
S&DS 241 Lecture 16
Normal distributions, CLT for binomials

B-H: 5.4, 10.3
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Standard normal distribution
A continuous random variable X is said to have the standard normal

(Gaussian) distribution, if it has the following PDF:

fX(x) =
1√
2π

e−
x2

2 ≜ φ(x)

1√
2π

0
x

φ(x)

Carl Friedrich Gauss

• Symmetric and bell-shaped

• E(X) = 0,Var(X) = SD(X) = 1
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CDF of standard normal

P (X ≤ x) = Φ(x) ≜
∫ x

−∞

1√
2π

e−
t2

2 dt =

x
t

1/2

1

0
x

Φ(x)
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Complementary CDF (tail)

Φc(x) ≜ 1−Φ(x) = P (X > x) =

∫ ∞

x

1√
2π

e−
t2

2 dt =

x
t

1/2

1

0

Φ(x)

Φc(x)
x

Consequences of symmetry:

• P (X ≤ −x) = Φ(−x) = Φc(x) = P (X ≥ x),

• P (|X| ≤ x) = 2Φ(x)− 1
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68.3%

95%

99.7%

34.1% 34.1% 13.6%13.6% 2.1%2.1%

−3 −2 −1 0 1 2 3

P (−1 < X < 1) = Φ(1)− Φ(−1) ≈ 0.683

P (−2 < X < 2) = Φ(2)− Φ(−2) ≈ 0.95

P (−3 < X < 3) = Φ(3)− Φ(−3) ≈ 0.997
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Normal distribution in real life

For more examples:

https://www.statology.org/example-of-normal-distribution/
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Normal distribution in real life
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Normalization

To show
∫∞
−∞ φ(x)dx = 1, we need to verify:∫ ∞

−∞
e−

x2

2 dx =
√
2π

Let’s prove (∫ ∞

−∞
e−

x2

2 dx

)2

= 2π
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The magic of Gauss

(∫ ∞

−∞
e−

x2

2 dx

)2

=

(∫ ∞

−∞
e−

x2

2 dx

)(∫ ∞

−∞
e−

y2

2 dy

)

=

∫ ∞

−∞

∫ ∞

−∞
e−

x2

2 e−
y2

2 dxdy

=

∫ 2π

0

∫ ∞

0
e−

r2

2 rdrdθ (polar coordinates cf. A.7.2)

=

(∫ 2π

0
dθ

)(∫ ∞

0
e−

r2

2 rdr

)
= 2π

(
−e−

r2

2

∣∣∣∞
0

)
= 2π
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Mean and variance

• Expectation: E(X) = 0, by symmetry.

• Variance:

Var(X) =

∫ ∞

−∞
x2

1√
2π

e−
x2

2 dx =

∫ ∞

−∞

x√
2π

d(−e−
x2

2 )

=
−x√
2π

e−
x2

2

∣∣∣∞
−∞︸ ︷︷ ︸

0

+

∫ ∞

−∞

1√
2π

e−
x2

2 dx︸ ︷︷ ︸
1

(IBP)

= 1
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Shifting and scaling a standard normal

Let Z be standard normal. Let µ ∈ R and σ > 0. Let

X = µ+ σZ

Then

• E(X) = µ and Var(X) = σ2

• PDF: from Lec 15:

fX(x) =
1

σ
φ

(
x− µ

σ

)
=

1√
2πσ

e−
(x−µ)2

2σ2 .

