S&DS 241 Lecture 23

Law of large numbers, Moment generating function

B-H: 10.2,6.4
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Setting

Let X1, Xo,... be a sequence of independent and identically distributed
(iid) random variables with mean p and variance o2. Let

Sp=X1 4+ X, Ynzi

Intuition:
® For fair coin flips, we expect X, (fraction of Heads) to be close to %
if we flip it many times
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Law of Large Numbers (LLN)

¢ Informal statement: X, “converges’ to the expectation p as
n — oo, that is, X,, is likely to be close to -

sample (empirical) average ~ population average (expectation)
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Law of Large Numbers (LLN)

¢ Informal statement: X, “converges’ to the expectation p as
n — oo, that is, X,, is likely to be close to -

sample (empirical) average ~ population average (expectation)

® Precise statement: For any € > 0,

n—oo

P(Xn—pl > €) 2220

Proof.
Using Chebyshev's inequality

= Var(X,, o?
P(Kn— sl > ) < Y0En) _ 7

since Var(X,,) = #Var(Sn) = #(Var(Xl) +. 4 Var(X,))=2. O
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Law of Large Numbers (LLN)

¢ Informal statement: X, “converges’ to the expectation p as
n — oo, that is, X,, is likely to be close to -

sample (empirical) average ~ population average (expectation)

® Precise statement: For any € > 0,

n—oo

P(Xn—pl > €) 2220

Proof.
Using Chebyshev's inequality
— Var(X o?
P(‘Xn—,u]>€)§(2n)_n€2

€

2

since Var(X,) = & Var(S,) = & (Var(X1) + - + Var(X,)) = &. O

n2

® Instead of independence, assuming uncorrelated suffices.
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Examples of LLN

® Parking lot: 500 spots, 600 permits issued. Suppose each person
drives to work with probability 80%, then typically we expect around
480 cars
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Examples of LLN

® Parking lot: 500 spots, 600 permits issued. Suppose each person
drives to work with probability 80%, then typically we expect around
480 cars

® Home owner insurance: Liability of each policy

$100k  w.p. 0.1% (major)
$50k  w.p. 0.1% (substantial)
$10k  w.p. 1% (minor)

0 else

Then E(X) = $250 is a fair price. The insurance company sets the
premium to be $400 to guarantee a decent profit typically.
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When does LLN fail?

® By chance: e.g., it is possible, though extremely unlikely, to get all
heads in 100 coin flips
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® Xi,...,X, are correlated.
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When does LLN fail?

® By chance: e.g., it is possible, though extremely unlikely, to get all
heads in 100 coin flips
® X,,...,X, are correlated. For example:
» Parking lot: rainy day
» Home owner insurance: tornado
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Preview: Central Limit Theorem

® LLN:
X, = p+ small error

but it does not say how small the error is, that is, how fast it
vanishes as n grows
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Preview: Central Limit Theorem

® LLN:
X, = p+ small error

but it does not say how small the error is, that is, how fast it
vanishes as n grows
e CLT: “small error term” is proportional to ﬁ and approximately
Gaussian like:
Xn=p+ small error |
approximately N (0 d)

that is )
N a rox. 0-

Xn (S N (ua )
n
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Why do you need to know this?

Question (Lec 16)
Flip a fair coin 100 times. How unlikely is it to get at least 75 heads?
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Why do you need to know this?
Question (Lec 16)
Flip a fair coin 100 times. How unlikely is it to get at least 75 heads?

e Normal approximation of X,, by X,, ~ N(%, ﬁ):

P(X,>0.75)~ P(X,>075)=1—®(5) =29 x 1077

® This is justified by CLT for binomial (de Moivre-Laplace theorem),
which we proved by brute force (Stirling approximation)
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Why do you need to know this?
Question (Lec 16)

Flip a fair coin 100 times. How unlikely is it to get at least 75 heads?
1 1.
2 100)"

~ P(X,>075)=1—-®(5)=29x10""7

® Normal approximation of X,, by X, ~ N(

P(X, > 0.75)

® This is justified by CLT for binomial (de Moivre-Laplace theorem)
which we proved by brute force (Stirling approximation)
Question

Toss a fair die 100 times. How unlikely is it for the sum to exceed 400 ?
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Why do you need to know this?
Question (Lec 16)

Flip a fair coin 100 times. How unlikely is it to get at least 75 heads?
1 1.
2 100)"

~ P(X,>075)=1—-®(5)=29x10""7

® Normal approximation of X,, by X, ~ N(

P(X, > 0.75)

® This is justified by CLT for binomial (de Moivre-Laplace theorem)
which we proved by brute force (Stirling approximation)
Question

Toss a fair die 100 times. How unlikely is it for the sum to exceed 400 ?

e Normal approximation of X,, by X,, N<2’ 1200)

PX,>4)~P(X,>4)=1-®(2.93) =0.17%

® How to justify this?
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Universality of Gaussian
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Universality of Gaussian
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Universality of Gaussian
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Universality of Gaussian
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Universality of Gaussian
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Universality of Gaussian
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Universality of Gaussian

Sum of 1 iid Expo(1)
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Universality of Gaussian
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Universality of Gaussian
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Universality of Gaussian
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Universality of Gaussian
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Universality of Gaussian
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Universality of Gaussian
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Understanding the distribution of S,

