S&DS 241 Lecture 12

Mean, variance, deviation inequalities

B-H: 4.6, 10.1.3
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Recall from Lecture 5: Expectation

The expectation (aka expected value or mean) of a discrete random
variable X is

E(X) = Z xpx ()

reX

where px(z) = P(X = x) is the PMF.
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Properties of expectation

¢ X is a nonnegative random variable — FE(X) >0
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Properties of expectation

¢ X is a nonnegative random variable — FE(X) >0

® Linearity of expectation: For any constants a, b and any random
variables X and Y (not necessarily independent!)

E(aX +bY) = aE(X) + bEY
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Interpretation of expectation: Center of gravity

EX)= Z xpx (x) = average of values weighted by PMF
zEX

SETTTRIAL
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Interpretation of expectation: Center of gravity
EX)= Z xpx (x) = average of values weighted by PMF
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® Expected value # typical value!

® How close a random variable is to its expectation depends on many
things, e.g., variance
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Interpretation of expectation: Center of gravity
EX)= Z xpx (x) = average of values weighted by PMF

?EITT
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® Expected value # typical value!

® How close a random variable is to its expectation depends on many
things, e.g., variance
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Variance: definition

Variance of a random variable X:

Var(X) = E((X — E(X))?)

® Other notations: 0%,V (X)
® Variance = mean-squared deviation from the expectation

¢ Significance: measures the uncertainty of a random variable/the
spread of a distribution
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Standard deviation

® Variance is quadratic in nature: for example
‘ Units
X ft

E(X) ft

Var(X) | sqft
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Standard deviation

® Variance is quadratic in nature: for example
‘ Units
X ft

E(X) ft

Var(X) | sqft

e Standard deviation of X:

SD(X) = ox = v/ Var(X)

which is the root-mean-squared deviation from expectation
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Standard deviation

® Variance is quadratic in nature: for example

Units

X ft
E(X) ft
Var(X) | sqft
SD(X) ft

e Standard deviation of X:

SD(X) = ox = v/ Var(X)

which is the root-mean-squared deviation from expectation
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Intuition

® Smaller Var(X) or SD(X) = PMF of X is more concentrated
around the mean

e Larger Var(X) or SD(X) = PMF of X is more spread out
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Example
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® Mean: E(X)
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Example

1 1

2 2
Px Py
I 1 I 1
1 1 8 8

16 16

00T |7
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® Mean: E(X)=FEY =

SF———Oowr

7

® \ariance:
1 1
Var(X) = B(X?) =& 5 % (=10)2 + 5 % 102 =100
12x2 22x2+43%2x2
V Y _ E Y2 LOTUS _
ar(Y) = E(Y”7) 5 16

4
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Example

1 1
2 2
Px Py
I 1 I 1
1 1 8 8
16 16
00T |7
-1 01

0 —3-2-1

m<3;p
w [0 5~
54010%

® Mean: E(X)=EY =0

® \ariance:
1 1
Var(X) = B(X?) =& 5 % (=10)2 + 5 % 102 =100
12x2 22x2+32x2
Var(Y) = BE(Y?) == ; 42 1+63 kg Z

e Standard deviation:

SD(X) =10, SD(Y) =~ 1.32

Indeed, Y is much more concentrated than X
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Alternative formula of variance

Var(X) = B(X?) — B(X)?

Proof.
Call u = E(X). By linearity of expectation,
Var(X) = E(X — u)?)
= B(X%+ % —2uX) = E(X?) + 42 — 2u- E(X)
= B(X?) — u? O
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Alternative formula of variance

Var(X) = B(X?) — B(X)?

Proof.
Call u = E(X). By linearity of expectation,
Var(X) = E(X — u)?)
= B(X%+ % —2uX) = E(X?) + 42 — 2u- E(X)
= B(X?) — u? O

® First moment: F(X)
® Second moment: E(X?)
e kth moment: E(X%)
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Alternative formula of variance

Var(X) = B(X?) — B(X)?