This is the general definition of normal distribution.
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Normal distribution
A continuous random variable X is said to have the normal (Gaussian)

distribution with mean µ and variance σ2, denoted by X ∼ N(µ, σ2), if

it has the following PDF:

fX(x) =
1√
2πσ

e−
(x−µ)2

2σ2 =
1

σ
φ

(
x− µ

σ

) 1√
2πσ

µ

σ

x

fX(x)

• CDF:
FX(x) = Φ

(
x− µ

σ

)
• Standard normal: N(0, 1)

• “68-95-99.7 rule”

P (X ∈ (µ− σ, µ+ σ)) ≈ 68.3%

P (X ∈ (µ− 2σ, µ+ 2σ)) ≈ 95%

P (X ∈ (µ− 3σ, µ+ 3σ)) ≈ 99.7%
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Higgs boson discovery1

• Particle physics: 5σ-rule is the norm, corresponding to “p-value”

6× 10−7 – probability such a discovery is due to sheer chance

• Other subjects, e.g., social sciences: 2σ corresponding to 5%
1https:

//blogs.scientificamerican.com/observations/five-sigmawhats-that/
13/33
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Why is normal distribution so important



CLT and normal approximation

Central limit theorem (CLT)

The cumulative effect of many small independent effects is approximately

normal

• Normal approximation: approximate the distribution of X by the

normal distribution with matching mean µX and variance σ2
X , i.e.,

X̃ ∼ N(µX , σ2
X)

Then we approximate the CDF P (X < x) by P (X̃ < x) = Φ(x−µX
σX

)

• CLT provides a theoretical justification for normal approximation
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Normal approximation of binomials

20 40 60 80 100

0.02

0.04

0.06

0.08

X ∼ Bin(n, p)
normal approximation−−−−−−−−−−−−→ X̃ ∼ N(np, npq)

Contrast with Poisson approximation: approximate Bin(n, λn) by Pois(λ)
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Revisit: deviation inequality (Lec 12)

Question

Toss a fair coin 100 times. How unlikely is it to get at least 75 heads?

Let X ∼ Bin(100, 1/2). Then EX = 50 and Var(X) = 25

• Markov inequality: P (X ≥ 75) ≤ 50
75 = 2

3

• Chebyshev inequality:

P (X ≥ 75) ≤ P (|X − 50| ≥ 25) ≤ 25

252
= 4%

• Normal approximation: approximate X by X̃ ∼ N(50, 25)

P (X ≥ 75) ≈ P (X̃ ≥ 75) = P

(
X̃ − 50

5
≥ 75− 50

5

)
= 1− Φ(5) = 2.9× 10−7

• Actual value: 2.8× 10−7
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Revisit: confidence interval (Lec 12)

Question

Toss a coin n times. Construct confidence interval for the bias p.

• Number of heads: X ∼ Bin(n, p), where the bias p is unknown.

• Empirical frequency of heads p̂ = X
n a reasonable estimate of p.

• Confidence interval of level 99%:

P (p ∈ [p̂± 0.1]) ≥ 99%, for any p

• How many times do we need to flip the coin?

• Same story for polling.

18/33



Sample size

• Chebyshev inequality (q = 1− p):

P (p /∈ [p̂± 0.1]) = P (|X − np| > 0.1n)

≤ npq

(0.1n)2

pq≤1/4

≤ 1

4n× 0.12
≤ 1% =⇒ n ≥ 2500

• Normal approximation: replace X ∼ Bin(n, p) by X̃ ∼ N(np, npq)

P (p /∈ [p̂± 0.1]) = P (|X − np| > 0.1n)

≈ P (|X̃ − np| > 0.1n)

= 2Φc

(
0.1n
√
npq

)
pq≤1/4

≤ 2Φc(0.2
√
n) ≤ 1%

=⇒ n ≥ 166
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Normal approximation of binomial

CDF of Bin(100, 1/2) and N(50, 25):

20 40 60 80 100

0.2

0.4

0.6

0.8

1.0
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de Moivre-Laplace CLT

• Let X ∼ Bin(n, p) and let q = 1− p. Then E(X) = np and

SD(X) =
√
npq.

