S&DS 241 Lecture 16

Normal distributions, CLT for binomials

B-H: 5.4, 10.3

1/33



Standard normal distribution

A continuous random variable X is said to have the standard normal
(Gaussian) distribution, if it has the following PDF:

1 a2

(o) = =T 2 pfa)

ok

0 Carl Friedrich Gauss

® Symmetric and bell-shaped
® F(X)=0,Var(X)=SD(X) =1
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CDF of standard normal
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Complementary CDF (tail)

() 2 1-B(z) = P(X > ) = /OO J%e—fdt _ A
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Complementary CDF (tail)

() £ 1-®(z) = P(X > )

Consequences of symmetry:
¢ P(X <—x)=®(—z) =9%2) = P(X > x),
e P(|X|<xz)=2P(x)—1
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Normal distribution in real life

Distribution of NFL Player Retirement Age

Distribution of ACT Scores
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For more examples:
https://www.statology.org/example-of-normal-distribution/
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Normal distribution in real life
P R

Behavioral biases. Distribution is

pretty normal, but 95 always rounds
to 100.
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Normalization

To show [ ¢(z)dz =1, we need to verify:

oo 12
/ e 2dr =27

—00
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Normalization

To show [ ¢(z)dz =1, we need to verify:
o0 12
/ e 2dr=V2m

Let's prove
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The magic of Gauss
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The magic of Gauss

([oon) = ([ ) (L)

oo o0 z2
= / e~ Te T d:I:dy

o0 J —00
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The magic of Gauss

S8 22 2 o0 22 ) y2
</ e_2dx> = (/ e_2dx> (/ e‘?dy)
o0 [e.@] 12 2
= / / et dxdy
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The magic of Gauss

(o= (L) (50
T

2w poo
/ T rdrdG (polar coordinates cf. A.7.2)
o Jo
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The magic of Gauss

e.9] o0 2
(L. )(/ i)
o ;O
/ / T rdrdG (polar coordinates cf. A.7.2)
o Jo

()
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The magic of Gauss

o ZQ o y2
( e‘?d:z:) </ e_2dy>
o0 oo z2 2
= / / et dxdy

2 o 7'2
= / / e 2 rdrdf (polar coordinates cf. A.7.2)

- (/Oz”de? gj” d>
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Mean and variance

® Expectation: E(X) = 0, by symmetry.
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Mean and variance

® Expectation: E(X) = 0, by symmetry.

® Variance:
S8 2
Var(X):/ a;2 *IT / —e7)
oo
= me 2 _OO+ . 2d:c (IBP)
0 1
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Shifting and scaling a standard normal

Let Z be standard normal. Let p € R and 0 > 0. Let
X=pu+oZ

Then
® E(X)=p and Var(X) = o2
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Shifting and scaling a standard normal

Let Z be standard normal. Let p € R and 0 > 0. Let
X=pu+oZ

Then
® E(X)=p and Var(X) = o2
e PDF: from Lec 15:
1 [x— 1 _E=w?
fX(x) = ;(p < M) = e 202

o 2o

This is the general definition of normal distribution.
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Normal distribution
A continuous random variable X is said to have the normal (Gaussian)

distribution with mean p and variance o2, denoted by X ~ N(u,0?), if
it has the following PDF:

Ix(z)
1 @w? 1 (x—p T2z
_ ) - 27,
r) = —€ 202 = — o
fx(@) V2ro US&( o >
I
e CDF: Fy(o) = @ (m—ﬂ)
o

e Standard normal: N(0,1)
® "“68-95-99.7 rule”

P(Xe(p—o,pn+o0)) ~683%
X € (p—20,u+20)) = 95%
X € (u—30,u+30)) =~ 99.7%
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Higgs boson discovery?

SCIENTIFIC
AMERICAN,

S MIND HEALTH TECH SUSTAINABILITY EDUCATION VIDEO PODC

5 Sigma What's That?

STAFF velyn Lamb on Ju

LATES1
Chances are, you heard

this month about the

discovery of a tiny

fundamental physics -
particle that may be the

long-sought Higgs

o
3

o o 0w boson. The phrase five-

® Particle physics: 50-rule is the norm, corresponding to “p-value”

WONENT

6 x 10~7 — probability such a discovery is due to sheer chance

® Other subjects, e.g., social sciences: 20 corresponding to 5%
1ht‘t:ps:
//blogs.scientificamerican.com/observations/five-sigmawhats-that/
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Why is normal distribution so important



CLT and normal approximation

Central limit theorem (CLT)

The cumulative effect of many small independent effects is approximately
normal
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CLT and normal approximation

Central limit theorem (CLT)

The cumulative effect of many small independent effects is approximately
normal

® Normal approximation: approximate the distribution of X by the

normal distribution with matching mean px and variance agf, ie.,

X ~ N(ux,o0%)

