S&DS 241 Lecture 21 Covariance and correlation

B-H: 7.3, 10.1

Given a random variable X

Recall mean and variance

- EX: mean value
- $Var(X) = E(X EX)^2$: mean-square deviation around the mean

Given two random variables \boldsymbol{X} and \boldsymbol{Y}

Suppose

- X has mean EX and $\operatorname{Var}(X) = \sigma_X^2$
- Y has mean EY and $\operatorname{Var}(Y) = \sigma_Y^2$

Given two random variables \boldsymbol{X} and \boldsymbol{Y}

Suppose

- X has mean EX and $Var(X) = \sigma_X^2$
- Y has mean EY and $\operatorname{Var}(Y) = \sigma_Y^2$

Two important quantities:

• Covariance:

$$Cov(X, Y) = E((X - EX)(Y - EY))$$

summary statistic for the "tendency" of \boldsymbol{X} and \boldsymbol{Y} to move in the same direction

Given two random variables X and Y

Suppose

- X has mean EX and $Var(X) = \sigma_X^2$
- Y has mean EY and $\operatorname{Var}(Y) = \sigma_Y^2$

Two important quantities:

• Covariance:

$$Cov(X, Y) = E((X - EX)(Y - EY))$$

summary statistic for the "tendency" of \boldsymbol{X} and \boldsymbol{Y} to move in the same direction

• Correlation coefficient:

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y}$$

(Denoted by Corr(X, Y) in B-H)

Covariance:

• $\operatorname{Cov}(X, Y) = E(XY) - (EX)(EY).$

Covariance:

- $\operatorname{Cov}(X,Y) = E(XY) (EX)(EY).$
- $\operatorname{Cov}(X, X) = \operatorname{Var}(X)$

Covariance:

- $\operatorname{Cov}(X, Y) = E(XY) (EX)(EY).$
- $\operatorname{Cov}(X, X) = \operatorname{Var}(X)$
- $\operatorname{Cov}(X, Y) = \operatorname{Cov}(Y, X)$

Covariance:

- $\operatorname{Cov}(X, Y) = E(XY) (EX)(EY).$
- $\operatorname{Cov}(X, X) = \operatorname{Var}(X)$
- $\operatorname{Cov}(X, Y) = \operatorname{Cov}(Y, X)$

Covariance:

- $\operatorname{Cov}(X, Y) = E(XY) (EX)(EY).$
- $\operatorname{Cov}(X, X) = \operatorname{Var}(X)$
- $\operatorname{Cov}(X, Y) = \operatorname{Cov}(Y, X)$

Correlation coefficient:

• $-1 \le \rho(X,Y) \le 1$: to be justified later. So ρ is a normalized version of Cov

Covariance:

- $\operatorname{Cov}(X, Y) = E(XY) (EX)(EY).$
- $\operatorname{Cov}(X, X) = \operatorname{Var}(X)$
- $\operatorname{Cov}(X, Y) = \operatorname{Cov}(Y, X)$

- $-1 \le \rho(X,Y) \le 1$: to be justified later. So ρ is a normalized version of Cov
- Positively correlated: $\rho > 0$

Covariance:

- $\operatorname{Cov}(X, Y) = E(XY) (EX)(EY).$
- $\operatorname{Cov}(X, X) = \operatorname{Var}(X)$
- $\operatorname{Cov}(X, Y) = \operatorname{Cov}(Y, X)$

Correlation coefficient:

- $-1 \leq \rho(X,Y) \leq 1$: to be justified later. So ρ is a normalized version of Cov
- Positively correlated: $\rho > 0$

e.g. X=midterm grade, Y=total grade

Covariance:

- $\operatorname{Cov}(X, Y) = E(XY) (EX)(EY).$
- $\operatorname{Cov}(X, X) = \operatorname{Var}(X)$
- $\operatorname{Cov}(X, Y) = \operatorname{Cov}(Y, X)$

- $-1 \le \rho(X,Y) \le 1$: to be justified later. So ρ is a normalized version of Cov
- Positively correlated: $\rho > 0$
 - ▶ e.g. X=midterm grade, Y=total grade
 - e.g. X=gas price, Y= stock price of TSLA

Covariance:

- $\operatorname{Cov}(X, Y) = E(XY) (EX)(EY).$
- $\operatorname{Cov}(X, X) = \operatorname{Var}(X)$
- $\operatorname{Cov}(X, Y) = \operatorname{Cov}(Y, X)$

- $-1 \le \rho(X,Y) \le 1$: to be justified later. So ρ is a normalized version of Cov
- Positively correlated: $\rho > 0$
 - e.g. X=midterm grade, Y=total grade
 - e.g. X=gas price, Y= stock price of TSLA
- Negatively correlated: $\rho < 0$

Covariance:

- $\operatorname{Cov}(X, Y) = E(XY) (EX)(EY).$
- $\operatorname{Cov}(X, X) = \operatorname{Var}(X)$
- $\operatorname{Cov}(X, Y) = \operatorname{Cov}(Y, X)$

- $-1 \le \rho(X,Y) \le 1$: to be justified later. So ρ is a normalized version of Cov
- Positively correlated: $\rho > 0$
 - e.g. X=midterm grade, Y=total grade
 - e.g. X=gas price, Y= stock price of TSLA
- Negatively correlated: $\rho < 0$

Covariance:

- $\operatorname{Cov}(X, Y) = E(XY) (EX)(EY).$
- $\operatorname{Cov}(X, X) = \operatorname{Var}(X)$
- $\operatorname{Cov}(X,Y) = \operatorname{Cov}(Y,X)$

- $-1 \le \rho(X,Y) \le 1$: to be justified later. So ρ is a normalized version of Cov
- Positively correlated: $\rho > 0$
 - ▶ e.g. X=midterm grade, Y=total grade
 - e.g. X=gas price, Y= stock price of TSLA
- Negatively correlated: $\rho < 0$
 - e.g. X=yield of crop, Y=market price
 - e.g. roll a die for 100 times, X=number of 1's, Y=number of 6's

Uncorrelated

We say \boldsymbol{X} and \boldsymbol{Y} are uncorrelated if

$$Cov(X, Y) = 0$$

$$\Leftrightarrow \rho(X, Y) = 0$$

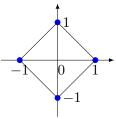
$$\Leftrightarrow E(XY) = (EX)(EY)$$

Independent versus uncorrelated

- Independent \Rightarrow uncorrelated: E(XY) = (EX)(EY).
- Uncorrelated

 independent:

Example (HW3): Choose a point uniformly at random to be one of the four vertices of the diamond below. Let (X, Y) denote its coordinate.



Then E(XY) = 0 = EX = EY, but X and Y are dependent

1 Shift-invariance: Cov(X + b, Y + d) = Cov(X, Y)

Next: WLOG assume all random variables have zero mean

1 Shift-invariance: Cov(X + b, Y + d) = Cov(X, Y)

Next: WLOG assume all random variables have zero mean
 Cov(aX, cY) = ac Cov(X, Y).

1 Shift-invariance: Cov(X + b, Y + d) = Cov(X, Y)

Next: WLOG assume all random variables have zero mean
 Cov(aX, cY) = ac Cov(X, Y). More generally

Cov(aX + b, cY + d) = acCov(X, Y)

and

 $\rho(aX+b,cY+d)=\rho(X,Y), \quad \text{provided that } a,c>0$

Interpretation: the corr coeff between temperature in New York and that in New Haven is unchanged when expressed in either $^\circ F$ or $^\circ C$

1 Shift-invariance: Cov(X + b, Y + d) = Cov(X, Y)

Next: WLOG assume all random variables have zero mean
 Cov(aX, cY) = ac Cov(X, Y). More generally

Cov(aX + b, cY + d) = acCov(X, Y)

and

 $\rho(aX+b,cY+d)=\rho(X,Y), \quad \text{provided that } a,c>0$

Interpretation: the corr coeff between temperature in New York and that in New Haven is unchanged when expressed in either °F or °C
Bilinearity:

Cov(X + Y, W + Z)= Cov(X, W) + Cov(Y, W) + Cov(X, Z) + Cov(Y, Z)

•
$$\operatorname{Var}(X + Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X, Y)$$
, or equivalently
 $\sigma_{X+Y}^2 = \sigma_X^2 + \sigma_Y^2 + 2\rho(X, Y)\sigma_X\sigma_Y$

