
S&DS 241 Lecture 21
Covariance and correlation

B-H: 7.3, 10.1
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Given a random variable X

Recall mean and variance

• EX: mean value

• Var(X) = E(X − EX)2: mean-square deviation around the mean
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Given two random variables X and Y
Suppose

• X has mean EX and Var(X) = σ2
X

• Y has mean EY and Var(Y ) = σ2
Y

Two important quantities:

• Covariance:

Cov(X,Y ) = E((X − EX)(Y − EY ))

summary statistic for the “tendency” of X and Y to move in the

same direction

• Correlation coefficient:

ρ(X,Y ) =
Cov(X,Y )

σXσY

(Denoted by Corr(X,Y ) in B-H)
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Remarks

Covariance:

• Cov(X,Y ) = E(XY )− (EX)(EY ).

• Cov(X,X) = Var(X)

• Cov(X,Y ) = Cov(Y,X)

Correlation coefficient:

• −1 ≤ ρ(X,Y ) ≤ 1: to be justified later. So ρ is a normalized

version of Cov

• Positively correlated: ρ > 0

▶ e.g. X=midterm grade, Y=total grade
▶ e.g. X=gas price, Y= stock price of TSLA

• Negatively correlated: ρ < 0

▶ e.g. X=yield of crop, Y=market price
▶ e.g. roll a die for 100 times, X=number of 1’s, Y=number of 6’s
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Uncorrelated

We say X and Y are uncorrelated if

Cov(X,Y ) = 0

⇔ ρ(X,Y ) = 0

⇔ E(XY ) = (EX)(EY )
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Independent versus uncorrelated

• Independent ⇒ uncorrelated: E(XY ) = (EX)(EY ).

• Uncorrelated ̸⇒ independent:

Example (HW3): Choose a point uniformly at random to be one of

the four vertices of the diamond below. Let (X,Y ) denote its

coordinate.

0 1

1

−1

−1

Then E(XY ) = 0 = EX = EY , but X and Y are dependent
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Properties

1 Shift-invariance: Cov(X + b, Y + d) = Cov(X,Y )
▶ Next: WLOG assume all random variables have zero mean

2 Cov(aX, cY ) = acCov(X,Y ). More generally

Cov(aX + b, cY + d) = acCov(X,Y )

and

ρ(aX + b, cY + d) = ρ(X,Y ), provided that a, c > 0

Interpretation: the corr coeff between temperature in New York and

that in New Haven is unchanged when expressed in either ◦F or ◦C

3 Bilinearity:

Cov(X + Y,W + Z)

= Cov(X,W ) + Cov(Y,W ) + Cov(X,Z) + Cov(Y, Z)
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Properties

4 Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y ), or equivalently

σ2
X+Y = σ2

X + σ2
Y + 2ρ(X,Y )σXσY

Therefore

Var(X + Y ) = Var(X) + Var(Y ) ⇔ X and Y are uncorrelated

5

Cov

(
n∑

i=1

Xi,

m∑
j=1

Yj

)
=

n∑
i=1

m∑
j=1

Cov(Xi, Yj)

6

Var(X1 + · · ·+Xn) = Var(X1) + · · ·+Var(Xn) +
∑
i ̸=j

Cov(Xi, Xj)
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Variance of a sum

Corollary: When do variances add up?

• Suppose X1, . . . , Xn are uncorrelated, that is, Cov(Xi, Xj) = 0

whenever i ̸= j. Then

Var(X1 + · · ·+Xn) = Var(X1) + · · ·+Var(Xn)

Special case: X1, . . . , Xn are independent
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Example
Let X be a random variable (signal) with unit variance. Let Y be a noisy

observation of X

Y = X + Z

where the noise Z is independent of X and has variance σ2.

• Covariance

Cov(X,Y ) = Cov(X,X + Z) = Cov(X,X)︸ ︷︷ ︸
Var(X)

+Cov(X,Z)︸ ︷︷ ︸
0

= 1

• Correlation coefficient

ρ(X,Y ) =
Cov(X,Y )√
Var(X)Var(Y )

=
1√

1 + σ2

• X and Y are highly (positively) correlated when σ is small (less

noisy)
• X and Y are almost uncorrelated when σ is large (very noisy)
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Example

Scatter plot of 500 independent samples of (X,Y ):

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

σ = 0.1, ρ = 0.995
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σ = 0.3, ρ = 0.96
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Example

Scatter plot of 500 independent samples of (X,Y ):

-3 -2 -1 1 2 3

-4

-3

-2

-1

1

2

3

σ = 0.5, ρ = 0.89
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Example

Scatter plot of 500 independent samples of (X,Y ):

-2 -1 1 2

-4

-2

2

4

σ = 1, ρ = 0.71
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Example

Scatter plot of 500 independent samples of (X,Y ):

-3 -2 -1 1 2 3

-6

-4

-2

2

4

6

σ = 2, ρ = 0.45
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Example

Scatter plot of 500 independent samples of (X,Y ):

-3 -2 -1 1 2

-15

-10

-5

5

10

15

σ = 5, ρ = 0.2
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Example
Similarly, if Y = −X + Z, then