Proof.
Call u = E(X). By linearity of expectation,
Var(X) = E(X — u)?)
= B(X%+ % —2uX) = E(X?) + 42 — 2u- E(X)
= B(X?) — u? O

® First moment: F(X)
Second moment: E(X?)
kth moment: E(X%)

® Variance = second moment — (first moment)?
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Example: dice

Let X be the outcome of a fair die. Find Var(X).

91

7

E(X) = 6(1+2+3+4+5+6) 3
6 _

)= %

1
B(X?) = (1 +2 437+ 4% 4+ 5% +

Therefore

91 7\? 35

35
SD(X) =/ 15 ~ 171
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Question

Suppose X takes values in [—10,10].

® What is the largest possible variance?
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Question

Suppose X takes values in [—10,10].
® What is the largest possible variance? 100

1/2 1/2
-10 0 10
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Question

Suppose X takes values in [—10,10].
® What is the largest possible variance? 100

1/2 1/2
-10 0 10
® What is the smallest possible variance? 0
1
-10 10
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Question

Suppose X takes values in [—10,10].
® What is the largest possible variance? 100

1/2 1/2
-10 0 10

® What is the smallest possible variance? 0
1

—10 10

Fact: Var(X) =0 < X = constant (no randomness)
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Properties of mean, variance and std dev

® Shift does not change variance
Var(X + b) = Var(X)

® Scaling:
Var(aX) = a?Var(X)

® More generally:

E(aX +b)=aE(X)+b
Var(aX +b) = a*Var(X)
SD(aX +b) = |a|SD(X)
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Sum of independent variables

® Forany X and Y

E(X+Y)=E(X)+ E(Y)

thanks to linearity of expectation
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Sum of independent variables

® Forany X and Y
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Var(X +Y) = Var(X) + Var(Y)
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This can fail without independence,
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Sum of independent variables

® Forany X and Y
EX+Y)=EX)+E®Y)

thanks to linearity of expectation

® For independent X and Y
Var(X +Y) = Var(X) + Var(Y)

This can fail without independence, e.g., Y = —X.
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Sum of independent variables

For independent X and Y

Var(X +Y) = Var(X) + Var(Y)

Proof.
Since shifting does not change variance, we can assume, without loss of
generality, that E(X) = E(Y) =0.
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Sum of independent variables

For independent X and Y
Var(X +Y) = Var(X) + Var(Y)
Proof.

Since shifting does not change variance, we can assume, without loss of
generality, that E(X) = E(Y) = 0. Then

Var(X +Y)
= E(X+Y)? EX+Y)=0
= E(X2 +Y?+2XY)
E(X%) + E(Y?) +2E(XY) linearity of expectation
= E(XZ) + E(Y?) independence so E(XY) = E(X)E(Y)

= Var(X) + Var(Y) O
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Variance of sum of independent random variables

Let X1,..., X, be independent random variables. Then

Var(X; + Xo +---+ X,,) = Var(Xy) 4+ - - - + Var(X,)
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Variance of sum of iid random variables

Let X1,...,X,, beiid random variables. Then

Var(X; + Xo+ -+ X,,) = n- Var(X;)
SD(X1+ Xo+ -+ X,,) = v/n-SD(X))

in contrast
SD(X;+ X1+ + ;Xfl) =n-: ESI)(‘)51>

Note: \/n < n for large n. Why does this happen?
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Variance of sum of iid random variables
Let X1,...,X,, beiid random variables. Then

Var(X; + Xo+ -+ X,,) = n- Var(X;)
SD(X1+ Xo+ -+ X,,) = v/n-SD(X))

in contrast
SD(X;+ X1+ + ;Xfl) =n-: E;I)(‘)fl)
Note: /n < n for large n. Why does this happen? Example: random

walk (Xl = :|:1)

® X;+ X1+ -+ X1 all steps are aligned (either all + or all —).
This leads to SD on the order of n.