 $Var(X + Y) = Var(X) + Var(Y) \Leftrightarrow X$ and Y are uncorrelated

•
$$\operatorname{Var}(X + Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X, Y)$$
, or equivalently
 $\sigma_{X+Y}^2 = \sigma_X^2 + \sigma_Y^2 + 2\rho(X, Y)\sigma_X\sigma_Y$

Therefore

 $\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) \Leftrightarrow X$ and Y are uncorrelated

6

$$\operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{m} Y_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{Cov}(X_{i}, Y_{j})$$

•
$$\operatorname{Var}(X + Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X, Y)$$
, or equivalently
 $\sigma_{X+Y}^2 = \sigma_X^2 + \sigma_Y^2 + 2\rho(X, Y)\sigma_X\sigma_Y$

Therefore

 $\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) \Leftrightarrow X \text{ and } Y \text{ are uncorrelated}$

$$\operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{m} Y_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{Cov}(X_{i}, Y_{j})$$

6

6

$$\operatorname{Var}(X_1 + \dots + X_n) = \operatorname{Var}(X_1) + \dots + \operatorname{Var}(X_n) + \sum_{i \neq j} \operatorname{Cov}(X_i, X_j)$$

Corollary: When do variances add up?

• Suppose X_1, \ldots, X_n are uncorrelated, that is, $Cov(X_i, X_j) = 0$ whenever $i \neq j$. Then

$$\operatorname{Var}(X_1 + \dots + X_n) = \operatorname{Var}(X_1) + \dots + \operatorname{Var}(X_n)$$

Special case: X_1, \ldots, X_n are independent

Let X be a random variable (signal) with unit variance. Let Y be a noisy observation of X

$$Y = X + Z$$

where the noise Z is independent of X and has variance σ^2 .

Let X be a random variable (signal) with unit variance. Let Y be a noisy observation of X

$$Y = X + Z$$

where the noise Z is independent of X and has variance σ^2 .

Covariance

$$\operatorname{Cov}(X,Y) = \operatorname{Cov}(X,X+Z) = \underbrace{\operatorname{Cov}(X,X)}_{\operatorname{Var}(X)} + \underbrace{\operatorname{Cov}(X,Z)}_{0} = 1$$

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}} = \frac{1}{\sqrt{1+\sigma^2}}$$

Let X be a random variable (signal) with unit variance. Let Y be a noisy observation of X

$$Y = X + Z$$

where the noise Z is independent of X and has variance σ^2 .

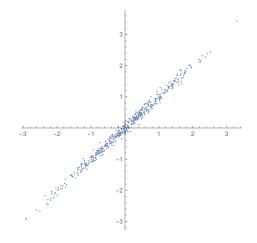
Covariance

$$\operatorname{Cov}(X,Y) = \operatorname{Cov}(X,X+Z) = \underbrace{\operatorname{Cov}(X,X)}_{\operatorname{Var}(X)} + \underbrace{\operatorname{Cov}(X,Z)}_{0} = 1$$

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}} = \frac{1}{\sqrt{1+\sigma^2}}$$

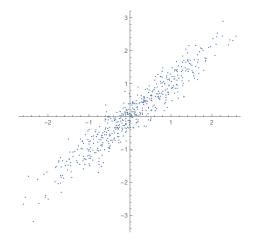
- X and Y are highly (positively) correlated when σ is small (less noisy)
- X and Y are almost uncorrelated when σ is large (very noisy)

Scatter plot of 500 independent samples of (X, Y):



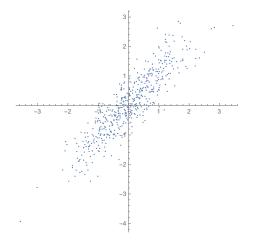
 $\sigma=0.1, \rho=0.995$

Scatter plot of 500 independent samples of (X, Y):



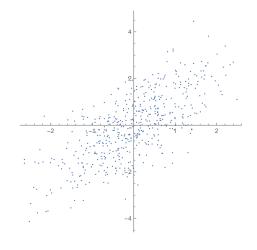
 $\sigma=0.3, \rho=0.96$

Scatter plot of 500 independent samples of (X, Y):



