
S&DS 241 Lecture 14
Uniform distribution, exponential distribution, random number generation

B-H 5.2,5.3,5.5
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Discrete uniform distribution

“Uniform” means “equally likely”.

• Fair die: PMF is flat

1 2 3 4 5 6

• How to extend this to continuous random variables? PDF is flat
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Uniform distribution
A continuous random variable X is said to be uniformly distributed in the

interval (a, b), denoted by X ∼ Unif(a, b), if it has the following PDF:

fX(x) =

{
1

b−a a < x < b

0 else

a b

1
b−a

x

fX(x)

• Continuous analog of “equally likely”

• Support of X: [a, b]

• CDF:

FX(x) =


0 x ≤ a
x−a
b−a a < x < b

1 x ≥ b
a b

1

x

FX(x)
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Example from last lecture

• Angle of a randomly spinned wheel

X

0

Then X ∼ Unif(0, 2π)
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Unif(0, 1)

• PDF

fX(x) =

{
1 0 < x < 1

0 else

0 1

1

0
x

fX(x)

• CDF:

FX(x) =


0 x ≤ 0

x 0 < x < 1

1 x ≥ 1
0 1

1

0
x

FX(x)
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Mean and variance

Let X ∼ Unif(a, b). Then

E(X) =
a+ b

2
= center of interval

Var(X) =
(b− a)2

12

SD(X) =
b− a

2
√
3

∝ length of interval

a b

1
b−a

x

fX(x)

Proof.

• E(X) = 1
b−a

∫ b
a xdx = 1

b−a
b2−a2

2 = a+b
2

• Var(X) = E[(X − a+b
2 )2] = 1

b−a

∫ b
a (x− a+b

2 )2dx =
1

b−a

∫ (b−a)/2
(a−b)/2 y2dy = 1

b−a
2
3(

b−a
2 )3 = (b−a)2

12
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Example

Let X ∼ Unif(0, 2). For t ∈ (0, 1), find

P (X ≤ t | X ≤ 1)

• P (X ≤ t | X ≤ 1) = P (X≤t)
P (X≤1) =

FX(t)
FX(1) =

t/2
1/2 = t

• Interpretation: You go to lunch with your friend, say Tom, who will

arrive at some time uniformly distributed between noon and 2pm.

Suppose he calls you and says he will arrive by 1pm. Then his arrival

time is uniform between noon and 1pm.

• Mathematically: conditioned on the event {X ≤ 1}, X is uniformly

distributed on (0, 1).
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Exponential distribution



Exponential distribution

A continuous random variable X is said to be exponentially distributed

with parameter λ > 0, denoted by X ∼ Expo(λ), if it has the following

PDF:

fX(x) =

{
λe−λx x ≥ 0

0 else

0

λ

0
x

fX(x)
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Usefulness

Exponential distribution is often used to model time:

• The time until a radioactive particle decays

• Interarrival time of calls to a call center

• Time till the next accident, etc...
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Qualitative effect of the parameter

λ = 1/2

λ = 1

λ = 3

0
x

fX(x)

Observation

• λ ↑ =⇒ PDF concentrated near zero and decays faster
• λ ↓ =⇒ PDF more spread out and decays slower
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CDF

FX(x) =

{
1− e−λx x ≥ 0

0 x < 0

0

1

0
x

FX(x)

• From PDF to CDF:

FX(x) =

∫ x

−∞
fX(t)dt =

∫ x

0
λe−λtdt = −e−λt

∣∣∣x
0
= 1− e−λx

• Tail probability:

P (X > x) = 1− FX(x) = e−λx

which becomes smaller if λ increases
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Mean and Variance
Let X ∼ Expo(λ). Then

E(X) =
1

λ

Var(X) =
1

λ2

Recall integration by parts:∫ b
a f(x)g′(x)dx = f(x)g(x)

∣∣b
a
−
∫ b
a f ′(x)g(x)dx.

E(X) =

∫ ∞

0
xλe−λxdx = −xe−λx

∣∣∣∞
0︸ ︷︷ ︸

0

+

∫ ∞

0
e−λxdx︸ ︷︷ ︸
1/λ

=
1

λ

and

E(X2) =

∫ ∞

0
x2λe−λxdx = −x2e−λx

∣∣∣∞
0︸ ︷︷ ︸

0

+

∫ ∞

0
2xe−λxdx︸ ︷︷ ︸

2E(X)/λ

=
2

λ2
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Memoryless property of geometric distribution

Recall from Lec 8: L ∼ Geom(p)

P (L = k + ℓ|L ≥ k) = P (L = ℓ), k, ℓ ≥ 0.