e X;+ Xo+ -+ X,: some are + and some —. Cancellation leads
to SD on the order of \/n.
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Statistical application: sample average

Let X1,...,X, beiid random variables with mean p and variance o2

® Sample average:
- 1

® Then )

EX)=p, Var(X)=2 <o forlargen
n

® More data (larger sample size) = less uncertainty
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Summary

* Var(X) = SD(X)? = E((X — E(X))?) >0
® Var(X) =0« X = constant

(
(
* Var(X) = E(X?) - (E(X))
(
(

® Var(aX +b) = a?Var(X)

independence

® Var(X +7Y) Var(X) + Var(Y)
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Variance of common distributions



Bernoulli
X ~ Bern(p). Then

Var(X) = BE(X?) — (E(X))2=p—p*=p(1 —p)
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Bernoulli
X ~ Bern(p). Then

Var(X) = BE(X?) — (E(X))2=p—p*=p(1 —p)

p(l—p) “most random”

L
1

—_

least random 20/48



Binomial

X ~ Bin(n,p). Then
Var(X) = np(1 - p)

Proof.

X=X1+--+X, = Var(X) =nVar(X;)
—_—
i.i.d. Bern(p)
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Binomial

X ~ Bin(n,p). Then
Var(X) = np(1 - p)
Proof.

X=X1+--+X, = Var(X) =nVar(X;)
—_—

i.i.d. Bern(p)

Exercise: Alternatively, find E(X?) using LOTUS rule and binomial
PMF, then apply E(X?) — (E(X))2.
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Poisson

X ~ Pois(A). Then
Var(X) = A
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Poisson

X ~ Pois(A). Then
Var(X) = A

Interpretation: Poisson as limiting Binomial
Bm(n, —) —— Pois(\)
n

SO we expect:
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Verify using Poisson PMF (B-H Example 4.7.2)
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Verify using Poisson PMF (B-H Example 4.7.2)

) > ZG—AAk
E(X*) =)k o
k=1

7AAk

Ak
+ZZA
=1

23/48



Verify using Poisson PMF (B-H Example 4.7.2)

) > ZG—AAk
E(X*) =)k o
k=1

7AAk

Ak
+ZZA
=1

23/48



Verify using Poisson PMF (B-H Example 4.7.2)

) 0 ) —A)\k
E(X*) =)k o
k=1 ’
0 -\ k& 0 f)\ k 0 -\ k
e A A e A
_;k(k‘—l)'_;(k +; kE—1)!
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Verify using Poisson PMF (B-H Example 4.7.2)

B =S 2N
k=1
0 “Mk 0 e~ A\F 0 -k
e "\ )\ e )\
DRI USRS 3hc
k= k=2 k:l
e > e_’\)\k
= (k—2)'+z(k—1)'
k=2 k=1
B o0 e~ A)\It+2 i~ e~ M\
o il 1l
7=0 J: 7=0 J:
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Verify using Poisson PMF (B-H Example 4.7.2)
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Verify using Poisson PMF (B-H Example 4.7.2)
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Verify using Poisson PMF (B-H Example 4.7.2)

) & 26—)\>\k
E(X?) = ; K
ef)\)\k 0 7)\)\]6 o0 ef)\)\k
_Z (k_l)!zz(k +Z
-1 k=2 k::l
e > e_’\)\k
=D it
k=2 k=1
o0 e~ A)\It+2 i~ e~ M\
- ] ]
= I =0 I
SO A Y ,,)‘ — 24
j=0 =
=1 =1

and Var(X) = B(X?) — (B(X))? = A+ A2 = A2 =)
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PMF vs expectation
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PMF vs expectation
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PMF vs expectation
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PMF vs expectation
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PMF vs expectation

As X increases, PMF of Pois(\) shifts to the right and becomes more

spread out.
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Geometric

X ~ Geom(p). Then

)= 152

Var(X e

Exercise (see B-H Example 4.6.4)
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Motivations

In statistics, we want to answer questions like the following:

@ Toss a fair coin 100 times. Getting at least 75 heads is probably
unlikely. How unlikely is it?
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® Toss a coin 100 times. Turns out there are 75 heads, which
indicates the coin is likely biased. How biased is it and how
confident are we about our estimate?
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Motivations

In statistics, we want to answer questions like the following:

@ Toss a fair coin 100 times. Getting at least 75 heads is probably
unlikely. How unlikely is it?

