uniformly at random with

replacements. Let X be the number of surveyed people who would

vote for Biden.

• Then X ∼ Bin(n, p), where p = fraction of people in the entire

population voting for Biden.

• Suppose we want [p̂± 0.01] to have confidence 95%

1

4nϵ2
≤ 5%

ϵ=0.01
====⇒ n ≥ 50000

Surprise

The number of people needed to poll to reach a desired accuracy and

confidence does NOT depend on the population size!!!

So what’s the catch?
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True story

Polling before phone and internet...

By mailing out millions of postcards to readers and simply counting the

returns, The Literary Digest correctly predicted four presidential elections

in a roll (1920,1924,1928,1932)
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1936: Landon vs Roosevelt
• Literary Digest predicted Landon would win by 57% based on a

sample of size 2.3 million

• George Gallup’s company conducted a survey of much smaller size

50000 and predicted FDR would win by 56%
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As it turns out...

• FDR won by a landslide (61%)

• Literary Digest had their final issue in 1938

• Gallup went on to make a career in polling

• “The Poll That Changed Polling”

So why was Literary Digest so wrong? Selection bias!
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Why was Literary Digest so wrong?

• Unbeknownst to the magazine, their subscribers tend to be more

affluent Americans who favor Republicans.

• Gallup noticed this bias, and polled a much smaller but

demographically representative of the population

• To drive his point home, he even predicted the result of the Literary

Digest poll to within about 1%

• There is lots of science behind opinion polling and survey sampling
▶ Selection bias
▶ Non-response bias
▶ Predict turnout
▶ ...
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Contemporary story of selection bias

Echo chamber effect in social media
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A bit preview

How to obtain better estimate than Chebyshev:

continuous approximation!
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