S&DS 241 Lecture 21
Covariance and correlation
B-H: 7.3, 10.1
Given a random variable X

Recall mean and variance

- EX: mean value
- $\text{Var}(X) = E((X - EX)^2)$: mean-square deviation around the mean
Given two random variables X and Y

Suppose

- X has mean EX and $\text{Var}(X) = \sigma_X^2$
- Y has mean EY and $\text{Var}(Y) = \sigma_Y^2$
Given two random variables X and Y

Suppose

- X has mean EX and $\text{Var}(X) = \sigma_X^2$
- Y has mean EY and $\text{Var}(Y) = \sigma_Y^2$

Two important quantities:

- Covariance:

 $$\text{Cov}(X, Y) = E((X - EX)(Y - EY))$$

 summary statistic for the “tendency” of X and Y to move in the same direction
Given two random variables X and Y

Suppose

- X has mean E_X and $\text{Var}(X) = \sigma^2_X$
- Y has mean E_Y and $\text{Var}(Y) = \sigma^2_Y$

Two important quantities:

- **Covariance:**
 \[
 \text{Cov}(X, Y) = E((X - E_X)(Y - E_Y))
 \]
 summary statistic for the “tendency” of X and Y to move in the same direction

- **Correlation coefficient:**
 \[
 \rho(X, Y) = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y}
 \]
 (Denoted by $\text{Corr}(X, Y)$ in B-H)
Remarks

Covariance:

- \(\text{Cov}(X, Y) = E(XY) - (EX)(EY) \).

Correlation coefficient:

- \(-1 \leq \rho(X, Y) \leq 1\): to be justified later. So \(\rho\) is a normalized version of \(\text{Cov}\).

- Positively correlated: \(\rho > 0\)
 - e.g. \(X = \text{midterm grade}, Y = \text{total grade}\)
 - e.g. \(X = \text{gas price}, Y = \text{stock price of TSLA}\)

- Negatively correlated: \(\rho < 0\)
 - e.g. \(X = \text{yield of crop}, Y = \text{market price}\)
 - e.g. roll a die for 100 times, \(X = \text{number of 1's}, Y = \text{number of 6's}\)
Remarks

Covariance:

- $\text{Cov}(X, Y) = E(XY) - (EX)(EY)$.
- $\text{Cov}(X, X) = \text{Var}(X)$

Correlation coefficient:

- $-1 \leq \rho(X, Y) \leq 1$: to be justified later. So ρ is a normalized version of Cov.

- Positively correlated: $\rho > 0$
 - e.g. $X =$ midterm grade, $Y =$ total grade
- Negatively correlated: $\rho < 0$
 - e.g. $X =$ yield of crop, $Y =$ market price
 - e.g. roll a die for 100 times, $X =$ number of 1's, $Y =$ number of 6's
Remarks

Covariance:

- \(\text{Cov}(X, Y) = E(XY) - (EX)(EY) \).
- \(\text{Cov}(X, X) = \text{Var}(X) \)
- \(\text{Cov}(X, Y) = \text{Cov}(Y, X) \)

Correlation coefficient:

- \(-1 \leq \rho(X, Y) \leq 1\): to be justified later. So \(\rho\) is a normalized version of \(\text{Cov}\).

- Positively correlated: \(\rho > 0\)
 - e.g. \(X = \) midterm grade, \(Y = \) total grade
 - e.g. \(X = \) gas price, \(Y = \) stock price of TSLA

- Negatively correlated: \(\rho < 0\)
 - e.g. \(X = \) yield of crop, \(Y = \) market price
 - e.g. roll a die for 100 times, \(X = \) number of 1's, \(Y = \) number of 6's
Remarks

Covariance:

- $\text{Cov}(X, Y) = E(XY) - (E(X))(E(Y))$.
- $\text{Cov}(X, X) = \text{Var}(X)$
- $\text{Cov}(X, Y) = \text{Cov}(Y, X)$
Remarks

