S&DS 241 Lecture 14

Uniform distribution, exponential distribution, random number generation

B-H 5.25.355
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Discrete uniform distribution

“Uniform” means “equally likely".
® Fair die: PMF is flat
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“Uniform” means “equally likely".
® Fair die: PMF is flat
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Uniform distribution

A continuous random variable X is said to be uniformly distributed in the
interval (a,b), denoted by X ~ Unif(a, b), if it has the following PDF:

fx(z)

T
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Uniform distribution

A continuous random variable X is said to be uniformly distributed in the
interval (a,b), denoted by X ~ Unif(a, b), if it has the following PDF:
fx(x)

0 else

L a X
fX(x):{b_a <z<b

e Continuous analog of “equally likely”

e Support of X: [a,b]
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Uniform distribution

A continuous random variable X is said to be uniformly distributed in the
interval (a,b), denoted by X ~ Unif(a, b), if it has the following PDF:

Ix (@)
1
b—a
1
a<x<b
fx(z)=14"
0 else
x
a b
e Continuous analog of “equally likely”
e Support of X: [a,b]
e CDF:
Fx(x)
1
0 rz<a
Fy(z)={%2 a<z<b
a b
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Example from last lecture

® Angle of a randomly spinned wheel

Then X ~ Unif(0, 27)
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Unif(0, 1)

 PDF

e CDF:

0<zx<l1

else

<0
O<zr<l1
z>1

fx (x)
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Mean and variance

Let X ~ Unif(a,b). Then

b Ix (@)
E(X)= a;r = center of interval

o
| |
)
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Mean and variance

Let X ~ Unif(a,b). Then

b Ix (@)
EX)= b center of interval o
(b—a)?
Var(X) = D
b—a ) T
SD(X) = ——= « length of interval a b
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Mean and variance

Let X ~ Unif(a,b). Then

b fx ()
EX)= a;r = center of interval o
(b—a)®
Var(X) = B
SD(X) = b=a  length of interval a b ’
2V/3 &
Proof.

b b?—a? b
* B(X) = gl [ ade = i Eof = ot

a b a
e Var(X) = E[(X — 42 = ;L ["(z — 42)%dz =

(b—a)/2 _ _
Lf(afl?)/Q yPdy = ﬁ%(T =12

b—a
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Example

Let X ~ Unif(0,2). For t € (0,1), find

P(X <t|X<1)
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Example

Let X ~ Unif(0,2). For t € (0,1), find

P(X <t|X<1)

P(X<t Fx(t t/2
.P(X§t|X§1):%:%:%ﬂ:t

® Interpretation: You go to lunch with your friend, say Tom, who will
arrive at some time uniformly distributed between noon and 2pm.
Suppose he calls you and says he will arrive by 1pm. Then his arrival
time is uniform between noon and 1pm.

7/29



Example

Let X ~ Unif(0,2). For t € (0,1), find

P(X <t|X<1)

P(X<t Fx(t t/2
.P(X§t|X§1):%:%:%ﬂ:t

® Interpretation: You go to lunch with your friend, say Tom, who will
arrive at some time uniformly distributed between noon and 2pm.
Suppose he calls you and says he will arrive by 1pm. Then his arrival
time is uniform between noon and 1pm.

e Mathematically: conditioned on the event {X < 1}, X is uniformly
distributed on (0, 1).

7/29



Exponential distribution



Exponential distribution

A continuous random variable X is said to be exponentially distributed
with parameter A > 0, denoted by X ~ Expo()), if it has the following
PDF:

Ix (@)
A

—A\x
Frlz) = {/\e z>0

0 else
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Usefulness

Exponential distribution is often used to model time:
® The time until a radioactive particle decays
® |Interarrival time of calls to a call center

® Time till the next accident, etc...
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Qualitative effect of the parameter

Ix ()
A =3
A=1
A=1/2 |
0 x

Observation
® A1 = PDF concentrated near zero and decays faster

® )\ | = PDF more spread out and decays slower
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CDF

Fx(z)

1— 6—)\90

x>0
<0
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CDF

e From PDF to CDF:

Fx(z) = / fx(t)dt = /0 e Mdt = —e N : =1—e

® Tail probability:
P(X >z)=1-Fx(z) =e

which becomes smaller if )\ increases
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Mean and Variance
Let X ~ Expo(\). Then

>&‘,_.>4M—‘
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Mean and Variance
Let X ~ Expo(\). Then

1
EX)= -
(X) =5
1
Var(X) 2
Recall integration by parts
2 f@)g (z)dz = f(x — 2

EX) = eheNd = —ge | + e Mdy = =
0 0 0 A

—_— —
0 /A
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Mean and Variance
Let X ~ Expo(\). Then

1
EX)= -
(X) =5
1
Var(X) 2
Recall integration by parts
2 f@)g (z)dz = f(x — 2

EX) = eheNd = —ge | + e Mdy = =
0 0 0 A

— — / ——
0 /A

%) oo 2
+/ 2z Mdy = v
0 0 A

0 2E(X)/A 13/29




Memoryless property of geometric distribution

Recall from Lec 8: L ~ Geom(p)
P(L=k+(L>k)=PL=20), k0.