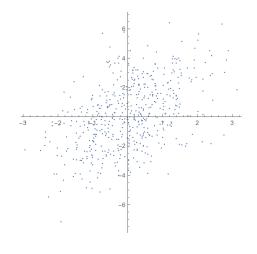
$$\sigma = 0.5, \rho = 0.89$$

Scatter plot of 500 independent samples of (X, Y):



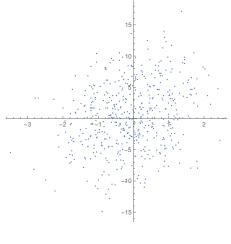
$$\sigma = 1, \rho = 0.71$$

Scatter plot of 500 independent samples of (X, Y):



 $\sigma = 2, \rho = 0.45$

Scatter plot of 500 independent samples of (X, Y):

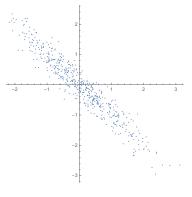


$$\sigma = 5, \rho = 0.2$$

Similarly, if Y = -X + Z, then

$$\rho(X,Y) = -\frac{1}{\sqrt{1+\sigma^2}}$$

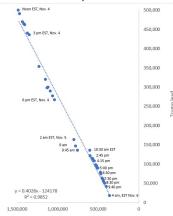
Scatter plot of 500 independent samples of (X, Y):



$$\sigma = 0.3, \rho = -0.96$$

Intuition

If X and Y are highly correlated (i.e., ρ(X, Y) ≈ ±1), then they are approximately related using a straight line. Thus we can predict one by the other by a linear equation. This is the idea of linear regression (in its most basic form)



Remaining uncounted votes in Pennsylvania

Caveat

• Correlation only capture "linear" dependence.

Example: $X \sim \text{Unif}(-1,1)$, $Y = X^2$. Cov(X,Y) = 0 (Exercise)

 Cannot predict Y using linear instrument, but X completely determines Y (non-linearly)

Example: exam score

Assume X (Pset score), Y (midterm score) and Z (final score) are independent and Unif(0, 100). Total score:

S = 0.3X + 0.3Y + 0.4Z

Then

•
$$\operatorname{Var}(X) = \operatorname{Var}(Y) = \operatorname{Var}(Z) = \sigma^2$$
 and
 $\operatorname{Var}(S) = (0.3^2 + 0.3^2 + 0.4^2)\sigma^2$

• Correlation between Pset and total

$$\rho(X,S) = \frac{\text{Cov}(X, 0.3X + 0.3Y + 0.4Z)}{\sqrt{\text{Var}(X)\text{Var}(S)}} = \frac{0.3}{\sqrt{0.3^2 + 0.3^2 + 0.4^2}}$$

\$\approx 0.51\$

• Similarly, $\rho(Y,S) \approx 0.51$, $\rho(Z,S) \approx 0.69$.

Roll a fair die for n times, $X{=}\mathsf{number}$ of \fbox , $Y{=}\mathsf{number}$ of \fbox . Find $\rho(X,Y)$

• $X \sim \operatorname{Bin}(n, 1/6)$, $Y \sim \operatorname{Bin}(n, 1/6)$

Roll a fair die for n times, $X{=}\mathsf{number}$ of \fbox , $Y{=}\mathsf{number}$ of \fbox . Find $\rho(X,Y)$

- $X \sim \operatorname{Bin}(n, 1/6)$, $Y \sim \operatorname{Bin}(n, 1/6)$
- Are they independent?

Roll a fair die for n times, $X{=}\mathsf{number}$ of \fbox , $Y{=}\mathsf{number}$ of \fbox . Find $\rho(X,Y)$

- $X \sim \operatorname{Bin}(n, 1/6)$, $Y \sim \operatorname{Bin}(n, 1/6)$
- Are they independent? No.