Covariance:
- $\text{Cov}(X, Y) = E(XY) - (EX)(EY)$.
- $\text{Cov}(X, X) = \text{Var}(X)$
- $\text{Cov}(X, Y) = \text{Cov}(Y, X)$

Correlation coefficient:
- $-1 \leq \rho(X, Y) \leq 1$: to be justified later. So ρ is a normalized version of Cov.
Remarks

Covariance:

- \(\text{Cov}(X, Y) = E(XY) - (EX)(EY) \).
- \(\text{Cov}(X, X) = \text{Var}(X) \)
- \(\text{Cov}(X, Y) = \text{Cov}(Y, X) \)

Correlation coefficient:

- \(-1 \leq \rho(X, Y) \leq 1\): to be justified later. So \(\rho \) is a normalized version of \(\text{Cov} \)
- Positively correlated: \(\rho > 0 \)
Remarks

Covariance:

- \(\text{Cov}(X, Y) = E(XY) - (EX)(EY) \).
- \(\text{Cov}(X, X) = \text{Var}(X) \)
- \(\text{Cov}(X, Y) = \text{Cov}(Y, X) \)

Correlation coefficient:

- \(-1 \leq \rho(X, Y) \leq 1 \): to be justified later. So \(\rho \) is a normalized version of \(\text{Cov} \)
- Positively correlated: \(\rho > 0 \)
 - e.g. \(X=\)midterm grade, \(Y=\)total grade
- Negatively correlated: \(\rho < 0 \)
 - e.g. \(X=\)yield of crop, \(Y=\)market price
 - e.g. roll a die for 100 times, \(X=\)number of 1’s, \(Y=\)number of 6’s
Remarks

Covariance:

- \(\text{Cov}(X, Y) = E(XY) - (EX)(EY). \)
- \(\text{Cov}(X, X) = \text{Var}(X) \)
- \(\text{Cov}(X, Y) = \text{Cov}(Y, X) \)

Correlation coefficient:

- \(-1 \leq \rho(X, Y) \leq 1\): to be justified later. So \(\rho \) is a normalized version of \(\text{Cov} \)
- Positively correlated: \(\rho > 0 \)
 - e.g. \(X=\)midterm grade, \(Y=\)total grade
 - e.g. \(X=\)gas price, \(Y=\)stock price of TSLA
Remarks

Covariance:

- \(\text{Cov}(X, Y) = E(XY) - (EX)(EY) \).
- \(\text{Cov}(X, X) = \text{Var}(X) \)
- \(\text{Cov}(X, Y) = \text{Cov}(Y, X) \)

Correlation coefficient:

- \(-1 \leq \rho(X, Y) \leq 1\): to be justified later. So \(\rho \) is a normalized version of \(\text{Cov} \)
- **Positively correlated**: \(\rho > 0 \)
 - e.g. \(X=\text{midterm grade}, Y=\text{total grade} \)
 - e.g. \(X=\text{gas price}, Y=\text{stock price of TSLA} \)
- **Negatively correlated**: \(\rho < 0 \)
Remarks

Covariance:

• $\text{Cov}(X, Y) = E(XY) - (EX)(EY)$.
• $\text{Cov}(X, X) = \text{Var}(X)$
• $\text{Cov}(X, Y) = \text{Cov}(Y, X)$

Correlation coefficient:

• $-1 \leq \rho(X, Y) \leq 1$: to be justified later. So ρ is a normalized version of Cov

• **Positively correlated**: $\rho > 0$
 ▶ e.g. $X=\text{midterm grade}, Y=\text{total grade}$
 ▶ e.g. $X=\text{gas price}, Y=\text{stock price of TSLA}$

• **Negatively correlated**: $\rho < 0$
 ▶ e.g. $X=\text{yield of crop}, Y=\text{market price}$
Remarks

Covariance:

- \(\text{Cov}(X, Y) = E(XY) - (EX)(EY) \).
- \(\text{Cov}(X, X) = \text{Var}(X) \)
- \(\text{Cov}(X, Y) = \text{Cov}(Y, X) \)

Correlation coefficient:

