S&DS 241 Lecture 18
Conditional PDF & independence

B-H: 7.1
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Recall: Independence of discrete random variables (Lec 6)

Let X,Y be a pair of discrete random variables.
Equivalent definitions of independence:

O PX=zxY=y=PX=x)PY =y),forall z,y

pxy (2,y) px (x) Py (v)
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Recall: Independence of discrete random variables (Lec 6)

Let X,Y be a pair of discrete random variables.
Equivalent definitions of independence:

O PX=zxY=y=PX=x)PY =y),forall z,y

pxy (x,y) px () Py (y)
® Fxy(z,y) = Fx(x)Fy(y)
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\Joint PMF/CDF = product of marginal PMFs/CDFs‘
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Independence of continuous random variables

Let X,Y be a pair of continuous random variables.
Equivalent definitions of independence:

O fxy(z,y) = fx(x)fy(y), forall z,y
® Fxy(z,y) = Fx(z)Fy(y)
that is,

| Joint PDF/CDF = product of marginal PDF /CDF|
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Example (continuation of last lecture)

Consider a randomly sampled individual.
® Let X be the indicator of being a smoker.
® |Let Y be the indicator of developing lung cancer.
Suppose the joint PMF pxy is:
| Y=1]|Y=0]Sum
0.05 0.20 | 0.25

1
0] 0.01 0.74 | 0.75
Sum 0.06 0.94 1

X
X

PX=1Y=1)#P(X=1)P(Y =1) = X and Y are dependent
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Example (continuation of last lecture)

e Joint PDF of (X,Y), the arrival time of Alice and Bob:

)
1

1 0<z<1,0<y<l1

fxy(z,y) = {

0 else
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Example (continuation of last lecture)
e Joint PDF of (X,Y), the arrival time of Alice and Bob:

Yy
1
1 0<z<1,0<y<l1
fXY($)y) :{
0 else
T
0 1
® Marginals:
1 0<zx<1 1 0<y<1
fx(z) = v(y) =
0 else 0 else
® Thus

fxv(z,y) = fx (@) x fy(y), foranyz,y
X and Y are independent and identically distributed as Unif(0, 1)
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Consequence of independence

® For any set A and B:
P(X €AY eB)=P(X AP € B)

® More generally, for any function g and h,
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Consequence of independence

Support of independent random variables must be a product set:
e Support of (X,Y):

Sxy ={(z,y) : fxy(z,y) >0}
e Support of X (and Y):

Sx ={z: fx(x) > 0} = projection of Sxy onto z-axis

Sy ={y: fy(y) > 0} = projection of Sxy onto y-axis
e |f X and Y are independent, then we must have
SXY = SX X Sy

® Sxy # Sx X Sy is a simple way to rule out independence
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Examples

Consider the following support set of (X,Y):

)
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Examples

Consider the following support set of (X,Y):

)

dependent

Y

dependent

possibly independent
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Conditional PMF

Let’s start from discrete:
® For discrete X, Y, if P(X = z) > 0, by definition,

P(X =xz,Y =y)

PY=y|X=x)= PX = 1)
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Conditional PMF

Let’s start from discrete:
® For discrete X, Y, if P(X = z) > 0, by definition,

P(X =xz,Y =y)

PY=y|X=x)= PX = 1)

® Denote by py|x(y|z) = P(Y =y | X = ) the conditional PMF of
Y given X = x, which is related to joint PMF and marginal PMF via

pxy(z,y)

, provided that px(z) >0
px ()

PY|X(Z/|$) =
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Conditional PMF

Let’s start from discrete:
® For discrete X, Y, if P(X = z) > 0, by definition,

P(X =xz,Y =y)

PY=y|X=x)= PX = 1)

® Denote by py|x(y|z) = P(Y =y | X = ) the conditional PMF of
Y given X = x, which is related to joint PMF and marginal PMF via

pxy(z,y)

, provided that px(z) >0
px ()

PY|X(?/|$) =

® Summary:

joint PMF

ditional PMF = ———M ———
conditiona marginal PMF
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Conditional PDF

® For continuous (X,Y), the conditional PDF of Y given X =z is

defined as

fyix(ylz) = T(-T)’ provided that fx(z) > 0,

conditional PDF =

joint PDF

marginal PDF
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Conditional PDF

® For continuous (X,Y), the conditional PDF of Y given X =z is

defined as
fyix(ylz) = M, provided that fx(z) > 0,
fx(x)
ie.,
. joint PDF
dit | P DF = ————
condrtiona marginal PDF

® Interpretation of conditional PDF (in terms of conditional
probability):

PY ely+e/2]| X €[z +e/2]) = fyix(ylz)e, €—=0

since

P(X e[z +e€/2,Y € [y+e€/2]) - Ixv(z,y)e
P(X €[z £¢€/2]) fx(x)e

LHS = = fyix(ylz)e
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Independence phrased in terms of conditioning

Independence means “conditioning does not change the distribution”:

X and Y independent
& fxv(z,y) = fx(@)fr(y) for all =,y
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Independence phrased in terms of conditioning

Independence means “conditioning does not change the distribution”:

X and Y independent

< fxv(z,y) = fx(@)fv(y) for all z,y

& fyixWlz) = fr(y) for all z such that fx(x) >0

& fxp(zly) = fx(z) for all y such that fy(y) > 0
that is,

independence @’conditional PDF = unconditional PDF‘

Similarly, for discrerte RVs

independence | < | conditional PMF = unconditional PMF |
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Conditional PDF — Joint PDF

Often we use marginal and conditional PDF (given by the problem or our
statistical model) to find joint PDF