Interpretation: Having failed k times already, the probability that one

fails another ℓ times is the same as failing ℓ times from the fresh start, as

if the past is “forgotten.”
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Memoryless property of exponential distribution

Let X ∼ Expo(λ). Then

P (X > s+ t|X > t) = P (X > s), s, t > 0

Proof.

P (X > s+ t|X > t) = P (X>s+t)
P (X>t) = e−λ(s+t)

e−λt = e−λs = P (X > s).

Therefore exponential distribution can be a useful model for

• Interarrival time between spam emails, visits to a website, accidents,

etc

but not a good model for

• Lifetime of a human being, a light bulb, etc

since it does not account for the effect of “getting worn out”
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How to generate random variables?



Why do we need to generate random numbers?
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Why do we need to generate random numbers?

• Lottery
▶ Raise revenue and tax
▶ Incentivize

• Statistical applications
▶ For example, polling (Lec 12), randomized clinical trial

• Simulations
▶ Test whether a system is noise resilient
▶ Test whether an estimator is accurate (on synthetic dataset)
▶ Computer games (procedural generation)

• Algorithmic needs
▶ Monte Carlo tree search (Lec 1)
▶ Cryptography

Question: How to generate a random variable of a specific distribution,

e.g., uniform?
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Random number generator: Physical methods

1 Hardware-based: coin, die, roulette

2 Physics-based: thermal noise, cosmic background radiation,

quantum...

20/29



RAND company

A more serious review by the famous statistician John Tukey:

https://www.jstor.org/stable/166772. 21/29
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Methodology

... The random digits in this book were produced by rerandomization of

a basic table generated by an electronic roulette wheel.

http://www.rand.org/pubs/monograph_reports/MR1418/index2.html

https://en.wikipedia.org/wiki/List_of_random_number_generators

https://www.wsj.com/articles/

rand-million-random-digits-numbers-book-error-11600893049
22/29
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Random number generator: Computerized methods

Pseudorandom number generator (PRNG): deterministic methods whose

output appears random

• Simplest method: LCG
▶ Xn+1 = (aXn + b) mod m
▶ X0: “seed”

• Most programming languages have a rand function based on more

sophisticated algorithms and a setseed function

• For most of the applications, PRNG suffices
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Uniform random variable

• For a k-bit number in binary representation:

X = 0.X1X2 . . . Xk

flip a fair coin for each bit. Then X is discrete uniform:

0 1
2k

2
2k

· · ·
2k−1

2k

When k is large, this is very close to Unif(0, 1)

• Many PRNG produce random variables close to uniform
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Next question

Given uniform random variables, how to generate random variables with

other distributions?

B-H §5.3: “Universality of the Uniform”
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Quantile transformation

• Let F be the CDF of a continuous distribution
▶ Example: for Expo(1), F (x) = 1− e−x

• Let F−1 denote the inverse CDF, called the quantile function
▶ Example: for Expo(1), F−1(u) = − ln(1− u)

• Fact: Let U ∼ Unif(0, 1). Then the CDF of

X = F−1(U)

is given by F .

Proof.

P (X ≤ x) = P (F−1(U) ≤ x) = P (U ≤ F (x)) = F (x).

26/29
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Conversely

• Given X with CDF F ,

U = F (X)

is distributed as Unif(0, 1).

• To summarize:

X
F−−⇀↽−−
F−1

U

• Furthermore: given X with CDF F , generate Y with CDF G?

X U

Y

G −
1◦F

F

G−1

that is

Y = G−1(F (X))
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Example

Given X ∼ Expo(1), how to generate Expo(3):

• Recall CDF of Expo(λ): 1− e−λx. Then

F (x) = 1− e−x

G(x) = 1− e−3x, G−1(u) = −1

3
ln(1− u)

• Assembling everything:

Y = G−1(F (X)) = −1

3
ln(1− (1− e−X)) = X/3
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How to generate Bernoulli based on uniform?

g(u) =

{
0 0 < u < 1− p

1 1− p < u < 1

1− p 1

1

0
u

g(u)

• Then X = g(U) ∼ Bern(p)

• Verify:

P (X = 0) = P (g(U) = 0) = P (0 < U < 1− p) = 1− p

P (X = 1) = P (g(U) = 1) = P (1− p < U < 1) = p

• This g can be viewed as inverse of CDF

• Clearly such g is not unique
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P (X = 0) = P (g(U) = 0) = P (0 < U < 1− p) = 1− p

P (X = 1) = P (g(U) = 1) = P (1− p < U < 1) = p

• This g can be viewed as inverse of CDF1

• Clearly such g is not unique

1For F with jumps, we define F−1 = min{x : F (x) ≥ u}.
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