Let X1,...,X,, beiid, with common PDF f.
® Recall (Lec 19) the PDF of X; + X5 is given by the convolution
fxf .
(0@ = [ Fose=o
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[rfeenf
———

n times

This is difficult to compute if n is large (which is exactly what we
are interested in)
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Understanding the distribution of S,

Let X1,...,X,, beiid, with common PDF f.
® Recall (Lec 19) the PDF of X; + X5 is given by the convolution
fxf .
(0@ = [ Fose=o

® The PDF of S, = X; + --- + X, is n-fold convolution

[rfeenf
———

n times

This is difficult to compute if n is large (which is exactly what we
are interested in)
® We need better tools for handling convolutions!
» Moment generating function turns convolutions into products.
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Moment Generating Function (MGF)



Definition

® The Moment Generating Function (MGF) of a random variable X is
defined as:
Mx (t) = B(e'Y),
which is a function of ¢t € R.

® The kth moment of X is
E(X%)
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Why MGF?

® MGF provides a unified way to calculate all moments
® MGF helps us to prove general CLT, going beyond the binomial case

® MGF helps establish sharp concentration inequalities: Chernoff
inequality (refined version of Chebyshev inequality) — see HW
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From MGF to moments

® Recall Taylor expansion of e!* at x = 0:

¢ o
T __ R
€ —Zk!x

k>0
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From MGF to moments

® Recall Taylor expansion of e!* at z = 0:

¢ o
T __ _
€ —Zk!x

k>0

® Replace z by random variable X and take expectation:

th th
Mx(t)=E(™)=E > HX’“ => EE(X’“)
E>0 E>0
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From MGF to moments
® Recall Taylor expansion of e!* at z = 0:
t t* ok
T __ _
e = Z k!x
k>0
® Replace z by random variable X and take expectation:
tX t* t* k
Mx(t) = E(eX)=E ZHX :ZEE(X )
k>0 k>0

® Compare with Taylor expansion of Mx (t) at ¢t = 0:

)
Mx(t) =) 71 My (0)

that is Mx(0) = 1, M%(0) = E(X), M%(0) = E(X?),...
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From MGF to moments

® The previous formal derivation can be rigorously justified if MGF is

finite in a neighborhood near zero

® Summary:

and

BE(xF) =

kth moment

M (0)

———
kth derivative of MGF at 0

E(Xk)tk
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Example: Bernoulli

For X ~ Bern (p), we have

My (t) = E(e™)"“E° (1 —p)-e®+p-e =1 —p+pe

Then
E(X" =M (0)=p, k=>1
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Example: Bernoulli

For X ~ Bern (p), we have

My (t) = E(e™)"“E° (1 —p)-e®+p-e =1 —p+pe

Then
E(X" =M (0)=p, k=>1

This is of course obvious because X € {0,1} so X*¥ = X.
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Example: standard normal
® For X ~ N(0,1), we have

1
Mx(t) = E(e¥) = / —Tﬁe*”“gmemdaj

—oo V2T
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Example: standard normal
® For X ~ N(0,1), we have

MX(t) = E(etX) = / 1 7x2/26tmd$

—e
oo V21
- / T L g, :
—oo V2T

® Taylor expansion at zero:

/2 _ Lo ok _ 2

k>0 k>0

® Moments of standard normal:

E(X*) =0 (by symmetry too)
(
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Key property of MGF: scaling and shifting

® For any constant a, b:

MaX+b(t) = Mx (at)ebt

Proof:

MaX-‘,—b(t) = E(e(aX+b)t) — E(eatX) 6bt
N—_——
Mx(at)

e Application: Find MGF of X ~ N(u,0?).
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Key property of MGF: scaling and shifting

® For any constant a, b:

MaX+b(t) = Mx (at)ebt

Proof:

MaX—i—b(t) = E’(e(aX+b)t) — E(eatX) 6bt
N—_——
Mx(at)

e Application: Find MGF of X ~ N(u,0?).

Solution: Write X = u+ 0Z, where Z ~ N(0,1). Then

My (t) = ¥ My(ot) =
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Key property of MGF: sum of independent RVs

® |et X and Y be independent. Then

| My (8) = Mx () My (1)
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Key property of MGF: sum of independent RVs

® |et X and Y be independent. Then

| My (8) = Mx () My (1)

Proof:

Mxiy (t) _ E(et(X+Y)) _ E(etXetY) independence E(etX) E(ety)
——
Mx(t) My (t)

® let Xy, ---,X,, beidand S,, = X1 +---+ X,,. Then

| Mg, (t) = (Mx, (1))"|
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Example: Binomial

For X ~ Bin (n,p), write
X=X1+Xo+ -+ X,
where X;'s are iid Bern(p), whose MGF is 1 — p + pe’. Then

Mx(t) = E(e"™) = (1—p+pe')"
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Example: Binomial

For X ~ Bin (n,p), write
X=X1+Xo+ -+ Xp,
where X;'s are iid Bern(p), whose MGF is 1 — p + pe!. Then
Mx(t) = E(e") = (1 —p+pe')".

Exercise: Derive this using the binomial PMF.
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