- \(-1 \leq \rho(X, Y) \leq 1\): to be justified later. So \(\rho \) is a normalized version of \(\text{Cov} \)
- \underline{Positively correlated}: \(\rho > 0 \)
 - e.g. \(X=\text{midterm grade}, Y=\text{total grade} \)
 - e.g. \(X=\text{gas price}, Y=\text{stock price of TSLA} \)
- \underline{Negatively correlated}: \(\rho < 0 \)
 - e.g. \(X=\text{yield of crop}, Y=\text{market price} \)
 - e.g. roll a die for 100 times, \(X=\text{number of 1's}, Y=\text{number of 6's} \)
Uncorrelated

We say X and Y are **uncorrelated** if

$$\text{Cov}(X, Y) = 0$$

$$\iff \rho(X, Y) = 0$$

$$\iff E(XY) = (EX)(EY)$$
Independent versus uncorrelated

- Independent \Rightarrow uncorrelated: $E(XY) = (EX)(EY)$.
- Uncorrelated $\not\Rightarrow$ independent:

Example (HW3): Choose a point uniformly at random to be one of the four vertices of the diamond below. Let (X, Y) denote its coordinate.

Then $E(XY) = 0 = EX = EY$, but X and Y are dependent.
Properties

1. Shift-invariance: \(\text{Cov}(X + b, Y + d) = \text{Cov}(X, Y) \)

 ▶ Next: WLOG assume all random variables have zero mean

2. Bilinearity:
 \[
 \text{Cov}(X + Y, W + Z) = \text{Cov}(X, W) + \text{Cov}(Y, W) + \text{Cov}(X, Z) + \text{Cov}(Y, Z)
 \]
Properties

1. **Shift-invariance:** \(\text{Cov}(X + b, Y + d) = \text{Cov}(X, Y) \)
 - Next: WLOG assume all random variables have zero mean

2. \(\text{Cov}(aX, cY) = ac \text{Cov}(X, Y) \).
Properties

1. **Shift-invariance:** $\text{Cov}(X + b, Y + d) = \text{Cov}(X, Y)$

 ▶ Next: WLOG assume all random variables have zero mean

2. $\text{Cov}(aX, cY) = ac \text{Cov}(X, Y)$. More generally

 $$\text{Cov}(aX + b, cY + d) = ac\text{Cov}(X, Y)$$

 and

 $$\rho(aX + b, cY + d) = \rho(X, Y), \quad \text{provided that } a, c > 0$$

Interpretation: the corr coeff between temperature in New York and that in New Haven is unchanged when expressed in either °F or °C
Properties

1. Shift-invariance: \(\text{Cov}(X + b, Y + d) = \text{Cov}(X, Y) \)

 Next: WLOG assume all random variables have zero mean

2. \(\text{Cov}(aX, cY) = ac \text{Cov}(X, Y) \). More generally

\[
\text{Cov}(aX + b, cY + d) = ac \text{Cov}(X, Y)
\]

and

\[
\rho(aX + b, cY + d) = \rho(X, Y), \quad \text{provided that } a, c > 0
\]

Interpretation: the corr coeff between temperature in New York and that in New Haven is unchanged when expressed in either °F or °C

3. Bilinearity:

\[
\text{Cov}(X + Y, W + Z) = \text{Cov}(X, W) + \text{Cov}(Y, W) + \text{Cov}(X, Z) + \text{Cov}(Y, Z)
\]
Properties

4 Var(\(X + Y\)) = Var(X) + Var(Y) + 2Cov(X, Y), or equivalently

\[
\sigma^2_{X+Y} = \sigma^2_X + \sigma^2_Y + 2\rho(X, Y)\sigma_X\sigma_Y
\]

Therefore

\[
\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y) \iff X \text{ and } Y \text{ are uncorrelated}
\]
Properties

4. \(\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y) + 2\text{Cov}(X, Y) \), or equivalently

\[
\sigma_{X+Y}^2 = \sigma_X^2 + \sigma_Y^2 + 2\rho(X, Y)\sigma_X\sigma_Y
\]