Then we approximate the CDF P(X < x) by P(X < x) = §(Thx)

ox
® CLT provides a theoretical justification for normal approximation
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Normal approximation of binomials

0.08j
0.06 -
0.04 -
0.02-
L UL LT LLLL AL PP ! \
20 40 60 80 100
X ~ Bin(n,p) normal approximation X - N(np, npq)
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Normal approximation of binomials

0.08j
0.06 -
0.04 -
0.02+
2‘0 %;0 1(;0
X ~ Bin(n,p) normal approximation X - N(np, npq)
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Normal approximation of binomials

0.08j
0.06}
0.04}
0.02}
2‘0 86 160
X ~ Bin(n,p) normal approximation X - N(np, npq)

Contrast with Poisson approximation: approximate Bin(n, %) by Pois(\)
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Revisit: deviation inequality (Lec 12)

Question

Toss a fair coin 100 times. How unlikely is it to get at least 75 heads?
Let X ~ Bin(100,1/2). Then EX = 50 and Var(X) = 25

® Markov inequality: P(X >75) < 20 =2
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Revisit: deviation inequality (Lec 12)

Question
Toss a fair coin 100 times. How unlikely is it to get at least 75 heads?

Let X ~ Bin(100,1/2). Then EX = 50 and Var(X) = 25
® Markov inequality: P(X >75) < 20 =2
® Chebyshev inequality:

25
P(X >75) < P(IX ~ 50| > 25) < o5 = 4%
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Revisit: deviation inequality (Lec 12)

Question
Toss a fair coin 100 times. How unlikely is it to get at least 75 heads?

Let X ~ Bin(100,1/2). Then EX = 50 and Var(X) = 25
® Markov inequality: P(X >75) < 20 =2
® Chebyshev inequality:
25
P(X 2 75) < P(IX 50| 2 25) < 5 = 4%
 Normal approximation: approximate X by X ~ N(50,25)

) % _
P(XZ?S)%P(XZ?S)zP( 0,75 50)

5 — 5
=1-®(55)=29x10""

e Actual value: 2.8 x 1077
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Revisit: confidence interval (Lec 12)

Question
Toss a coin n times. Construct confidence interval for the bias p.

® Number of heads: X ~ Bin(n,p), where the bias p is unknown.

e Empirical frequency of heads p = £ a reasonable estimate of p.

n

e Confidence interval of level 99%:
P(p e [p+£0.1]) > 99%, foranyp
® How many times do we need to flip the coin?

® Same story for polling.
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Sample size

® Chebyshev inequality (¢ =1 — p):
P(p ¢ [p£0.1]) = P(|X — np| > 0.1n)

< npq pqS<1/4 1 <19 ST
SOmPE S Tmxor S %= [n 22500
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Sample size

® Chebyshev inequality (¢ =1 — p):
P(p ¢ [p£0.1]) = P(|X — np| > 0.1n)

npq pq<1/4 1
< < — < 1% =1|n> 2500
— (O.ln)Q — An X 0'12 — %

 Normal approximation: replace X ~ Bin(n, p) by X ~ N (np, npq)
P(p ¢ [p+0.1])) = P(|X —np| > 0.1n)
~ P(|X —np| > 0.1n)

1 pg<1/4
— 29° (0”> <" 20°(0.2y/n) < 1%
NG

~ [ = 160]
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Normal approximation of binomial

CDF of Bin(100,1/2) and N (50, 25):

1.0
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041
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Normal approximation of binomial

CDF of Bin(100,1/2) and N (50, 25):

1.0F

08

06

041

021

20 40 60 80 100
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de Moivre-Laplace CLT

® Let X ~ Bin(n,p) and let ¢ =1 —p. Then E(X) = np and
SD(X) = /npq.

e CLT is formulated in the convergence of the CDF of the
standardized random variable:

Theorem (CLT for binomials)

For any b,
X — nesoo LI
P (”p < b) 10 () = / e T2y
N —0o V27

»(z)
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Normal approximation of binomial: unstandardized

CDF of X vs N(np,npq):

10

08¢

0.6

04f

0.2

0.0 L L ,
0 50 100 150 200

Figure: n =100,p = %
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Normal approximation of binomial: unstandardized

CDF of X vs N(np,npq):

10

08¢

0.6

04f

0.2

0.0 L ,
0 50 100 150 200

Figure: n =200,p = %
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Normal approximation of binomial: unstandardized

CDF of X vs N(np,npq):

101
08f
06f
04}

0.2

0.0
0 50 100 150 200

Figure: n = 400,p = %

24/33



Normal approximation of binomial: standardized

CDF of ’;;%’ vs N(0,1):

-3 -2 -1 1 2 3

Figure: n = 100,p = %
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Normal approximation of binomial: standardized

