S&DS 241 Lecture 22

Conditional mean, best estimates

B-H: 9.2,9.3,9.5
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Setup

Consider random variables X (observed) and Y (unobserved)
® The goal is to estimate/predict Y on the basis of X.
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Setup
Consider random variables X (observed) and Y (unobserved)

® The goal is to estimate/predict Y on the basis of X.
® Example:
» Observe the temperature in New Haven, estimate the temperature in
New York (easy) or that in Tokyo (hard)
» Observe the stock price of GOOG in the past, predict the price
tomorrow.

® |et the estimate by Y. A common way to measure the quality of
the estimate:
Mean Squared Error (MSE) = E[(Y — Y)?]

® \We want to find the best rule for estimate Y as a function of X
that minimizes the MSE.

Throughout the lecture we consider continuous RVs (X,Y"). But
everything works for discrete RVs, with fxy replaced by pxy and

Jy|x by py|x etc.
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No data is available

® Suppose X is not observed. We need to make a blind guess about
Y.
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No data is available

® Suppose X is not observed. We need to make a blind guess about
Y.

® |et the estimate by &, which is a constant. Then
MSE = E[(Y - 5 = [~y fy iy
= (BE(Y = 6))? + Var(Y —6) = (EY — 6)? + Var(Y) > Var(Y)
® So the MSE is at least the variance, achieved by
d=E()

i.e., the best blind guess under the MSE criterion is just the
expectation of Y
® What if X is observed?
» Estimate by conditional expectation of Y given X!
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Conditional expectation
Consider continuous RVs (X,Y"). Recall:
e Joint PDF: fxy(x,y)

® Marginal PDF: fx(z) = [ fxv(z,y)dy
e Conditional PDF:

frix(ylz) = @)
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Conditional expectation

Consider continuous RVs (X,Y"). Recall:

Joint PDF: ny(x y)

Marginal PDF: fx(z) = [ fxy(z,y)dy

Conditional PDF:

fY|X(y|33) w

Conditional expectation (of Y given X = z):

MYMfwﬂé/yHuM@@

Note that this is a function of the value z, because the conditional
PDF of Y depends on the value of X = x and so does its mean.
Conditional variance (of Y given X = z):

Var(Y1X =) 2 [ 42 fyix(ylo)dy — E(VIX = o)

which is also a function of z.
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Best estimate
Observe X = z, estimate Y by d(x). Goal: minimize

MSE = // -y fxy(z fxy(ey) dedy
f)((f)JEf\)<( |z)

= / (/(5(56) - y)sz|X(y’$)dy> fx(x)dz
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Best estimate
Observe X = z, estimate Y by d(x). Goal: minimize

MSE — E[(Y — 6(X // 0P forlay) dody
fX(f)fY\x( |z)

= / (/(5(56) - y)sz|X(y’$)dy> fx(x)dz

we have solved this problem before!

® For each x, the best rule is

3(a) = B(YIX =2) = [ yfvix(ula)dy
® |Intuition:
> Without observing X, the PDF of Y is fy (y) and the best estimate
is the unconditional mean E(Y);
» Upon observing X = x, the PDF of Y becomes fy | x(y|z) and the

best estimate is the conditional mean E(Y|X = z).
7/21



Property of conditional expectation

® Recall
E(Y|X =) = / yfvix (ylz)dy

is a function of z. Let's call it g(x).
® The notation E(Y|X) is understood as the random variable g(X).

8/21



Property of conditional expectation

® Recall

E@¢X=xw=/ynm@umy

is a function of z. Let's call it g(x).
® The notation E(Y|X) is understood as the random variable g(X).
Law of total expectation (aka “tower property” of expectation)

“Expectation of conditional mean = unconditional mean”
|E(E(Y]X)) = B(Y)|

Proof:

E(E(Y|X)) m“/EYW—@h()

— [[ wtvictula)fx(a)dady

= /(/fXY(ﬂj y)d$> dy = E(Y)
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Conditional variance and best MSE

® Recall

Var(Y[X = z) £ / v hyix (Wle)dy — B(Y|X = 2)?

is a function of z. Again, Var(Y|X) is understood as a random
variable.