Interpretation: Having failed k& times already, the probability that one
fails another £ times is the same as failing £ times from the fresh start, as
if the past is “forgotten.”

14/29



Memoryless property of exponential distribution
Let X ~ Expo(X). Then
P(X>s+tX >t)=P(X >s), st>0

Proof.

PX>s+t|X >t) =202l e 200 — e ¥ = P(X >5). O

15/29



Memoryless property of exponential distribution
Let X ~ Expo(X). Then
P(X>s+tX >t)=P(X >s), st>0

Proof.
e—A(s+t)

PX>s+t|X>t)=202m — 208 — e M = P(X >5). O

Therefore exponential distribution can be a useful model for

® |nterarrival time between spam emails, visits to a website, accidents,
etc
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Memoryless property of exponential distribution
Let X ~ Expo(A). Then
P(X>s+tX >t)=P(X >s), st>0

Proof.

PX>s+tX >t) =200 o e 200 — e M = P(X >5). O

Therefore exponential distribution can be a useful model for

® |nterarrival time between spam emails, visits to a website, accidents,

etc
but not a good model for
® |ifetime of a human being, a light bulb, etc

since it does not account for the effect of “getting worn out”
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How to generate random variables?



Why do we need to generate random numbers?
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Why do we need to generate random numbers?

e

355,000,000



Why do we need to generate random numbers?
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Why do we need to generate random numbers?

® | ottery

P> Raise revenue and tax

» Incentivize
e Statistical applications

» For example, polling (Lec 12), randomized clinical trial
e Simulations

» Test whether a system is noise resilient
> Test whether an estimator is accurate (on synthetic dataset)
» Computer games (procedural generation)

® Algorithmic needs
> Monte Carlo tree search (Lec 1)
» Cryptography
Question: How to generate a random variable of a specific distribution,
e.g., uniform?
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TOUR OF ACCOUNTING

OVER HERE

WE HAVE OUR
RANDOM NUMBER
GENERATOR.

www.dilbert.com scottadams@aol.com

NINE NINE
NINE NINE
NINE NINE

16]a5]s© 2001 United Feature Syndicate, Inc.

i THAT'S THE
SO PROBLEM
, WITH RAN-
THAT'S DOMNESS :
RANDOM? ‘
YOU CAN
L s NEVER BE

SURE.

27
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Random number generator: Physical methods

@ Hardware-based: coin, die, roulette

® Physics-based: thermal noise, cosmic background radiation,
quantum...
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RAND company

A Million Random Digits with 100,000 Normal Deviates oth Edition
by The RAND Corporation (Author)

WAy - 645 customer reviews

Look inside
Hardcover Paperback Other Sellers S
$249.95 §57.12 from §52.13
A MILLION
Random Digits Buy new forime $57.12
In Stock List Price: $68.00 Save: $10.88 (16%)
ol Ships from and sold by Amazon.com. Giftwrap available: 10 New from $55.76
100,000 Normal Deviates FREE Shipping for Prime members once available Details ~ —

Add to Cart ‘

or 1-Click Checkout

Buy now with 1-Click®

RAND Order within 11hr 29min to get it

= | [ |

A more serious review by the famous statistician John Tukey:
https://www.jstor.org/stable/166772. 21/29
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RAND company

A Million Random Digits with 100,000 Normal Deviates oth Edition
by The RAND Corporation (Author)

WAy - 645 customer reviews

Look inside
Hardcover  Paperback  Other Sellers . BestDeal
$249.95 §57.12 from §52.13
A MILLION
Random Digits Buy new forime $57.12
In Stock List Price: $68.00 Save: $10.88 (16%)
ol Ships from and sold by Amazon.com. Giftwrap available: 10 New from $55.76
100,000 Normal Deviates FREE Shipping for Prime members once available Details ~

ay: 14

Add to Cart

or 1-Click Checkout

l! Buy now with 1-Click®
RAND

Order within 11hr 29min to get it

[wa ]

Yri'rvr Spoiler alert: 8!
Reviewed in the United States on October 31, 2016
Verified Purchase

A very engrossing book with historical importance, it keeps you guessing until the end.
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$249.95 §57.12 from §52.13
A MILLION
Random Digits Buy new forime $57.12
In Stock List Price: $68.00 Save: $10.88 (16%)
ol Ships from and sold by Amazon.com. Giftwrap available: 10 New from $55.76
100,000 Normal Deviates FREE Shipping for Prime members once available Details ~

ay: 14

Add to Cart ‘

or 1-Click Checkout

u Buy now, ®

Order within 11hr 29min to get it

RAND

= | [ |

b 8.8 77 Spoiler alert: 8!
Reviewed in the United States on October 31, 2016
Verified Purchase

A very engrossing book with historical importance, it keeps you guessing until the end.