• CLT is formulated in the convergence of the CDF of the

standardized random variable:

Theorem (CLT for binomials)

For any b,

P

(
X − np
√
npq

≤ b

)
n→∞−−−→ Φ(b) =

∫ b

−∞

1√
2π

e−x2/2︸ ︷︷ ︸
φ(x)

dx
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Normal approximation of binomial: unstandardized

CDF of X vs N(np, npq):

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

Figure: n = 100, p = 1
2

22/33



Normal approximation of binomial: unstandardized

CDF of X vs N(np, npq):
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Normal approximation of binomial: standardized

CDF of X−np√
npq vs N(0, 1):

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1.0

Figure: n = 100, p = 1
2
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Normal approximation of binomial: standardized

CDF of X−np√
npq vs N(0, 1):
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Normal approximation of binomial: standardized
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Normal approximation of binomial: standardized

CDF of X−np√
npq vs N(0, 1):

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1.0

Figure: n = 600, p = 1
2
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Remarks on CLT

• CLT states that

X − np
√
npq

is approximately distributed as N(0, 1)

=⇒ X is approximately distributed as X̃ ∼ N(np, npq)

In practice,

P (x ≤ X ≤ y) ≈ P (x ≤ X̃ ≤ y) = Φ

(
y − np
√
npq

)
− Φ

(
x− np
√
npq

)
• After all, binomial (discrete) and normal (continuous) are very
different distributions, so normal approximation has its limitations.
▶ For example, P (X is integer) = 1 but P (X̃ is integer) = 0
▶ CLT says events like P (x ≤ X ≤ y) can be approximated well.
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General CLT (Lec 24)

Let X1, X2, X3, . . . be independent and identically distributed (i.i.d.)

with mean µ and variance σ2. Then

X1 + · · ·+Xn − nµ√
nσ2

is approximately distributed as N(0, 1)

• de Moivre-Laplace CLT is a special case for Bernoullis

• We can apply this to discrete random variables (e.g. dice) or

continuous random variables (later)

• Universality of normal distribution:
▶ Universal laws that do not depend too much on the underlying

microscopic mechanism of the system
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Justification of CLT

• Later in Lec 24 (B-H 10.3) we will justify CLT in its full generality

• Next let’s justify CLT for binomial (cf. Grinstead-Snell Sec 9.1):

Goal

Let X ∼ Bin(n, p), where p is fixed. For any a < b,

P

(
a ≤ X − np

√
npq

≤ b

)
n→∞−−−→ Φ(b)− Φ(a) =

∫ b

a

1√
2π

e−x2/2dx.
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Sketch proof of de Moivre-Laplace CLT (optional)
Step 1 Approximate the binomial PMF near the mean:

P (X = np+ k) ∼ 1√
2πpqn

e
− k2

2pqn =
1

√
pqn

φ

(
k

√
pqn

)
,

provided that |k|/
√
n is bounded from above. (We write

an ∼ bn if lim an
bn

= 1.)

Step 2 Approximate summation by integral: fix a < b,

P

(
a ≤ X − np

√
npq

≤ b

)
=

b
√
npq∑

k=a
√
npq

P (X = np+ k)

≈
b
√
npq∑

k=a
√
npq

1
√
pqn

φ

(
k

√
pqn

)

→
∫ b

a
φ(x)dx = Φ(b)− Φ(a).
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√
pqn

φ

(
k

√
pqn

)

→
∫ b

a
φ(x)dx = Φ(b)− Φ(a).
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Justification of Step 1

• Recall Stirling approximation (Lec 11 or B-H Chap 3 Problem 36)

n! ∼
√
2πn

(n
e

)n

• Define h(x) ≜ −x log x− (1− x) log(1− x).

P (X = np+ k)

=

(
n

np+ k

)
pnp+kqnq−k =

n!

(np+ k)!(nq − k)!
pnp+kqnq−k

Stirling∼ 1√
2πpqn

exp

(
n h

(
p+

k

n

)
︸ ︷︷ ︸

Taylor expansion near p

−nh(p) + k log
p

q

)

∼ 1√
2πpqn

exp

(
− k2

2pqn

)
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