
S&DS 241 Lecture 18
Conditional PDF & independence

B-H: 7.1
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Recall: Independence of discrete random variables (Lec 6)

Let X,Y be a pair of discrete random variables.

Equivalent definitions of independence:

1 P (X = x, Y = y)︸ ︷︷ ︸
pXY (x,y)

= P (X = x)︸ ︷︷ ︸
pX(x)

P (Y = y)︸ ︷︷ ︸
pY (y)

, for all x, y

2 FXY (x, y) = FX(x)FY (y)

that is

Joint PMF/CDF = product of marginal PMFs/CDFs
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Independence of continuous random variables

Let X,Y be a pair of continuous random variables.

Equivalent definitions of independence:

1 fXY (x, y) = fX(x)fY (y), for all x, y

2 FXY (x, y) = FX(x)FY (y)

that is,

Joint PDF/CDF = product of marginal PDF/CDF
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Example (continuation of last lecture)

Consider a randomly sampled individual.

• Let X be the indicator of being a smoker.

• Let Y be the indicator of developing lung cancer.

Suppose the joint PMF pXY is:

Y = 1 Y = 0 Sum

X = 1 0.05 0.20 0.25

X = 0 0.01 0.74 0.75

Sum 0.06 0.94 1

P (X = 1, Y = 1) ̸= P (X = 1)P (Y = 1) =⇒ X and Y are dependent
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Example (continuation of last lecture)
• Joint PDF of (X,Y ), the arrival time of Alice and Bob:

fXY (x, y) =

{
1 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 else

0 1
x

1
y

• Marginals:

fX(x) =

{
1 0 ≤ x ≤ 1

0 else
fY (y) =

{
1 0 ≤ y ≤ 1

0 else

• Thus

fXY (x, y) = fX(x)× fY (y), for any x, y

X and Y are independent and identically distributed as Unif(0, 1)
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Consequence of independence

• For any set A and B:

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B)

• More generally, for any function g and h,

E(g(X)h(Y )) = E(g(X))E(h(Y ))
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Consequence of independence

Support of independent random variables must be a product set:

• Support of (X,Y ):

SXY = {(x, y) : fXY (x, y) > 0}

• Support of X (and Y ):

SX = {x : fX(x) > 0} = projection of SXY onto x-axis

SY = {y : fY (y) > 0} = projection of SXY onto y-axis

• If X and Y are independent, then we must have

SXY = SX × SY

• SXY ̸= SX × SY is a simple way to rule out independence
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Examples

Consider the following support set of (X,Y ):

y

x

dependent

y

x

dependent

y

x

possibly independent
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Conditioning



Conditional PMF

Let’s start from discrete:

• For discrete X,Y , if P (X = x) > 0, by definition,

P (Y = y | X = x) =
P (X = x, Y = y)

P (X = x)

• Denote by pY |X(y|x) = P (Y = y | X = x) the conditional PMF of

Y given X = x, which is related to joint PMF and marginal PMF via

pY |X(y|x) = pXY (x, y)

pX(x)
, provided that pX(x) > 0

• Summary:

conditional PMF =
joint PMF

marginal PMF
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Conditional PDF

• For continuous (X,Y ), the conditional PDF of Y given X = x is

defined as

fY |X(y|x) = fXY (x, y)

fX(x)
, provided that fX(x) > 0,

i.e.,

conditional PDF =
joint PDF

marginal PDF

• Interpretation of conditional PDF (in terms of conditional

probability):

P (Y ∈ [y ± ϵ/2] | X ∈ [x± ϵ/2]) ≈ fY |X(y|x)ϵ, ϵ → 0

since

LHS =
P (X ∈ [x± ϵ/2], Y ∈ [y ± ϵ/2])

P (X ∈ [x± ϵ/2])
≈ fXY (x, y)ϵ

2

fX(x)ϵ
= fY |X(y|x)ϵ
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Independence phrased in terms of conditioning

Independence means “conditioning does not change the distribution”:

X and Y independent

⇔ fXY (x, y) = fX(x)fY (y) for all x, y

⇔ fY |X(y|x) = fY (y) for all x such that fX(x) > 0

⇔ fX|Y (x|y) = fX(x) for all y such that fY (y) > 0

that is,

independence ⇔ conditional PDF = unconditional PDF

Similarly, for discrerte RVs

independence ⇔ conditional PMF = unconditional PMF
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Conditional PDF → Joint PDF