¢ Using the best estimate 6(X) = E(Y|X), the minimum MSE is

MSE = E(Y — E(Y|X))? = E(Var(Y|X))
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When does X help?

® The best blind guess 6 = E(Y') achieves MSE = Var(Y).
® The best estimate §(X) = E(Y|X) achieves MSE = E(Var(Y|X)).
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When does X help?

® The best blind guess 6 = E(Y') achieves MSE = Var(Y).
® The best estimate §(X) = E(Y|X) achieves MSE = E(Var(Y|X)).
What have we gained from observing X7
® Since Var(Y|X =) = E(Y?|X =2) — (E(Y|X = x))?, we have
E(Var(Y]X)) = E(E(Y?|X) - (E(Y|X))?) =
E(Y?) - E(E(Y|X)?).

® Therefore the improvement of MSE (variance reduction) is:
Var(Y)—E(Var(Y|X)) = E(E(Y|X)*)—E(Y)? = Var(E(Y|X)) > 0

® The observation X is useless iff E(Y|X) = E(Y) (trivial estimate)

» For instance, when X and Y are independent.
» Even when X and Y are dependent, it's still possible that X does not
help reducing the variance of Y, e.g., X, Y are uniform on disk.
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Summary

¢ Best (minimizing MSE) estimate of Y given X: E(Y|X)
® Best MSE:

E((Y - BE(Y|X))?) = E(Var(Y|X))
— B(Y?) - B(E(Y|X)?)
= Var(Y) — Var(E(Y| X))
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Example
Let (X,Y) be uniformly distributed over the triangle:
y

1

x
0 1 2

What is the best estimate of Y given X7?
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Example
Let (X,Y) be uniformly distributed over the triangle:

Y

What is the best estimate of Y given X7?
® Note that conditioned on X = z, Y is uniformly distributed over the
vertical slice (Lec 18), with mean at the center
e So E(Y|X = z) is given by the red curve:

B(YIX =) = x/2 z € 10,1]
1-2/2 zell,2
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Example
Let (X,Y) be uniformly distributed over the triangle:

Y

What is the best estimate of Y given X7?

® Note that conditioned on X = z, Y is uniformly distributed over the

vertical slice (Lec 18), with mean at the center
® So E(Y|X = x) is given by the red curve:
x/2 z€|0,1
EY|X=2)= / 0, 1]
1—x/2 z€]l,2]
® Next let's evaluate the estimation error.
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Example
Let (X,Y) be uniformly distributed over the triangle:

y
1
xr
0 1 2
Find marginals: Ty (y)
fx () 2
1
T Yy
0 1 2 0 1
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Example
Let (X,Y) be uniformly distributed over the triangle:

y
1
xr
0 1 2
Find marginals: Ty (y)
fx () 2
1
T Yy
0 1 2 0 1

Then E(Y) = [, (2 — 2y)ydy = 1/3, Var(Y) = 1/18
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Example

e Given X =z,
v Unif(0, x) z e (0,1)
Unif(0,2 —z) =z € (1,2)
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Example
® Given X =z,
v {Unif(O,a:) z e (0,1)
Unif(0,2 —z) =z € (1,2)

® Therefore (Lec 14)

2
& z € (0,1
Var(YV|X =x) = {%22_:0)2 (0,1)

12 x € (172)
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Example
e Given X =z,
v {Unif(O,m) z e (0,1)
Unif(0,2 —z) =z € (1,2)

® Therefore (Lec 14)
% z € (0,1)

2’ e 1,2)

Var(YV|X =x) = {

® Averaging over X, best MSE is given by
E(Var(Y|X)) = /Var(YX =) fx(z)dz

/ T rdx +/ (2I2x)2(2—x)dx: i

< Var(Y) =1/18
Therefore X is useful in predicting Y'!
* Alternative solution: Best MSE = E(Y?) — E(E(Y|X)?).
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Example