Roll a fair die for n times, $X{=}\mathsf{number}$ of \fbox , $Y{=}\mathsf{number}$ of \fbox . Find $\rho(X,Y)$

- $X \sim \operatorname{Bin}(n, 1/6)$, $Y \sim \operatorname{Bin}(n, 1/6)$
- Are they independent? No.
- Decompose binomial as sum of independent Bernoullis:

$$\begin{aligned} X &= \sum_{i=1}^{n} X_i, \quad X_i = \begin{cases} 1 & i \text{ th toss is } 1 \\ 0 & \text{else} \end{cases} \\ Y &= \sum_{i=1}^{n} Y_i, \quad Y_i = \begin{cases} 1 & i \text{ th toss is } 6 \\ 0 & \text{else} \end{cases} \end{aligned}$$

• Each X_i and Y_i are dependent; for $i \neq j$, X_i and Y_j are independent

$$Cov(X,Y) = Cov(X_1 + ... + X_n, Y_1 + ... + Y_n) = \sum_{i=1}^n \sum_{j=1}^n Cov(X_i, Y_j)$$

$$\operatorname{Cov}(X,Y) = \operatorname{Cov}(X_1 + \ldots + X_n, Y_1 + \ldots + Y_n) = \sum_{i=1}^n \sum_{j=1}^n \operatorname{Cov}(X_i, Y_j)$$
$$= \sum_{i=1}^n \operatorname{Cov}(X_i, Y_i) + \sum_{i \neq j} \underbrace{\operatorname{Cov}(X_i, Y_j)}_{0, \text{ by independence}}$$

$$\operatorname{Cov}(X,Y) = \operatorname{Cov}(X_1 + \ldots + X_n, Y_1 + \ldots + Y_n) = \sum_{i=1}^n \sum_{j=1}^n \operatorname{Cov}(X_i, Y_j)$$
$$= \sum_{i=1}^n \operatorname{Cov}(X_i, Y_i) + \sum_{i \neq j} \underbrace{\operatorname{Cov}(X_i, Y_j)}_{0, \text{ by independence}}$$
$$= \sum_{i=1}^n \underbrace{E(X_iY_i) - E(X_i)E(Y_i)}_{0 - \frac{1}{6} \times \frac{1}{6}} = -\frac{n}{36}$$

$$\operatorname{Cov}(X,Y) = \operatorname{Cov}(X_1 + \dots + X_n, Y_1 + \dots + Y_n) = \sum_{i=1}^n \sum_{j=1}^n \operatorname{Cov}(X_i, Y_j)$$
$$= \sum_{i=1}^n \operatorname{Cov}(X_i, Y_i) + \sum_{i \neq j} \underbrace{\operatorname{Cov}(X_i, Y_j)}_{0, \text{ by independence}}$$
$$= \sum_{i=1}^n \underbrace{E(X_iY_i) - E(X_i)E(Y_i)}_{0 - \frac{1}{6} \times \frac{1}{6}} = -\frac{n}{36}$$

and $\operatorname{Var}(X) = \operatorname{Var}(Y) = n \times \frac{1}{6} \times \frac{5}{6}$. Thus

$$\rho(X,Y) = \frac{-\frac{n}{36}}{n\frac{1}{6}\frac{5}{6}} = -\frac{1}{5}$$

Why $\rho \in [-1,1]$?

Cauchy-Schwarz inequality (B-H 10.1)

Theorem

For any random variables
$$U, V$$
:
 $(E(UV))^2 \le E(U^2)E(V^2),$

with equality if and only if U = cV for some constant c.

Cauchy-Schwarz inequality (B-H 10.1)

Theorem

For any random variables
$$U,V$$
 :
$$(E(UV))^2 \leq E(U^2)E(V^2), \label{eq:eq:expansion}$$

with equality if and only if U = cV for some constant c.

Corollary

For any random variables X, Y: $|Cov(X, Y)| \le \sigma_X \sigma_Y, \quad i.e. \ |\rho(X, Y)| \le 1$

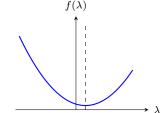
Furthermore,

- ρ(X,Y) = 1 ⇔ Y = aX + b for some a > 0 (perfectly positively correlated) : e.g. X is temperature in °C and Y in °F
- ρ(X,Y) = −1 ⇔ Y = aX + b for some a < 0 (perferctly negatively correlated): e.g. X=number of Heads, Y = number of Tails

Cauchy-Schwarz inequality: proof (optional) Consider the function:

$$f(\lambda) = E(U - \lambda V)^2$$

= $E(U^2) + \lambda^2 E(V^2) - 2\lambda E(UV)$



• By definition, $f(\lambda) \ge 0$ for all λ . The minimum of the parabola is achieved at $\lambda_0 = \frac{E(UV)}{E(V^2)}$ to be

$$E(U^2) - \frac{(E(UV))^2}{E(V^2)},$$

which must be non-negative.

