S&DS 241 Lecture 21

Covariance and correlation

B-H: 7.3, 10.1
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Given a random variable X

Recall mean and variance
e FX: mean value

® Var(X) = E(X — EX)?: mean-square deviation around the mean
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Given two random variables X and Y
Suppose
® X has mean EX and Var(X) = 0%
® Y has mean EY and Var(Y) = 0%
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Given two random variables X and Y
Suppose
® X has mean EX and Var(X) = 0%
® Y has mean EY and Var(Y) = 0%
Two important quantities:

e Covariance:
Cov(X,Y)=E(X —EX)(Y — EY))

summary statistic for the “tendency” of X and Y to move in the
same direction

e Correlation coefficient:

Cov(X,Y)

p(X, Y) =
oxoy

(Denoted by Corr(X,Y) in B-H)
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Remarks

Covariance:
e Cov(X,Y)=E(XY)— (EX)(EY).
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Remarks

Covariance:
e Cov(X,Y)=E(XY)— (EX)(EY).
® Cov(X,X) = Var(X)
* Cov(X,Y) = Cov(Y, X)

Correlation coefficient:

e —1<p(X,Y) <1: to be justified later. So p is a normalized
version of Cov

® Positively correlated: p > 0

> e.g. X=midterm grade, Y =total grade
» e.g. X=gas price, Y= stock price of TSLA

® Negatively correlated: p < 0

> e.g. X=yield of crop, Y =market price
» e.g. roll a die for 100 times, X =number of 1's, Y=number of 6's
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Uncorrelated

We say X and Y are uncorrelated if
Cov(X,Y)=0

< p(X,Y)=0
& E(XY)=(EX)(EY)
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Independent versus uncorrelated

® Independent = uncorrelated: E(XY) = (EX)(EY).
® Uncorrelated # independent:

Example (HW3): Choose a point uniformly at random to be one of
the four vertices of the diamond below. Let (X,Y") denote its
coordinate.

Then E(XY)=0=EX = EY, but X and Y are dependent
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Properties

@ Shift-invariance: Cov(X +b,Y +d) = Cov(X,Y)
» Next: WLOG assume all random variables have zero mean
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@ Shift-invariance: Cov(X +b,Y +d) = Cov(X,Y)
» Next: WLOG assume all random variables have zero mean

® Cov(aX,cY) =acCov(X,Y). More generally

Cov(aX + b,cY +d) = acCov(X,Y)
and
p(aX +b,cY +d) =p(X,Y), provided that a,c >0

Interpretation: the corr coeff between temperature in New York and
that in New Haven is unchanged when expressed in either °F or °C

© Bilinearity:

Cov( X +Y, W+ Z2)
= Cov(X, W)+ Cov(Y,W) + Cov(X, Z) + Cov(Y, Z)
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Properties
@ Var(X +Y) = Var(X) + Var(Y) 4+ 2Cov(X, Y), or equivalently
Xty = 0% + 0V +2p(X,Y)oxoy
Therefore

Var(X +Y) = Var(X) + Var(Y) & X and Y are uncorrelated
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Properties
@ Var(X +Y) = Var(X) + Var(Y) 4+ 2Cov(X, Y), or equivalently
U§(+y = 0% + 0% +2p(X,Y)oxoy
Therefore

Var(X +Y) = Var(X) + Var(Y) & X and Y are uncorrelated

(5]
Cov(ZXi,ZY}) ZZCOV i Y5)
=1  j=1 i=1 j=1
(6]
Var(X; +---+ X,,) = Var(X;) + - - - + Var(X ZCOV (Xi, Xj)

i#]
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Variance of a sum

Corollary: When do variances add up?

® Suppose X1,..., X, are uncorrelated, that is, Cov(X;, X;) =0
whenever ¢ £ j. Then

Var(X; +---+ X,,) = Var(X;) + - - - + Var(X,,)

Special case: Xq,...,X,, are independent
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Example

Let X be a random variable (signal) with unit variance. Let Y be a noisy
observation of X
Y=X+7

where the noise Z is independent of X and has variance o2.
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e (Covariance
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Example
Let X be a random variable (signal) with unit variance. Let Y be a noisy

observation of X
Y=X+Z7

where the noise Z is independent of X and has variance o2.

e (Covariance

Cov(X,Y) =Cov(X, X +Z) =Cov(X,X)+Cov(X,Z) =1

Var(X) 0

e Correlation coefficient

Cov(X,Y) 1
\/Var(X)Var(Y) Vit o?

p(X,Y) =

® X and Y are highly (positively) correlated when o is small (less
noisy)

® X and Y are almost uncorrelated when o is large (very noisy)
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Example

Scatter plot of 500 independent samples of (X,Y):

o=0.1,p=0.995
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Example
Scatter plot of 500 independent samples of (X,Y):

o =0.3,p=0.96
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Example
Scatter plot of 500 independent samples of (X,Y):

o =0.5,p=0.89
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Example
Scatter plot of 500 independent samples of (X,Y):

c=1,p=0.71
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Example

Scatter plot of 500 independent samples of (X,Y):

l

oc=2,p=045
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Example
Scatter plot of 500 independent samples of (X,Y):
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Example
Similarly, if Y = —X + Z, then

1

PXY) ==

Scatter plot of 500 independent samples of (X,Y):
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Intuition

e If X and Y are highly correlated (i.e., p(X,Y) ~ +1), then they are
approximately related using a straight line. Thus we can predict one

by the other by a linear equation. This is the idea of linear

regression (in its most basic form)
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Caveat

e Correlation only capture “linear” dependence.
> Example: X ~ Unif(=1,1), Y = X2. Cov(X,Y) = 0 (Exercise)
» Cannot predict Y using linear instrument, but X completely
determines Y (non-linearly)
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Example: exam score

Assume X (Pset score), Y (midterm score) and Z (final score) are
independent and Unif(0, 100). Total score:

S=03X+03Y +047
Then
® Var(X) = Var(Y) = Var(Z) = 02 and
Var(S) = (0.3%2 + 0.32 + 0.4%)0?