® Toss a coin 100 times. Turns out there are 75 heads, which
indicates the coin is likely biased. How biased is it and how
confident are we about our estimate?

Useful tools: deviation inequalities (tail bounds)
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Preparation

If f <g(ie., f(z) <g(z) for any z,)

\/\

then for any random variable X

E(f(X)) < E(g9(X))
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Markov's inequality

Let X be a non-negative random variable and a > 0. Then

P(X>a)< E(aX)
Proof.
f <9 = E(f(X)) < E(9(X)). -
g(z) =z/a

f('l) - 1{:172&}
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Markov's inequality

Let X be a non-negative random variable and a > 0. Then

E(X)

a

P(X >a)<

e Intuition: if the average salary is $100, then the fraction of people
earning $300+ cannot exceed 1/3.

® Lesson: A non-negative random variable cannot far exceed its

expectation with high probability.
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Application: coin

Question
Toss a fair coin 100 times. How unlikely is it to get at least 75 heads?
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Application: coin

Question
Toss a fair coin 100 times. How unlikely is it to get at least 75 heads?

Let X ~ Bin(100,1/2). Then E(X) =50

F(X 2
Markov's inequality = P(X > 75) < 55) — 3
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Application: coin

Question
Toss a fair coin 100 times. How unlikely is it to get at least 75 heads?

Let X ~ Bin(100,1/2). Then E(X) =50

Markov's inequality =— P(X >75) < —— = -

B(X) 2
75 3

® Useful estimate, but probably too conservative...

® Can we do better (using more information, e.g., variance)?
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Chebyshev's inequality
Let X be an arbitrary random variable and d > 0. Then

Var(X)

P(X - B(X)| 2 d) < 0
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Chebyshev's inequality
Let X be an arbitrary random variable and d > 0. Then

Var(X)

P(X - B(X)| 2 d) < 0

Proof.

Let u = E(X). LHS = P((X — p)? > d?). Apply Markov's inequality to
the nonnegative random variable (X — p)2. Or, see picture below: Ol
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Chebyshev's inequality
Let X be an arbitrary random variable and d > 0. Then

Var(X
P(X ~ B(X)| 2 d) < 200
Proof.
Let u = E(X). LHS = P((X — p)? > d?). Apply Markov's inequality to
the nonnegative random variable (X — p)2. Or, see picture below: Ol

g(z) = (x — p)?/d®

1 f(@) = Yjoepizay
X

w—dH pu+d
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Application: coin

Question
Toss a fair coin 100 times. How unlikely is it to get at least 75 heads?
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Application: coin

Question
Toss a fair coin 100 times. How unlikely is it to get at least 75 heads?

Let X ~ Bin(100,1/2). Then E(X) = 50 and Var(X) = 25

25
Chebyshev — P(X > 75) < P(|X — 50| > 25) < 252 = 4%
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Application: coin

Question
Toss a fair coin 100 times. How unlikely is it to get at least 75 heads?

Let X ~ Bin(100,1/2). Then E(X) = 50 and Var(X) = 25

25
Chebyshev — P(X > 75) < P(|X — 50| > 25) < 252 = 4%

® Much better than Markov (we used both mean and variance)

e Actually value: 2.8 x 1077
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Application: coin

Question
Toss a fair coin 100 times. How unlikely is it to get at least 75 heads?

