
S&DS 241 Lecture 23
Law of large numbers, Moment generating function

B-H: 10.2,6.4
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Setting
Let X1, X2, . . . be a sequence of independent and identically distributed

(iid) random variables with mean µ and variance σ2. Let

Sn = X1 + · · ·Xn, Xn =
Sn

n

Intuition:

• For fair coin flips, we expect Xn (fraction of Heads) to be close to 1
2

if we flip it many times
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Law of Large Numbers (LLN)
• Informal statement: Xn “converges” to the expectation µ as

n → ∞, that is, Xn is likely to be close to µ.

sample (empirical) average ≈ population average (expectation)

• Precise statement: For any ϵ > 0,

P (|Xn − µ| > ϵ)
n→∞−−−→ 0

Proof.

Using Chebyshev’s inequality

P (|Xn − µ| > ϵ) ≤ Var(Xn)

ϵ2
=

σ2

nϵ2

since Var(Xn) =
1
n2Var(Sn) =

1
n2 (Var(X1) + · · ·+Var(Xn)) =

σ2

n .

• Instead of independence, assuming uncorrelated suffices.
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Examples of LLN

• Parking lot: 500 spots, 600 permits issued. Suppose each person

drives to work with probability 80%, then typically we expect around

480 cars

• Home owner insurance: Liability of each policy

X =


$100k w.p. 0.1% (major)

$50k w.p. 0.1% (substantial)

$10k w.p. 1% (minor)

0 else

Then E(X) = $250 is a fair price. The insurance company sets the

premium to be $400 to guarantee a decent profit typically.
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When does LLN fail?

• By chance: e.g., it is possible, though extremely unlikely, to get all

heads in 100 coin flips

• X1, . . . , Xn are correlated. For example:
▶ Parking lot: rainy day
▶ Home owner insurance: tornado
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Preview: Central Limit Theorem

• LLN:

Xn = µ+ small error

but it does not say how small the error is, that is, how fast it

vanishes as n grows

• CLT: “small error term” is proportional to σ√
n
and approximately

Gaussian like:

Xn = µ+ small error︸ ︷︷ ︸
approximately N(0, σ2

n
)

that is

Xn
approx.∼ N

(
µ,

σ2

n

)
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Why do you need to know this?

Question (Lec 16)

Flip a fair coin 100 times. How unlikely is it to get at least 75 heads?

• Normal approximation of Xn by X̃n ∼ N(12 ,
1

400):

P (Xn ≥ 0.75) ≈ P (X̃n ≥ 0.75) = 1− Φ(5) = 2.9× 10−7

• This is justified by CLT for binomial (de Moivre-Laplace theorem),

which we proved by brute force (Stirling approximation)

Question

Toss a fair die 100 times. How unlikely is it for the sum to exceed 400 ?

• Normal approximation of Xn by X̃n ∼ N(72 ,
35

1200):

P (Xn ≥ 4) ≈ P (X̃n ≥ 4) = 1− Φ(2.93) = 0.17%

• How to justify this?
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Universality of Gaussian
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Universality of Gaussian
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Universality of Gaussian
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Universality of Gaussian
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Understanding the distribution of Sn

Let X1, . . . , Xn be iid, with common PDF f .

• Recall (Lec 19) the PDF of X1 +X2 is given by the convolution

f ∗ f :
(f ∗ f)(x) =

∫ ∞

−∞
f(t)f(x− t)dt

• The PDF of Sn = X1 + · · ·+Xn is n-fold convolution

f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸
n times

This is difficult to compute if n is large (which is exactly what we

are interested in)

• We need better tools for handling convolutions!

▶ Moment generating function turns convolutions into products.
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Moment Generating Function (MGF)



Definition

• The Moment Generating Function (MGF) of a random variable X is

defined as:

MX (t) = E(etX),

which is a function of t ∈ R.
• The kth moment of X is

E(Xk)

12/20



Why MGF?

• MGF provides a unified way to calculate all moments

• MGF helps us to prove general CLT, going beyond the binomial case

• MGF helps establish sharp concentration inequalities: Chernoff

inequality (refined version of Chebyshev inequality) — see HW
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From MGF to moments

• Recall Taylor expansion of etx at x = 0:

etx =
∑
k≥0

tk

k!
xk

• Replace x by random variable X and take expectation:

MX(t) = E(etX) = E

∑
k≥0

tk

k!
Xk

 =
∑
k≥0

tk

k!
E(Xk)

• Compare with Taylor expansion of MX(t) at t = 0:

MX(t) =
∑
k≥0

tk

k!
M

(k)
X (0)︸ ︷︷ ︸

=E(Xk)

that is MX(0) = 1,M ′
X(0) = E(X),M ′′

X(0) = E(X2), . . .
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From MGF to moments

• The previous formal derivation can be rigorously justified if MGF is

finite in a neighborhood near zero

• Summary:

E(Xk)︸ ︷︷ ︸
kth moment

= M
(k)
X (0)︸ ︷︷ ︸

kth derivative of MGF at 0

and

MX(t) =
∑
k≥0

E(Xk)

k!
tk
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Example: Bernoulli

For X ∼ Bern (p), we have

MX (t) = E(etX)
LOTUS
= (1− p) · e0 + p · et = 1− p+ pet

Then

E(Xk) = M
(k)
X (0) = p, k ≥ 1

This is of course obvious because X ∈ {0, 1} so Xk = X.
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Example: standard normal
• For X ∼ N(0, 1), we have

MX(t) = E(etX) =

∫ ∞

−∞

1√
2π

e−x2/2etxdx

=

∫ ∞

−∞

1√
2π

e−(x−t)2/2+t2/2dx = et
2/2

• Taylor expansion at zero:

et
2/2 =

∑
k≥0

1

k!
(t2/2)k =

∑
k≥0

t2k

2kk!

• Moments of standard normal:

E(X2k+1) = 0 (by symmetry too)

E(X2k) =
(2k)!

2kk!
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Key property of MGF: scaling and shifting

• For any constant a, b:

MaX+b(t) = MX(at)ebt

Proof:

MaX+b(t) = E(e(aX+b)t) = E(eatX)︸ ︷︷ ︸
MX(at)

ebt

• Application: Find MGF of X ∼ N(µ, σ2).

Solution: Write X = µ+ σZ, where Z ∼ N(0, 1). Then

MX(t) = eµtMZ(σt) = eµt+σ2t2/2
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Key property of MGF: sum of independent RVs

• Let X and Y be independent. Then

MX+Y (t) = MX (t)MY (t)

Proof:

MX+Y (t) = E(et(X+Y )) = E(etXetY )
independence
========= E(etX)︸ ︷︷ ︸

MX(t)

E(etY )︸ ︷︷ ︸
MY (t)

• Let X1, · · · , Xn be iid and Sn = X1 + · · ·+Xn. Then

MSn(t) = (MX1(t))
n
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Example: Binomial

For X ∼ Bin (n, p), write

X = X1 +X2 + · · ·+Xn,

where Xi’s are iid Bern(p), whose MGF is 1− p+ pet. Then

MX(t) = E(etX) =
(
1− p+ pet

)n
.

Exercise: Derive this using the binomial PMF.
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