Yok Wait for the audiobook version
By R. Rosini on October 19, 2006
Format: Paperback

While the printed version is good, | would have expected the publisher to have an audiobook version as well. A
perfect companion for one's Ipod.

A more serious review by the famous statistician John Tukey:
https://www.jstor.org/stable/166772. 21/29


https://www.jstor.org/stable/166772

Methodology

The random digits in this book were produced by rerandomization of
a basic table generated by an electronic roulette wheel.

http://www.rand.org/pubs/monograph_reports/MR1418/index2.html
https://en.wikipedia.org/wiki/List_of_random_number_generators
https://www.wsj.com/articles/

rand-million-random-digits-numbers-book-error-11600893049
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http://www.rand.org/pubs/monograph_reports/MR1418/index2.html
https://en.wikipedia.org/wiki/List_of_random_number_generators
https://www.wsj.com/articles/rand-million-random-digits-numbers-book-error-11600893049
https://www.wsj.com/articles/rand-million-random-digits-numbers-book-error-11600893049

Random number generator: Computerized methods

Pseudorandom number generator (PRNG): deterministic methods whose
output appears random
® Simplest method: LCG
» X, = (aX,+b) modm
> Xo: “seed”
® Most programming languages have a rand function based on more
sophisticated algorithms and a setseed function

® For most of the applications, PRNG suffices
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Uniform random variable

® For a k-bit number in binary representation:
X=0X1Xs... X}

flip a fair coin for each bit. Then X is discrete uniform:

1P TTT9PT97019]

0 2k 1

12
2k 2k ok

When £ is large, this is very close to Unif(0, 1)
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Uniform random variable

® For a k-bit number in binary representation:
X=0X1Xs... X}

flip a fair coin for each bit. Then X is discrete uniform:

1P TTT9PT97019]

0 1 2 ok
2k 2k ok

When £ is large, this is very close to Unif(0, 1)

® Many PRNG produce random variables close to uniform

24/29



Next question

Given uniform random variables, how to generate random variables with
other distributions?
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Next question

Given uniform random variables, how to generate random variables with
other distributions?
B-H §5.3: “Universality of the Uniform"
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Quantile transformation

® Let F' be the CDF of a continuous distribution
» Example: for Expo(1), F(z) =1—e™"
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e Let F! denote the inverse CDF, called the quantile function
> Example: for Expo(1), F~1(u) = —In(1 — u)
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Quantile transformation

® let F' be the CDF of a continuous distribution
» Example: for Expo(1), F(z) =1—e™"

e Let F! denote the inverse CDF, called the quantile function
> Example: for Expo(1), F~1(u) = —In(1 — u)

e Fact: Let U ~ Unif(0,1). Then the CDF of

X =F1U)

is given by F.

Proof.
P(X<z)=PFYU)<z)=PUZ<F(z)) = F(z).
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Conversely

® Given X with CDF F,
U=F(X)

is distributed as Unif(0, 1).
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Conversely

® Given X with CDF F,

U=F(X)
is distributed as Unif(0, 1).
® To summarize:
X2=Uu
F—l
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Conversely

® Given X with CDF F,

U=F(X)
is distributed as Unif(0, 1).
® To summarize: .
X —U
F—l

® Furthermore: given X with CDF F, generate Y with CDF G?7
x -t u

RV

that is
Y = GHF(X))
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Example

Given X ~ Expo(1), how to generate Expo(3):
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Example

Given X ~ Expo(1), how to generate Expo(3):
® Recall CDF of Expo()\): 1 —e™?*. Then

Flz)=1-¢"

Gla)=1—e, G l(u) = —%111(1 —w)

® Assembling everything:
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How to generate Bernoulli based on uniform?
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How to generate Bernoulli based on uniform?

g(u)
1

g(u)_{o O<u<l—p ‘
0

1 1—-p<u<l

® Then X = g(U) ~ Bern(p)
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How to generate Bernoulli based on uniform?

g(u)
1

g(u)_{o O<u<l-—p ‘
0

1 1—-p<u<l

® Then X = g(U) ~ Bern(p)
® Verify:

P(X=0)=PylU)=0)=PO0<U<1l—-p)=1-p
1 )=PQl-p<U<1l)=p
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How to generate Bernoulli based on uniform?

g(u)
1

g(u):{o O<u<l—p ‘
0

1 1—-p<u<l

Then X = g(U) ~ Bern(p)
Verify:

P(X=0)=PgU)=0)=P0O0<U<1-p)=1—-p
1 )=P(l-p<U<1)=p

This ¢ can be viewed as inverse of CDF!

Clearly such g is not unique

'For F with jumps, we define ™! = min{z : F(z) > u}.
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