Therefore

\(\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y) \iff X \text{ and } Y \text{ are uncorrelated} \)

5. \[
\text{Cov} \left(\sum_{i=1}^{n} X_i, \sum_{j=1}^{m} Y_j \right) = \sum_{i=1}^{n} \sum_{j=1}^{m} \text{Cov}(X_i, Y_j)
\]
Properties

4. \(\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y) + 2\text{Cov}(X, Y) \), or equivalently

\[
\sigma^2_{X+Y} = \sigma^2_X + \sigma^2_Y + 2\rho(X, Y)\sigma_X\sigma_Y
\]

Therefore

\[
\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y) \iff X \text{ and } Y \text{ are uncorrelated}
\]

5. \[
\text{Cov}\left(\sum_{i=1}^{n} X_i, \sum_{j=1}^{m} Y_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} \text{Cov}(X_i, Y_j)
\]

6. \[
\text{Var}(X_1 + \cdots + X_n) = \text{Var}(X_1) + \cdots + \text{Var}(X_n) + \sum_{i \neq j} \text{Cov}(X_i, X_j)
\]
Variance of a sum

Corollary: When do variances add up?

• Suppose \(X_1, \ldots, X_n\) are uncorrelated, that is, \(\text{Cov}(X_i, X_j) = 0\) whenever \(i \neq j\). Then

\[
\text{Var}(X_1 + \cdots + X_n) = \text{Var}(X_1) + \cdots + \text{Var}(X_n)
\]

Special case: \(X_1, \ldots, X_n\) are independent
Example

Let X be a random variable (signal) with unit variance. Let Y be a noisy observation of X

$$Y = X + Z$$

where the noise Z is independent of X and has variance σ^2.

X and Y are highly (positively) correlated when σ is small (less noisy).

X and Y are almost uncorrelated when σ is large (very noisy).
Example

Let X be a random variable (signal) with unit variance. Let Y be a noisy observation of X

$$Y = X + Z$$

where the noise Z is independent of X and has variance σ^2.

- **Covariance**

 $$\text{Cov}(X, Y) = \text{Cov}(X, X + Z) = \text{Cov}(X, X) + \text{Cov}(X, Z) = 1$$

 $$\text{Var}(X) + 0 = 1$$

- **Correlation coefficient**

 $$\rho(X, Y) = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}} = \frac{1}{\sqrt{1 + \sigma^2}}$$

- X and Y are highly (positively) correlated when σ is small (less noisy).
- X and Y are almost uncorrelated when σ is large (very noisy).
Example

Let X be a random variable (signal) with unit variance. Let Y be a noisy observation of X

$$Y = X + Z$$

where the noise Z is independent of X and has variance σ^2.

- **Covariance**

 $$\text{Cov}(X, Y) = \text{Cov}(X, X + Z) = \text{Cov}(X, X) + \text{Cov}(X, Z) = 1$$

 $$\text{Var}(X)$$

 $$0$$

- **Correlation coefficient**

 $$\rho(X, Y) = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}} = \frac{1}{\sqrt{1 + \sigma^2}}$$

- X and Y are highly (positively) correlated when σ is small (less noisy)

- X and Y are almost uncorrelated when σ is large (very noisy)
Example

Scatter plot of 500 independent samples of (X, Y):

$\sigma = 0.1, \rho = 0.995$
Example

Scatter plot of 500 independent samples of \((X, Y)\):

\[\sigma = 0.3, \rho = 0.96 \]
Example

Scatter plot of 500 independent samples of \((X, Y)\):

\[
\sigma = 0.5, \, \rho = 0.89
\]
Example

Scatter plot of 500 independent samples of (X, Y):

\[\sigma = 1, \rho = 0.71 \]
Example

Scatter plot of 500 independent samples of \((X, Y)\):

\[
\sigma = 2, \rho = 0.45
\]
Example

Scatter plot of 500 independent samples of \((X, Y)\):

\[\sigma = 5, \rho = 0.2 \]
Example

Similarly, if $Y = -X + Z$, then

$$\rho(X, Y) = -\frac{1}{\sqrt{1 + \sigma^2}}$$

Scatter plot of 500 independent samples of (X, Y):

$$\sigma = 0.3, \rho = -0.96$$
Intuition

- If X and Y are highly correlated (i.e., $\rho(X, Y) \approx \pm 1$), then they are approximately related using a straight line. Thus we can predict one by the other by a linear equation. This is the idea of linear regression (in its most basic form)
Caveat