Let X ~ Bin(100,1/2). Then E(X) = 50 and Var(X) = 25

2
Chebyshev — P(X > 75) < P(|X — 50| > 25) < 2—552 = 4%

® Much better than Markov (we used both mean and variance)
e Actually value: 2.8 x 1077

® Central limit theorem (Lec 16) gives accurate estimate: 2.9 x 1077

36/48



Standard deviation

Equivalent formulation of Chebyshev:

1
P({X —EX)|>C-0x) < tol}
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Application: Confidence Interval (Cl)

Question
Toss a coin 100 times. Turns out there are 75 heads. How biased is the
coin and how confident are we about our estimate?
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Application: Confidence Interval (Cl)

Question
Toss a coin 100 times. Turns out there are 75 heads. How biased is the
coin and how confident are we about our estimate?

® Let X ~ Bin(n,p), where n = 100 and the bias p is unknown.
® QObserve X = 75.
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Application: Confidence Interval (Cl)

Question
Toss a coin 100 times. Turns out there are 75 heads. How biased is the

coin and how confident are we about our estimate?

® Let X ~ Bin(n,p), where n = 100 and the bias p is unknown.
® QObserve X = 75.

® Empirical frequency of heads is

X
p===0.75,
n

a reasonable estimate of p.
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Application: Confidence Interval (Cl)

Question
Toss a coin 100 times. Turns out there are 75 heads. How biased is the

coin and how confident are we about our estimate?

® Let X ~ Bin(n,p), where n = 100 and the bias p is unknown.

® QObserve X = 75.
® Empirical frequency of heads is

X
p===0.75,
n

a reasonable estimate of p.
® More refined estimate: confidence interval. If

Plpep—e€p+e])>c, foranyp

we say [p — €,p + €] is a confidence interval with confidence level c,

e.g. c = 95%. "



Examples

e Conflicting goals: higher confidence and narrower interval.
» [0,1] is a Cl of confidence level 100%, but not very useful
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Examples

e Conflicting goals: higher confidence and narrower interval.
» [0,1] is a Cl of confidence level 100%, but not very useful
» Need a tool to assess the chance of being off: let's use Chebyshev
inequality
* Var(p) = Var(X/n) = L Var(X) = 202
® Thus

N . Var(p) _ p(1 —p) 1
Plpgp—ep+e)=P(p—pl>e) < 2 el < Ane2
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Examples

Conflicting goals: higher confidence and narrower interval.
» [0,1] is a Cl of confidence level 100%, but not very useful
» Need a tool to assess the chance of being off: let's use Chebyshev
inequality
Var(p) = Var(X/n) = L Var(X) = 20-2)
® Thus

N . Var(p) _ p(1 —p) 1
Plpgp—ep+e)=P(p—pl>e) < 2 el < Ane2

Since n = 100, if we take € = 0.1, then ;1 = 0.25.
Upon observing X = 75, [0.75 £ 0.1] is a Cl of level 75%
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What to do if we desire higher confidence?

® Want confidence level 99%. Then

1 _
Ppoélp—cptd) < 5 <1%=2[c>05

therefore the Cl is [p £ 0.5] — too wide to be very useful.
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What to do if we desire higher confidence?

® Want confidence level 99%. Then

1 _
Ppoélp—cptd) < 5 <1%=2[c>05

therefore the Cl is [p £ 0.5] — too wide to be very useful.
® How to get a Cl [p £ 0.1] of level 99%7 Increase the sample size!

1 e=0.1

(Better tools than Chebyshev = n > 169)

® | esson: More data leads to more accurate estimate.
. 1
Here Var(p) o .

40/48



Same story: Polling
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Same story: Polling

® Poll n people out of a population uniformly at random with
replacements. Let X be the number of surveyed people who would

vote for Biden.

® Then X ~ Bin(n,p), where p = fraction of people in the entire
population voting for Biden.

® Suppose we want [p = 0.01] to have confidence 95%

1 €=0.01
W§5%:> n > 50000
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® Poll n people out of a population uniformly at random with
replacements. Let X be the number of surveyed people who would

vote for Biden.