Often we use marginal and conditional PDF (given by the problem or our

statistical model) to find joint PDF

fXY = fY |XfX
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Marginal PDF of 2D uniform

Let (X,Y ) be uniformly distributed over some region A (Lec 17):

A

x

Vx

y
Hy

fX(x) =

∫
Vx

fXY (x, y)dy =
length(Vx)

area(A)

fY (y) =

∫
Hy

fXY (x, y)dx =
length(Hy)

area(A)

where Hy and Vx denote the horizontal and vertical segment intersecting

A, respectively.
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Conditional PDF of 2D uniform

A

x

Vx

y
Hy

• Conditioned on X = x, Y is uniformly distributed over Vx, so

fY |X(y|x) =
{

1
length(Vx)

y ∈ Vx

0 else

• Conditioned on Y = y, X is uniformly distributed over Hy , so

fX|Y (x|y) =
{

1
length(Hy)

x ∈ Hy

0 else

• Discrete counterpart: “Equiprobable experiment remains equiprobable after

conditioning” (Lec03).
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Example: Stick breaking

Given a stick of unit length, let’s break it into three pieces as follows:

• First, choose X uniformly on the stick

• Next, choose Y uniformly on the remaining stick

X Y 1−X − Y

0 1

In other words,

• X is the length of the 1st piece

• Y is the length of the 2nd piece

Find the joint PDF fXY , the marginal PDF fY , and E(Y ).
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Example: Stick breaking

X Y 1−X − Y

0 1

• We know X ∼ Unif(0, 1). So the PDF of X is:

fX(x) =

{
1 0 < x < 1

0 else

• Conditioned on X = x, Y ∼ Unif(0, 1− x). So the conditional PDF

of Y given X is

fY |X(y|x) =

{
1

1−x 0 < y < 1− x

0 else
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Example: Stick breaking

• Use fXY = fY |XfX to find joint PDF:

fXY (x, y) =

{
1

1−x 0 < x+ y < 1

0 else

• Marginalize to get fY :

fY (y) =

∫ ∞

−∞
fXY (x, y)dx =

∫ 1−y

0

1

1− x
dx = − ln y

if 0 < y < 1; otherwise, fY (y) = 0.
• Find the average length of the 2nd piece:

E(Y ) =

∫ ∞

−∞
yfY (y)dy =

∫ 1

0
−y ln ydy =

1

4

Compare: average length of the 1nd piece E(X) = 1/2.
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Some observations

X Y 1−X − Y

0 1

Joint PDF:

fXY (x, y) =

{
1

1−x 0 < x+ y < 1

0 else

• Support of (X,Y ) =

1

1

y

x

• Support of X = Support of Y = [0, 1]

• So X and Y are dependent, clearly (if the 1st piece is longer, the

2nd piece tends to be shorter)
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Example: Stick breaking

X Y 1−X − Y

0 1

Joint PDF:

fXY (x, y) =

{
1

1−x 0 < x+ y < 1

0 else

• What is the chance that 2nd piece is longer than 1st piece?

P (Y > X) =

∫ 1/2

0

(∫ 1−x

x

1

1− x
dy

)
dx =

∫ 1/2

0

1− 2x

1− x
dx

= 1− log 2 ≈ 30.6% <
1

2
• On average, 2nd piece is shorter:

E(X) =
1

2
> E(Y ) =

1

4
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Multiple random variables



Random vector

Let X1, . . . , Xn be random variables.

• (X1, . . . , Xn) is called a random vector, which represents a random

point in the Euclidean space Rn. For example, (X1, X2) is a random

point on the plane.

• The concepts of joint PMF pX1,...,Xn (for discrete) or joint PDF

fX1,...,Xn (for continuous) are similarly defined and applied, e.g., for

the latter,

P ((X1, . . . , Xn) ∈ A) =

∫
A
fX1,...,Xn(x1, . . . , xn)dx1 . . . dxn, A ⊂ Rn
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Independence of multiple random variables

X1, X2, . . . , Xn are mutually independent if

• For discrete random variables, their joint PMF factorizes as product

of marginal PMFs:

pX1,...,Xn(x1, . . . , xn) = pX1(x1)× . . .× pXn(xn)

• For continuous random variables, their joint PDF factorizes as

product of marginal PDFs:

fX1,...,Xn(x1, . . . , xn) = fX1(x1)× . . .× fXn(xn)

Example: (X1, X2, X3) uniform over the cube [0, 1]3. Then Xi are iid

Unif(0, 1).
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