Ixy = fyixfx
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Marginal PDF of 2D uniform

Let (X,Y") be uniformly distributed over some region A (Lec 17):

fx(z) =

Fev(a, )y = <PER (V)

" ~ area(A)
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Marginal PDF of 2D uniform

Let (X,Y") be uniformly distributed over some region A (Lec 17):

_ v length(V;)
fX(‘T) - fXY( y)dy area(A)
Iength( v)
/ Jxy (@ y)d area(A)

where H, and V,, denote the horizontal and vertical segment intersecting
A, respectively.
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Conditional PDF of 2D uniform

® Conditioned on X =z, Y is uniformly distributed over V, so

ye Vs

1
Jyix (ylz) = length(Vz)
0 else

® Conditioned on Y =y, X is uniformly distributed over Hy, so

1
Ixy (zly) = {'e"gth(Hy) © € Hy
0

else

® Discrete counterpart: “Equiprobable experiment remains equiprobable after
conditioning” (Lec03).
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Example: Stick breaking

Given a stick of unit length, let’s break it into three pieces as follows:
® First, choose X uniformly on the stick
® Next, choose Y uniformly on the remaining stick

— | y [ R e p—

0 1
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Example: Stick breaking

Given a stick of unit length, let’s break it into three pieces as follows:

® First, choose X uniformly on the stick
® Next, choose Y uniformly on the remaining stick

} X | Y | 1—X—Y —

0 1

In other words,
® X is the length of the 1lst piece
® Y is the length of the 2nd piece
Find the joint PDF fxy, the marginal PDF fy, and E(Y).
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Example: Stick breaking
— | y [ T e p—

0 1

® We know X ~ Unif(0,1). So the PDF of X is:

fX(:c):{l 0<z<l1

0 else
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Example: Stick breaking

} X | Y | 1—X—Y —

0 1

® We know X ~ Unif(0,1). So the PDF of X is:

fX(:c):{l 0<z<l1

0 else

¢ Conditioned on X =z, Y ~ Unif(0,1 — x). So the conditional PDF
of Y given X is

4 O<y<l—z

frix(yle) = { o

0 else
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Example: Stick breaking

® Use fxy = fy|XfX to find joint PDF:

= O<z+y<l

0 else

fXY(xa y) = {
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Example: Stick breaking

® Use fxy = fy|XfX to find joint PDF:

= O<z+y<l

fXY(xa y) = {

0 else

® Marginalize to get fy:

1
1—=x

dr =—1Iny

fr(y) = /_Z fxy(z,y)de = /01—?/

if 0 <y < 1; otherwise, fy(y) = 0.
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Example: Stick breaking

® Use fxy = fy|XfX to find joint PDF:

= O<z+y<l

fXY(xa y) = {

0 else

® Marginalize to get fy:

1
1—=x

dr =—1Iny

fr(y) = /_Z fxy(z,y)de = /01—?/

if 0 <y < 1; otherwise, fy(y) = 0.
® Find the average length of the 2nd piece:

e’} 1
E(Y)Z/ yfy(y)dyz/o *ylnydyzi

—00

Compare: average length of the 1nd piece E(X) = 1/2. 18/24



Some observations

Joint PDF:

e Support of (X,Y) =
— @
® Support of X = Support of Y = [0, 1]
® So X and Y are dependent, clearly (if the 1st piece is longer, the
2nd piece tends to be shorter)
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Example: Stick breaking
— Y R g —

0 1

Joint PDF:

- O<z+y<l1

Ixy(z,y) = {1_9”

0 else

® What is the chance that 2nd piece is longer than 1st piece?
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0 else

® What is the chance that 2nd piece is longer than 1st piece?

1/2 / -z 4 1/21 _9
P(Y>X):/ (/ 1_dy>dx:/ l_wdw
0 x x 0 z

1
=1-1log2~30.6% < ;
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Example: Stick breaking
— Y R g —

0 1

Joint PDF:

- O<z+y<l1

Ixy(z,y) = {1_9”

0 else

® What is the chance that 2nd piece is longer than 1st piece?

1/2 / -z 4 1/21 _9
P(Y>X):/ (/ 1_dy>dx:/ l_wdw
0 x x 0 z

1
=1-1log2~30.6% < ;

® On average, 2nd piece is shorter:
E(X) =< > B(Y) =
S 2 4
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Multiple random variables



Random vector

Let X1,...,X,, be random variables.

® (Xy,...,X,) is called a random vector, which represents a random
point in the Euclidean space R". For example, (X1, X5) is a random
point on the plane.
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Random vector

Let X1,...,X,, be random variables.
® (Xy,...,X,) is called a random vector, which represents a random
point in the Euclidean space R". For example, (X1, X5) is a random
point on the plane.
® The concepts of joint PMF px, . x, (for discrete) or joint PDF
fxi.....x,, (for continuous) are similarly defined and applied, e.g., for
the latter,

P((Xl, e ,Xn) S A) = / le,..A,Xn(-rla ... ,xn)dl‘l .. .d;vn, ACR”
A
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Independence of multiple random variables

X1, Xs,..., X, are mutually independent if

® For discrete random variables, their joint PMF factorizes as product
of marginal PMFs:

DXy, X (X1, -, Tn) = Dxy (1) X ... X px, (Tn)

® For continuous random variables, their joint PDF factorizes as
product of marginal PDFs:

Ixixn (@1, - 2n) = fx (1) X .00 X fx, (20)

Example: (X1, X2, X3) uniform over the cube [0,1]*. Then X; are iid
Unif(0, 1).
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