• (The case of equality) Suppose the minimum is zero. Then $f(\lambda_0) = E(U - \lambda_0 V)^2 = 0$, which means that $U - \lambda_0 V$ is always zero, i.e., $U = \lambda_0 V$.

Application: portfolio optimization

- Two assets:
 - Stock return S: $\mu_S = 10\%$, $\sigma_S = 10\%$
 - Bond return B: $\mu_B = 5\%$, $\sigma_B = 5\%$
 - Correlation coefficient: $\rho(S, B) = -0.5$
 - Incentive to invest in bond: hedge the risk of stock!

Application: portfolio optimization

- Two assets:
 - Stock return S: $\mu_S = 10\%$, $\sigma_S = 10\%$
 - Bond return B: $\mu_B = 5\%$, $\sigma_B = 5\%$
 - Correlation coefficient: $\rho(S,B) = -0.5$
 - Incentive to invest in bond: hedge the risk of stock!
- Portfolio: invest λ fraction of funds in stock and 1λ in bond.

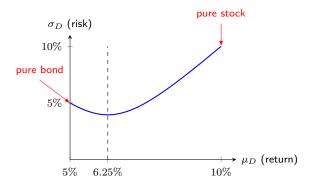
Application: portfolio optimization

- Two assets:
 - Stock return S: $\mu_S = 10\%$, $\sigma_S = 10\%$
 - Bond return *B*: $\mu_B = 5\%$, $\sigma_B = 5\%$
 - Correlation coefficient: $\rho(S, B) = -0.5$
 - Incentive to invest in bond: hedge the risk of stock!
- Portfolio: invest λ fraction of funds in stock and 1λ in bond.
- Return: $D = \lambda S + (1 \lambda)B$
 - Expected return:

$$\mu_D = \lambda \mu_S + (1 - \lambda) \mu_B$$

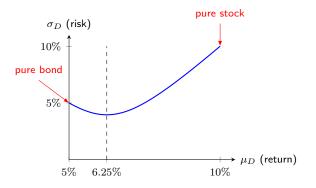
Variance:

$$\sigma_D^2 = \lambda^2 \sigma_S^2 + (1-\lambda)^2 \sigma_B^2 + 2\lambda(1-\lambda)\rho(S,B)\sigma_S \sigma_B$$



- Minimal risk ($\sigma_D = 4\%$) occurred at $\mu_D = 6.25\%$: $\frac{1}{4}S + \frac{3}{4}B$
- As $\lambda \uparrow$, portfolio shifts to stock

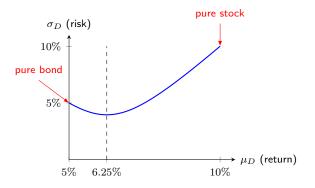
• return \uparrow ; volatility first \downarrow then \uparrow



- Minimal risk ($\sigma_D = 4\%$) occurred at $\mu_D = 6.25\%$: $\frac{1}{4}S + \frac{3}{4}B$
- As $\lambda \uparrow$, portfolio shifts to stock

• return \uparrow ; volatility first \downarrow then \uparrow

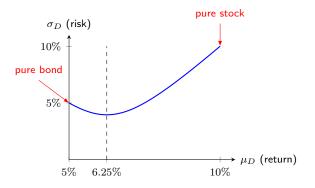
• A reasonable investor would not operate on the left of the minimum



- Minimal risk ($\sigma_D = 4\%$) occurred at $\mu_D = 6.25\%$: $\frac{1}{4}S + \frac{3}{4}B$
- As $\lambda \uparrow$, portfolio shifts to stock

• return \uparrow ; volatility first \downarrow then \uparrow

- A reasonable investor would not operate on the left of the minimum
- Things become more complicated with multiple assets (Markowitz portfolio optimization)



- Minimal risk ($\sigma_D = 4\%$) occurred at $\mu_D = 6.25\%$: $\frac{1}{4}S + \frac{3}{4}B$
- As $\lambda \uparrow$, portfolio shifts to stock

• return \uparrow ; volatility first \downarrow then \uparrow

- A reasonable investor would not operate on the left of the minimum
- Things become more complicated with multiple assets (Markowitz portfolio optimization)
- Can you go make a fortune after class? What's the catch?