Let (X,Y) be uniformly distributed over the triangle:

Y

1

How to predict X based on Y7
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Example

Let (X,Y) be uniformly distributed over the triangle:

Y

1 E(X]Y =y)

How to predict X based on Y7
EX|Y)=EX)=1

So Y is not helpful for predicting X (under the MSE criterion), even
when they are dependent.
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Best linear estimate



Linear estimate

Two reasons why a linear rule for estimating Y using X is desirable:

® Linear estimate is simple and interpretable:
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Linear estimate

Two reasons why a linear rule for estimating Y using X is desirable:

® Linear estimate is simple and interpretable:

® Evaluating the best estimate requires knowing the conditional or the
joint PDF, which might not be available.
» |t turns out for best linear estimate, we only need mean, variance and
correlation coefficient!

17/21



Best linear estimate

Estimator: §(X) = aX + b. Next optimize over slope a and intercept b:
MSE = E(Y — aX — b)?
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Best linear estimate

Estimator: §(X) = aX + b. Next optimize over slope a and intercept b:

MSE = E(Y — aX — b)?
= Var(Y — aX) b=puy —aux
= a*Var(X) + Var(Y) — 2aCov(X,Y)
= 0% + 0% — 2ap(X,Y)oxoy

— (aox —oyp)® + (1 - p)o}

Best coefficients: oy p(X,Y) _ Cov(X,Y)
a= = 5
ox o

b= py —apx
Best linear estimate:

X _
aX +b=py + Loy p(X.Y)
X

achieves the minimum MSE among all linear estimators: (1 — p?)o2
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When is linear estimation useful

® Linear estimator is useful if X and Y are correlated (p # 0) and
perfect if p = £+1

® Linear estimator is useless if X and Y are uncorrelated (p = 0)
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When is linear estimation useful

® Linear estimator is useful if X and Y are correlated (p # 0) and
perfect if p = £+1
® Linear estimator is useless if X and Y are uncorrelated (p = 0)
® Example: X ~ N(0,1) and Y = X?2. Then
P Linear estimator is trivial: since p = 0, the best linear estimate is

E(Y) =1 and X does not help
> Best (non-linear) estimator: F(Y|X) = X2 =Y which is perfect.

This example again demonstrates the limitation of linear regression
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Example
Let (X,Y) be uniformly distributed over the triangle:

Y

1

T
0 1 2

What is the best linear estimate of Y given X7
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Example
Let (X,Y) be uniformly distributed over the triangle:

Y

1

T
0 1 2

What is the best linear estimate of Y given X7
® Find covariance:

E(XY)= //wyfxy(fv,y)dwdy = /Olydy /;_y wdx

1
— [ wdnz - 20) = 5 = ECQOE()
0

So Cov(X,Y) =0 and X and Y are uncorrelated, and linear
estimate is useless.
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Example: dice

Roll a fair die for n times, observe X =number of E how to predict
Y =number of
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Example: dice
Roll a fair die for n times, observe X =number of E how to predict
Y =number of ?
e Example: suppose n = 60, observe [*] 20 times, it's reasonable to
guess appear 8 times.
® |et's find the best linear estimate:

X _
py + =X v p(X,Y)
ox

where
> ux = py =n/6, ox = oy by symmetry
> lec2l: p(X,Y)=-1/5
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Example: dice
Roll a fair die for n times, observe X =number of E how to predict
Y =number of ?
e Example: suppose n = 60, observe [*] 20 times, it's reasonable to
guess appear 8 times.
® |et's find the best linear estimate:

X _
y + X oy p(X,Y)
ox

where
> ux = py =n/6, ox = oy by symmetry
> Lec 21 p(X,Y)=—1/5

So best linear estimate:

) () -

Makes sense: because the other five outcomes are equally likely.

21/21