® Then X ~ Bin(n,p), where p = fraction of people in the entire
population voting for Biden.

® Suppose we want [p = 0.01] to have confidence 95%
1 €=0.01
WSB%: n > 50000

Surprise
The number of people needed to poll to reach a desired accuracy and
confidence does NOT depend on the population size!!!

So what's the catch?
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True story

Polling before phone and internet...

By mailing out millions of postcards to readers and simply counting the
returns, The Literary Digest correctly predicted four presidential elections
in a roll (1920,1924,1928,1932)
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1936: Landon vs Roosevelt

e Literary Digest predicted Landon would win by 57% based on a
sample of size 2.3 million

The Literary Digest

NEW YORK 0cTOBER 21, 1936

Topt’ﬂ oﬁ the day

LANDON, 1,293,669; ROOSEVELT, 972897
Final Returns in The Digest's Poll of Ten Million Voters
e
o
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1936: Landon vs Roosevelt

e Literary Digest predicted Landon would win by 57% based on a
sample of size 2.3 million

The Literary Digest

NEW YORK 0cTOBER 21, 1936

%Pt'a aj the day
LANDON, 1,293669; ROOSEVELT, 9723897 Je the people of the Nation
Final Returns in The Digest's Poll of Ten Million Voters

W, e,
Pl of ten m
Ehroughout the

® George Gallup's company conducted a survey of much smaller size
50000 and predicted FDR would win by 56%
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As it turns out...

® FDR won by a landslide (61%)
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As it turns out...

FDR won by a landslide (61%)
Literary Digest had their final issue in 1938

Gallup went on to make a career in polling
“The Poll That Changed Polling”

So why was Literary Digest so wrong? Selection bias!
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Why was Literary Digest so wrong?

® Unbeknownst to the magazine, their subscribers tend to be more
affluent Americans who favor Republicans.

® Gallup noticed this bias, and polled a much smaller but
demographically representative of the population
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Why was Literary Digest so wrong?

® Unbeknownst to the magazine, their subscribers tend to be more
affluent Americans who favor Republicans.

® Gallup noticed this bias, and polled a much smaller but
demographically representative of the population

® To drive his point home, he even predicted the result of the Literary

Digest poll to within about 1%

® There is lots of science behind opinion polling and survey sampling

» Selection bias

» Non-response bias
» Predict turnout
»

46/48



Contemporary story of selection bias

< Tweet

‘a Bloomberg QuickTake &
T ' @QuickTake

The first #PresidentialDebate has
come toanend.

Who do you believe had the best
responses? #Debates2020 &

Biden © 68%
Trump 32%

2,184 votes - 23 hours 50 minutes left
11:07 PM - 9/29/20 - Twitter Web App

23 Retweets 1 Quote Tweet 30 Likes
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< Tweet

Q Bloomberg QuickTake &
T ' @QuickTake

The first #PresidentialDebate has
come toanend.

Who do you believe had the best
responses? #Debates2020 &

Biden © 68%

Trump 32%

2,184 votes - 23 hours 50 minutes left
11:07 PM - 9/29/20 - Twitter Web App

23 Retweets 1 Quote Tweet 30 Likes

Echo chamber effect in social media

Contemporary story of selection bias

< Tweet

F@*’ Breaking911
L-‘ l @Breaking911

WHO WON THE FIRST
PRESIDENTIAL DEBATE?

President Donald Trump 79%

Former VP Joe Biden @ 21%

76,192 votes - 6 days 23 hours left
10:42 PM - 9/29/20 - Twitter Web App

3,579 Retweets 236 Quote Tweets 2,861 Likes
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A bit preview
How to obtain better estimate than Chebyshev:
0.08j
0.06}
0.04}

0.02+
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A bit preview
How to obtain better estimate than Chebyshev:
continuous approximation!
0.08+
0.06;
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0.02+
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