® Correlation between Pset and total

Cov(X,0.3X +0.3Y 4 0.42) 0.3

p(X,5) =

Var(X)Var(9) T V0.3 1032 1042
~ 0.51

e Similarly, p(Y,S) =~ 0.51, p(Z,S) =~ 0.69.
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Example: dice
Roll a fair die for n times, X=number of |Z| Y =number of . Find

p(X,Y)
¢ X ~ Bin(n,1/6), Y ~ Bin(n,1/6)
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Example: dice

Roll a fair die for n times, X=number of |Z| Y =number of . Find
p(X,Y)

¢ X ~ Bin(n,1/6), Y ~ Bin(n,1/6)
® Are they independent? No.

® Decompose binomial as sum of independent Bernoullis:

r 1 ith toss is 1
x=%Yx, x;={ ' !
i1 0 else

Y:iYQ, Y, — 1 4th toss is 6
1 0 else

® Each X; and Y; are dependent; for i # j, X; and Y} are independent
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Example: dice

n

Cov(X,Y) = Cov(X1 + ...+ Xp, Vi +...+Y,) => Y Cov(X;,Y)

i=1 j=1
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Example: dice

Cov(X,Y) = Cov(X1 + ...+ Xp, Vi +...+Y,) => Y Cov(X;,Y)
i=1 j=1

— Zn:Cov(Xi,Yi) + Z Cov(X;,Yj;)
i=1

#J 0, by independence
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Example: dice

n

Cov(X,Y) = Cov(Xi+ ...+ Xp, Vi+...+Y,) =)
i=1 j=1
=) Cov(X;,Y;) + > Cov(X;,Y))

= — ——
i=1 i#£] 0, by independence

- ;E(Xiyi) — E(X))E(Y;) = 5
0—

X

o=
[N

Cov(Xi,Yj)
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Example: dice

n

Cov(X,Y) = Cov(Xi+ ...+ Xp, Vi+...+Y,) =)
i=1 j=1
=) Cov(X;,Y;) + > Cov(X;,Y))
N —

=1 i#J 0, by independence

- ;E(Xiyi) — E(X))E(Y;) = 5
0—

X

o=
ol

and Var(X) = Var(Y) =n x ¢ x 2. Thus

6
_n 1
pX,Y) =5 =—-

COV(Xi, Y})
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Cauchy-Schwarz inequality (B-H 10.1)

Theorem

For any random variables U,V :
(BE(UV))? < E(U*)E(V?),

with equality if and only if U = ¢V for some constant c.
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Cauchy-Schwarz inequality (B-H 10.1)

Theorem
For any random variables U,V :
(BE(UV))? < E(U*)E(V?),

with equality if and only if U = ¢V for some constant c.

Corollary

For any random variables X,Y :
|Cov(X,Y)| <oxoy, ie |p(X,Y) <1

Furthermore,

* (X, Y)=1<Y =aX +b for some a > 0 (perferctly positively
correlated) : e.g. X is temperature in °C and 'Y in °F

* p(X,)Y)=-1&Y =aX +b for some a < 0 (perferctly negatively
correlated): e.g. X =number of Heads, Y = number of Tails
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Cauchy-Schwarz inequality: proof (optional)

)
Consider the function:
fO) = B(U = AV)? |
= B(U?) + A2E(V?) — 2AE(UV) |
‘ A
® By definition, f(\) > 0 for all \. The minimum of the parabola is
achieved at \g = % to be
E(UV))?
o

which must be non-negative.

® (The case of equality) Suppose the minimum is zero. Then
f(Xo) = E(U — X\gV)? = 0, which means that U — AoV is always
zero, i.e., U = MV
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Application: portfolio optimization

® Two assets:
» Stock return S: ug = 10%, o5 = 10%
» Bond return B: ug = 5%, og = 5%
» Correlation coefficient: p(S, B) = —0.5
» Incentive to invest in bond: hedge the risk of stock!
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Application: portfolio optimization

® Two assets:
» Stock return S: ug = 10%, o5 = 10%
» Bond return B: ug = 5%, og = 5%
» Correlation coefficient: p(S, B) = —0.5
» Incentive to invest in bond: hedge the risk of stock!

® Portfolio: invest A\ fraction of funds in stock and 1 — X in bond.

® Return: D =AS+ (1—-\)B
» Expected return:
po = Apus + (1= A)pp

» Variance:

0% = A20E 4+ (1 - ))20% + 201 — \)p(S, B)oson
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Performance of portfolio

pure stock
op (risk) i
10% +
pure bond

0

N

. —> pp (return)
5% 6.25% 10%

® Minimal risk (op = 4%) occurred at pup = 6.25%: 15 + 3B
® As A\ 7T, portfolio shifts to stock
» return 1; volatility first | then 1
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Performance of portfolio

pure stock
op (risk) i
10% +
pure bond

Y

0

. —> pp (return)
5% 6.25% 10%

® Minimal risk (op = 4%) occurred at pup = 6.25%: 15 + 3B
As A\ 1, portfolio shifts to stock
» return 1; volatility first | then 1

A reasonable investor would not operate on the left of the minimum
Things become more complicated with multiple assets (Markowitz

portfolio optimization)
® Can you go make a fortune after class? What's the catch? 27/7