- Correlation only capture “linear” dependence.
 - Example: $X \sim \text{Unif}(-1, 1)$, $Y = X^2$. $\text{Cov}(X, Y) = 0$ (Exercise)
 - Cannot predict Y using linear instrument, but X completely determines Y (non-linearly)
Example: exam score

Assume X (Pset score), Y (midterm score) and Z (final score) are independent and $\text{Unif}(0, 100)$. Total score:

$$S = 0.3X + 0.3Y + 0.4Z$$

Then

- $\text{Var}(X) = \text{Var}(Y) = \text{Var}(Z) = \sigma^2$ and
 $\text{Var}(S) = (0.3^2 + 0.3^2 + 0.4^2)\sigma^2$

- Correlation between Pset and total

$$\rho(X, S) = \frac{\text{Cov}(X, 0.3X + 0.3Y + 0.4Z)}{\sqrt{\text{Var}(X)\text{Var}(S)}} = \frac{0.3}{\sqrt{0.3^2 + 0.3^2 + 0.4^2}}$$

$$\approx 0.51$$

- Similarly, $\rho(Y, S) \approx 0.51$, $\rho(Z, S) \approx 0.69$.
Example: dice

Roll a fair die for \(n \) times, \(X \) = number of \(\square \), \(Y \) = number of \(\Box \). Find \(\rho(X, Y) \)

- \(X \sim \text{Bin}(n, 1/6) \), \(Y \sim \text{Bin}(n, 1/6) \)
Example: dice

Roll a fair die for n times, $X =$ number of \(\square \), $Y =$ number of \(\blacksquare \). Find $\rho(X, Y)$

- $X \sim \text{Bin}(n, 1/6)$, $Y \sim \text{Bin}(n, 1/6)$
- Are they independent?
Example: dice

Roll a fair die for \(n \) times, \(X = \) number of \(\bullet \), \(Y = \) number of \(\blacksquare \). Find \(\rho(X, Y) \)

- \(X \sim \text{Bin}(n, 1/6) \), \(Y \sim \text{Bin}(n, 1/6) \)
- Are they independent? No.
Example: dice

Roll a fair die for \(n \) times, \(X = \) number of \(\Box \), \(Y = \) number of \(\blacksquare \). Find \(\rho(X, Y) \)

- \(X \sim \text{Bin}(n, 1/6), \ Y \sim \text{Bin}(n, 1/6) \)
- Are they independent? No.
- Decompose binomial as sum of independent Bernoullis:

\[
X = \sum_{i=1}^{n} X_i, \quad X_i = \begin{cases} 1 & \text{ith toss is } 1 \\ 0 & \text{else} \end{cases}
\]

\[
Y = \sum_{i=1}^{n} Y_i, \quad Y_i = \begin{cases} 1 & \text{ith toss is } 6 \\ 0 & \text{else} \end{cases}
\]

- Each \(X_i \) and \(Y_i \) are dependent; for \(i \neq j \), \(X_i \) and \(Y_j \) are independent
Example: dice

\[\text{Cov}(X, Y) = \text{Cov}(X_1 + \ldots + X_n, Y_1 + \ldots + Y_n) = \sum_{i=1}^{n} \sum_{j=1}^{n} \text{Cov}(X_i, Y_j) \]
Example: dice

\[
\text{Cov}(X, Y) = \text{Cov}(X_1 + \ldots + X_n, Y_1 + \ldots + Y_n) = \sum_{i=1}^{n} \sum_{j=1}^{n} \text{Cov}(X_i, Y_j)
\]

