
S&DS 241 Lecture 24
Central limit theorem

B-H: 10.3
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Galton board

https://www.youtube.com/watch?v=6YDHBFVIvIs

• This is explained by de Moivre-Laplace CLT for binomials (Lec 16):

• The distribution is bell-shaped is natural: there are very few ways to

reach the extreme and much more ways to be moderate; but why

Gaussian arises is perhaps surprising.

• Universality of Gaussian
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Sir Francis Galton on CLT ’1889

“I know of scarcely anything so apt to impress the imagination

as the wonderful form of cosmic order expressed by the law of

frequency of error. A savage, if he could understand it, would

worship it as a god. ... Let a large sample of chaotic elements

be taken and marshalled in order of their magnitudes, and then,

however wildly irregular they appeared, an unexpected and most

beautiful form of regularity proves to have been present all along.

The larger the mob, the greater the apparent anarchy, the more

perfect is its sway. It is the supreme law of unreason.”
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Recall LLN

Let X1, . . . , Xn be iid with mean µ and variance σ2. Let

Sn = X1 + · · ·Xn and Xn = Sn
n .

• Law of Large Numbers (LLN): Xn converges to µ in the sense that:

P (|Xn − µ| > ε)
n→∞−−−→ 0, for any ε > 0

that is, Xn becomes increasingly concentrated near µ.

• Central Limit Theorem (CLT) tells us the shape.

• Let’s look at an example: Xi ∼ Expo(1).
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How to zoom in?

Standardize (center and normalize) Xn:

• E(Xn) = µ and Var(Xn) = σ2

n .

• So let’s consider the standardized version of Xn:

Xn − µ√
σ2/n

=
Sn − nµ√

nσ2
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Central limit theorem

Theorem (CLT)

Let X1, X2, . . . be iid with mean µ and variance σ2. Let

Sn = X1 + · · ·Xn. Then
Sn−nµ√
nσ2

is approximately standard normal (in the

sense of CDF):

P

(
Sn − nµ√

nσ2
≤ x

)
n→∞−−−→ Φ(x) =

∫ x

−∞

1√
2π
e−t

2/2dt, ∀x ∈ R.

• CLT refines the LLN: “sample mean ≈ population mean + small

Gaussian”
Xn ≈ µ+N

(
0,
σ2

n

)
• Special case Xi ∼ Bern(p): de Moivre-Laplace CLT for Binomial

distribution (Lec 16)
• Next we prove this result using the apparatus of MGF. WLOG,

assume µ = 0 and σ = 1; otherwise replace Xi by (Xi − µ)/σ.
• Goal: show Sn√

n
is approximately distributed as N(0, 1).
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MGF

Recall moment generating function (MGF)

MX(t) = E(etX)

Example: X ∼ N(0, 1), MX(t) = et
2/2.
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Three facts about MGF useful for proving CLT

• Closeness of MGFs implies closeness of distribution (not proved)

MX(t) ≈ et2/2

=⇒ X ≈ standard normal (in the sense of CDF)

• For independent X and Y (Lec 23):

MX+Y (t) = MX(t)MY (t)

This allows us to sidestep convolution!!

• Taylor expansion at t = 0 (Lec 23):

MX(t) = MX(0)︸ ︷︷ ︸
1

+M ′X(0)︸ ︷︷ ︸
E(X)

t+M ′′X(0)︸ ︷︷ ︸
E(X2)

t2/2 + o(t2)
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Proof of CLT

Asymptotic behavior of MGF of Sn√
n

: as n→∞

M Sn√
n

(t) = MSn

(
t√
n

)

= MX1

(
t√
n

)
× · · · ×MXn

(
t√
n

)
=

(
MX1

(
t√
n

))n
=

(
1 +

t2

2n
+ o

(
1

n

))n
E(X1) = 0, E(X2

1 ) = 1

→ e
t2

2 Calculus:
(

1 +
x

n

)n
→ ex
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LLN vs CLT

• CLT is a more refined result than LLN

• LLN only requires uncorrelatedness, CLT requires independence.
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Example: Poisson

Let X ∼ Pois(n). Then as n grows, X is approximately N(n, n).

Why?

• Recall the property of Poisson distribution: if A ∼ Pois(λ) and

B ∼ Pois(µ), then A+B ∼ Pois(λ+ µ)

• Thus we can write

X = X1 + · · ·+Xn

where X1, . . . , Xn
i.i.d.∼ Pois(1), with unit mean and variance.

• Applying CLT justifies the normal approximation
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Application: stock

The price of a stock behaves independently each day, which goes up by

1% with probability 0.5, goes down by 1% with probability 0.1, or stays

put with probability 0.4. Buy the stock at $1 and hold for one year.

What is the chance to triple the value?

• The price after one year Y = D1D2 · · ·D365, where Di are iid with

Di =


1.01 w.p. 0.5

1 w.p. 0.4

0.99 w.p. 0.1

• Question: P (Y ≥ 3)
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Application: stock

• To apply CLT, we take the logarithm to turn products into sums:

lnY = X1 +X2 + · · ·+X365,

where Xi = lnDi are iid with

Xi =


ln 1.01 w.p. 0.5

0 w.p. 0.4

ln 0.99 w.p. 0.1

• Then µ = 3.97× 10−3 and σ2 = 4.38× 10−5.

• CLT says lnY is approximately distributed as

N(nµ, nσ2) = N(1.45, (0.127)2)
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Application: stock

• Chance of tripling:

P (Y ≥ 3) = P (lnY ≥ ln 3)
CLT
≈ 1− Φ

(
ln 3− 1.45

0.127

)
= 99.7%

P (Y ≥ 4) = P (lnY ≥ ln 4)
CLT
≈ 1− Φ

(
ln 4− 1.45

0.127

)
= 69%

• Median return:

CLT =⇒ median of lnY ≈ 1.45 =⇒ median of Y ≈ e1.45 = 4.26

• Alternatively: on average, expect the stock +1% on 365/2 days and

−1% on 365/10. So overall (1.01)365/2(0.99)365/10 ≈ 4.26
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−1% on 365/10. So overall (1.01)365/2(0.99)365/10 ≈ 4.26

18/1



Application: stock

• Chance of tripling:

P (Y ≥ 3) = P (lnY ≥ ln 3)
CLT
≈ 1− Φ

(
ln 3− 1.45

0.127

)
= 99.7%

P (Y ≥ 4) = P (lnY ≥ ln 4)
CLT
≈ 1− Φ

(
ln 4− 1.45

0.127

)
= 69%

• Median return:

CLT =⇒ median of lnY ≈ 1.45 =⇒ median of Y ≈ e1.45 = 4.26

• Alternatively: on average, expect the stock +1% on 365/2 days and

−1% on 365/10. So overall (1.01)365/2(0.99)365/10 ≈ 4.26

18/1