ρ(X,Y ) = − 1√
1 + σ2

Scatter plot of 500 independent samples of (X,Y ):

-2 -1 1 2 3

-3

-2

-1

1

2

σ = 0.3, ρ = −0.96
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Intuition

• If X and Y are highly correlated (i.e., ρ(X,Y ) ≈ ±1), then they are

approximately related using a straight line. Thus we can predict one

by the other by a linear equation. This is the idea of linear

regression (in its most basic form)
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Caveat

• Correlation only capture “linear” dependence.
▶ Example: X ∼ Unif(−1, 1), Y = X2. Cov(X,Y ) = 0 (Exercise)
▶ Cannot predict Y using linear instrument, but X completely

determines Y (non-linearly)
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Example: exam score

Assume X (Pset score), Y (midterm score) and Z (final score) are

independent and Unif(0, 100). Total score:

S = 0.3X + 0.3Y + 0.4Z

Then

• Var(X) = Var(Y ) = Var(Z) = σ2 and

Var(S) = (0.32 + 0.32 + 0.42)σ2

• Correlation between Pset and total

ρ(X,S) =
Cov(X, 0.3X + 0.3Y + 0.4Z)√

Var(X)Var(S)
=

0.3√
0.32 + 0.32 + 0.42

≈ 0.51

• Similarly, ρ(Y, S) ≈ 0.51, ρ(Z, S) ≈ 0.69.
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Example: dice

Roll a fair die for n times, X=number of �, Y=number of 
. Find

ρ(X,Y )

• X ∼ Bin(n, 1/6), Y ∼ Bin(n, 1/6)

• Are they independent? No.

• Decompose binomial as sum of independent Bernoullis:

X =
n∑

i=1

Xi, Xi =

{
1 ith toss is 1

0 else

Y =

n∑
i=1

Yi, Yi =

{
1 ith toss is 6

0 else

• Each Xi and Yi are dependent; for i ̸= j, Xi and Yj are independent
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Example: dice

Cov(X,Y ) = Cov(X1 + . . .+Xn, Y1 + . . .+ Yn) =

n∑
i=1

n∑
j=1

Cov(Xi, Yj)

=

n∑
i=1

Cov(Xi, Yi) +
∑
i ̸=j

Cov(Xi, Yj)︸ ︷︷ ︸
0, by independence

=

n∑
i=1

E(XiYi)− E(Xi)E(Yi)︸ ︷︷ ︸
0− 1

6
× 1

6

= − n

36

and Var(X) = Var(Y ) = n× 1
6 × 5

6 . Thus

ρ(X,Y ) =
− n

36

n1
6
5
6

= −1

5
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Why ρ ∈ [−1, 1]?



Cauchy-Schwarz inequality (B-H 10.1)

Theorem

For any random variables U, V :

(E(UV ))2 ≤ E(U2)E(V 2),

with equality if and only if U = cV for some constant c.

Corollary

For any random variables X,Y :

|Cov(X,Y )| ≤ σXσY , i.e. |ρ(X,Y )| ≤ 1

Furthermore,

• ρ(X,Y ) = 1 ⇔ Y = aX + b for some a > 0 (perferctly positively

correlated) : e.g. X is temperature in ◦C and Y in ◦F

• ρ(X,Y ) = −1 ⇔ Y = aX + b for some a < 0 (perferctly negatively

correlated): e.g. X=number of Heads, Y = number of Tails
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Cauchy-Schwarz inequality: proof (optional)

Consider the function:

f(λ) = E(U − λV )2

= E(U2) + λ2E(V 2)− 2λE(UV )

λ

f(λ)

• By definition, f(λ) ≥ 0 for all λ. The minimum of the parabola is

achieved at λ0 =
E(UV )
E(V 2)

to be

E(U2)− (E(UV ))2

E(V 2)
,

which must be non-negative.

• (The case of equality) Suppose the minimum is zero. Then

f(λ0) = E(U − λ0V )2 = 0, which means that U − λ0V is always

zero, i.e., U = λ0V .
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Application: portfolio optimization

• Two assets:
▶ Stock return S: µS = 10%, σS = 10%
▶ Bond return B: µB = 5%, σB = 5%
▶ Correlation coefficient: ρ(S,B) = −0.5
▶ Incentive to invest in bond: hedge the risk of stock!

• Portfolio: invest λ fraction of funds in stock and 1− λ in bond.

• Return: D = λS + (1− λ)B

▶ Expected return:

µD = λµS + (1− λ)µB

▶ Variance:

σ2
D = λ2σ2

S + (1− λ)2σ2
B + 2λ(1− λ)ρ(S,B)σSσB
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Performance of portfolio

5% 6.25% 10%

5%

10%

pure stock

pure bond

µD (return)

σD (risk)

• Minimal risk (σD = 4%) occurred at µD = 6.25%: 1
4S + 3

4B
• As λ ↑, portfolio shifts to stock

▶ return ↑; volatility first ↓ then ↑

• A reasonable investor would not operate on the left of the minimum
• Things become more complicated with multiple assets (Markowitz

portfolio optimization)
• Can you go make a fortune after class? What’s the catch?
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