CDF of ’;;%’ vs N(0,1):

-3 -2 -1 1 2 3

Figure: n = 200,p = %
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Normal approximation of binomial: standardized

CDF of ’;;%’ vs N(0,1):

-3 -2 -1 1 2 3

Figure: n = 400,p = %
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Normal approximation of binomial: standardized

CDF of ’;;%’ vs N(0,1):

-3 -2 -1 1 2 3

Figure: n = 600,p = %
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Remarks on CLT

® CLT states that
X —np

v 1pq

— X is approximately distributed as X ~ N (np,npq)

is approximately distributed as N (0, 1)
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Remarks on CLT

® CLT states that
X —np

v 1pq

— X is approximately distributed as X ~ N (np,npq)

is approximately distributed as N (0, 1)

In practice,

Px< X<y ~Px<X

IN

0=+ () ()
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Remarks on CLT

® CLT states that
X —np

v 1pq

— X is approximately distributed as X ~ N (np,npq)

is approximately distributed as N (0, 1)

In practice,

P(x<X<y)%P(w<X<y>:q’<y\/%g>_q)(x\/;g)

e After all, binomial (discrete) and normal (continuous) are very
different distributions, so normal approximation has its limitations.
> For example, P(X is integer) = 1 but P(X is integer) = 0
> CLT says events like P(z < X < y) can be approximated well.
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General CLT (Lec 24)

Let X3, X9, X3,... be independent and identically distributed (i.i.d.)
with mean p and variance 2. Then

X e+ X, —
1+t 2" M s approximately distributed as N (0,1)

no
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General CLT (Lec 24)

Let X3, X9, X3,... be independent and identically distributed (i.i.d.)
with mean p and variance 2. Then

X e+ X, —
1+t 2" M s approximately distributed as N (0,1)

no

® de Moivre-Laplace CLT is a special case for Bernoullis

® We can apply this to discrete random variables (e.g. dice) or
continuous random variables (later)
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General CLT (Lec 24)

Let X3, X9, X3,... be independent and identically distributed (i.i.d.)
with mean p and variance 2. Then

X e+ X, —
1+t 2" M s approximately distributed as N (0,1)

no

® de Moivre-Laplace CLT is a special case for Bernoullis

® We can apply this to discrete random variables (e.g. dice) or
continuous random variables (later)

® Universality of normal distribution:

» Universal laws that do not depend too much on the underlying
microscopic mechanism of the system
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Justification of CLT

e Later in Lec 24 (B-H 10.3) we will justify CLT in its full generality
® Next let's justify CLT for binomial (cf. Grinstead-Snell Sec 9.1):

Goal
Let X ~ Bin(n,p), where p is fixed. For any a < b,

P <a < X\/ﬂ < b> "0 () — B(a) = /ab \/12?6—902/%.

npq
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Sketch proof of de Moivre-Laplace CLT (optional)

Step 1 Approximate the binomial PMF near the mean:

1 _ 2 1 k
P(X=np+k)~ e Tan = go( ),

V2mpgn Vg \ \/pgn
provided that |k|/y/n is bounded from above. (We write
an ~ by if lim 92 = 1.)
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Sketch proof of de Moivre-Laplace CLT (optional)

Step 1 Approximate the binomial PMF near the mean:

1 _ 2 1 k
P(X=np+k)~ e Tan = go( ),

V2mpgn Vg \ \/pgn
provided that |k|/y/n is bounded from above. (We write
Qp ~ by if lim @2 = 1.)

Step 2 Approximate summation by integral: fix a < b,

X —n g
P<a§ pgb): Y P(X=np+k)
NG iy

by/npg 1 1
> v (o)
ke VP pan

b
— / o(z)dr = ®(b) — ®(a).

Q
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Justification of Step 1

® Recall Stirling approximation (Lec 11 or B-H Chap 3 Problem 36)

n n
n! ~V2mn (—)
e
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Justification of Step 1

® Recall Stirling approximation (Lec 11 or B-H Chap 3 Problem 36)

n
n! ~V2mn (E)
e

® Define h(z) £ —zlogz — (1 — z)log(l — ).

P(X =np+k)

— n np+kqnq7k: — n! np+k nqg—k
np + k (np + k)l (ng — k)!
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Justification of Step 1

® Recall Stirling approximation (Lec 11 or B-H Chap 3 Problem 36)

n
n! ~V2mn (E)
e

® Define h(z) £ —zlogz — (1 — z)log(l — ).

P(X =np+k)

— n np+k ng—k _ n! np+k nqg—k
<np+k:>p 7 (anrk:)!(ank:)!p e

irlin 1
Stirling exp (n h <p + ]:L) —nh(p) + klog Z)
————

\/2Tpgn

Taylor expansion near p

1 k?
\2mpgn P 2pgn
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