\[
= \sum_{i=1}^{n} \text{Cov}(X_i, Y_i) + \sum_{i \neq j} \text{Cov}(X_i, Y_j)
\]

\[
0, \text{ by independence}
\]

\[\frac{\rho(X, Y)}{\text{Var}(X) \text{Var}(Y)} = -\frac{\frac{\text{Cov}(X, Y)}{n}}{\sqrt{\frac{\text{Var}(X)}{n}} \sqrt{\frac{\text{Var}(Y)}{n}}} = -\frac{1}{\sqrt{6}}\times\frac{\sqrt{6}}{\sqrt{6}} = -\frac{1}{6}\]
Example: dice

\[
\text{Cov}(X, Y) = \text{Cov}(X_1 + \ldots + X_n, Y_1 + \ldots + Y_n) = \sum_{i=1}^{n} \sum_{j=1}^{n} \text{Cov}(X_i, Y_j)
\]

\[
= \sum_{i=1}^{n} \text{Cov}(X_i, Y_i) + \sum_{i \neq j} \text{Cov}(X_i, Y_j)
\]

\[
0, \text{ by independence}
\]

\[
= \sum_{i=1}^{n} E(X_i Y_i) - E(X_i)E(Y_i) = -\frac{n}{36}
\]

\[
0 - \frac{1}{6} \times \frac{1}{6}
\]
Example: dice

\[
\text{Cov}(X, Y) = \text{Cov}(X_1 + \ldots + X_n, Y_1 + \ldots + Y_n) = \sum_{i=1}^{n} \sum_{j=1}^{n} \text{Cov}(X_i, Y_j)
\]

\[
= \sum_{i=1}^{n} \text{Cov}(X_i, Y_i) + \sum_{i \neq j} \text{Cov}(X_i, Y_j)
\]

\[
= \sum_{i=1}^{n} \left(E(X_i Y_i) - E(X_i)E(Y_i) \right) = -\frac{n}{36}
\]

and \(\text{Var}(X) = \text{Var}(Y) = n \times \frac{1}{6} \times \frac{5}{6} \). Thus

\[
\rho(X, Y) = \frac{-\frac{n}{36}}{n \frac{1}{6} \frac{5}{6}} = -\frac{1}{5}
\]
Why $\rho \in [-1, 1]$?
Cauchy-Schwarz inequality (B-H 10.1)

Theorem

For any random variables U, V:

$$(E(UV))^2 \leq E(U^2)E(V^2),$$

with equality if and only if $U = cV$ for some constant c.

Corollary

For any random variables X, Y:

$$|\text{Cov}(X, Y)| \leq \sigma_X \sigma_Y,$$

i.e. $$|\rho(X, Y)| \leq 1$$

Furthermore,

- $\rho(X, Y) = 1 \iff Y = aX + b$ for some $a > 0$ (perfectly positively correlated): e.g. X is temperature in $\degree C$ and Y in $\degree F$
- $\rho(X, Y) = -1 \iff Y = aX + b$ for some $a < 0$ (perfectly negatively correlated): e.g. X = number of Heads, Y = number of Tails
Cauchy-Schwarz inequality (B-H 10.1)

Theorem

For any random variables U, V:

$$(E(UV))^2 \leq E(U^2)E(V^2),$$

with equality if and only if $U = cV$ for some constant c.

Corollary

For any random variables X, Y:

$$|\text{Cov}(X, Y)| \leq \sigma_X\sigma_Y,$$

i.e. $|\rho(X, Y)| \leq 1$

Furthermore,

- $\rho(X, Y) = 1 \iff Y = aX + b$ for some $a > 0$ (perfectly positively correlated): e.g. X is temperature in °C and Y in °F
- $\rho(X, Y) = -1 \iff Y = aX + b$ for some $a < 0$ (perfectly negatively correlated): e.g. X=number of Heads, Y = number of Tails
Cauchy-Schwarz inequality: proof (optional)

Consider the function:

\[f(\lambda) = E(U - \lambda V)^2 \]
\[= E(U^2) + \lambda^2 E(V^2) - 2\lambda E(UV) \]

- By definition, \(f(\lambda) \geq 0 \) for all \(\lambda \). The minimum of the parabola is achieved at \(\lambda_0 = \frac{E(UV)}{E(V^2)} \) to be

\[E(U^2) - \left(\frac{E(UV)}{E(V^2)} \right)^2, \]

which must be non-negative.

- (The case of equality) Suppose the minimum is zero. Then \(f(\lambda_0) = E(U - \lambda_0 V)^2 = 0 \), which means that \(U - \lambda_0 V \) is always zero, i.e., \(U = \lambda_0 V \).
Application: portfolio optimization

- Two assets:
 - Stock return S: $\mu_S = 10\%$, $\sigma_S = 10\%$
 - Bond return B: $\mu_B = 5\%$, $\sigma_B = 5\%$
 - Correlation coefficient: $\rho(S, B) = -0.5$
 - Incentive to invest in bond: hedge the risk of stock!
Application: portfolio optimization

- Two assets:
 - Stock return S: $\mu_S = 10\%$, $\sigma_S = 10\%$
 - Bond return B: $\mu_B = 5\%$, $\sigma_B = 5\%$
 - Correlation coefficient: $\rho(S, B) = -0.5$
 - Incentive to invest in bond: hedge the risk of stock!

- Portfolio: invest λ fraction of funds in stock and $1 - \lambda$ in bond.
Application: portfolio optimization

- Two assets:
 - Stock return \(S \): \(\mu_S = 10\% \), \(\sigma_S = 10\% \)
 - Bond return \(B \): \(\mu_B = 5\% \), \(\sigma_B = 5\% \)
 - Correlation coefficient: \(\rho(S, B) = -0.5 \)
 - Incentive to invest in bond: hedge the risk of stock!

- Portfolio: invest \(\lambda \) fraction of funds in stock and \(1 - \lambda \) in bond.

- Return: \(D = \lambda S + (1 - \lambda)B \)
 - Expected return:
 \[
 \mu_D = \lambda \mu_S + (1 - \lambda) \mu_B
 \]
 - Variance:
 \[
 \sigma_D^2 = \lambda^2 \sigma_S^2 + (1 - \lambda)^2 \sigma_B^2 + 2\lambda(1 - \lambda)\rho(S, B)\sigma_S\sigma_B
 \]
Performance of portfolio

- Minimal risk ($\sigma_D = 4\%$) occurred at $\mu_D = 6.25\%$: $\frac{1}{4}S + \frac{3}{4}B$
- As $\lambda \uparrow$, portfolio shifts to stock
 - return \uparrow; volatility first \downarrow then \uparrow
Performance of portfolio

- Minimal risk ($\sigma_D = 4\%$) occurred at $\mu_D = 6.25\%$: $\frac{1}{4} S + \frac{3}{4} B$
- As $\lambda \uparrow$, portfolio shifts to stock
 - return \uparrow; volatility first \downarrow then \uparrow
- A reasonable investor would not operate on the left of the minimum
Performance of portfolio

- Minimal risk ($\sigma_D = 4\%$) occurred at $\mu_D = 6.25\%$: $\frac{1}{4} S + \frac{3}{4} B$
- As $\lambda \uparrow$, portfolio shifts to stock
 - return ↑; volatility first ↓ then ↑
- A reasonable investor would not operate on the left of the minimum
- Things become more complicated with multiple assets (Markowitz portfolio optimization)
Performance of portfolio

- Minimal risk ($\sigma_D = 4\%$) occurred at $\mu_D = 6.25\%$: $\frac{1}{4}S + \frac{3}{4}B$
- As $\lambda \uparrow$, portfolio shifts to stock
 - return \uparrow; volatility first \downarrow then \uparrow
- A reasonable investor would not operate on the left of the minimum
- Things become more complicated with multiple assets (Markowitz portfolio optimization)
- Can you go make a fortune after class? What’s the catch?