S&DS 241 Lecture 25
Basics of Branching processes (not in final exam)
B-H: Example 2.7.2, Sec 6.7
Extinction of a species

[Francis Galton ’1873] For simplicity, suppose:

- Start with a single individual as the ancestor
- The number of children of each individual is independent and identically distributed with PMF p_0, p_1, p_2, \ldots

 ▶ For example: zero child with probability $p_0 = \frac{1}{3}$, one child with probability $p_1 = \frac{1}{3}$, two children with probability $p_2 = \frac{1}{3}$
Extinction of a species

[Francis Galton ’1873] For simplicity, suppose:

- Start with a single individual as the ancestor
- The number of children of each individual is **independent and identically distributed** with PMF p_0, p_1, p_2, \ldots

 - For example: zero child with probability $p_0 = \frac{1}{3}$, one child with probability $p_1 = \frac{1}{3}$, two children with probability $p_2 = \frac{1}{3}$

Question

- What is the probability of eventual extinction?
Extinction of a species

[Francis Galton ’1873] For simplicity, suppose:

• Start with a single individual as the ancestor
• The number of children of each individual is independent and identically distributed with PMF p_0, p_1, p_2, \ldots

▶ For example: zero child with probability $p_0 = \frac{1}{3}$, one child with probability $p_1 = \frac{1}{3}$, two children with probability $p_2 = \frac{1}{3}$

Question

• What is the probability of eventual extinction?
• What is the average number of k-generation descendents?
There was concern amongst the Victorians that aristocratic surnames were becoming extinct. Galton originally posed a mathematical question regarding the distribution of surnames in an idealized population in an 1873 issue of *The Educational Times*, and the Reverend Henry William Watson replied with a solution.
There was concern amongst the Victorians that aristocratic surnames were becoming extinct. Galton originally posed a mathematical question regarding the distribution of surnames in an idealized population in an 1873 issue of *The Educational Times*, and the Reverend Henry William Watson replied with a solution.

138 **Watson and Galton.—Extinction of Families.**

Mr. Galton then read the following paper by the Rev. H. W. Watson and himself:

https://en.wikipedia.org/wiki/Galton%E2%80%93Watson_process#History
Branching process (Galton-Watson tree)

Nuclear fission chain reaction
Other applications

- Spread of disease/rumor
- Evolution/Genetic mutation
- Population growth/Extinction of species
- etc
Simple example

- Consider $p_0 = p_1 = p_2 = \frac{1}{3}$. Find $p = P(\text{extinction})$.
Simple example

- Consider $p_0 = p_1 = p_2 = \frac{1}{3}$. Find $p = P(\text{extinction})$.
- Call the ancestor Adam. By LOTP (Lec 4):

\[
p = P(\text{extinction}|\text{Adam has 0 child}) \times \frac{1}{3} \\
+ P(\text{extinction}|\text{Adam has 1 child}) \times \frac{1}{3} \\
+ P(\text{extinction}|\text{Adam has 2 children}) \times \frac{1}{3}
\]

- We arrive at an equation $p = (1 + p + p^2)/3$, which has a unique solution $p = 1$. Thus

\[P(\text{extinction}) = 1\]
Simple example

- Consider $p_0 = \frac{1}{3}, p_1 = \frac{1}{6}, p_2 = \frac{1}{2}$. Find $p = P(\text{extinction})$.

$$
\text{Call the ancestor Adam. By LOTP: } p = P(\text{extinction} | \text{Adam has 0 child}) + p \times \frac{1}{6} + P(\text{extinction} | \text{Adam has 2 children}) \times \frac{1}{2}
$$

Solving $p = \frac{1}{3} + \frac{p}{6} + \frac{p}{2} = \Rightarrow p = \frac{1}{2}$ or $p = \frac{2}{3}$.

Which solution should I pick?

$\frac{7}{24}$
Simple example

- Consider $p_0 = \frac{1}{3}, p_1 = \frac{1}{6}, p_2 = \frac{1}{2}$. Find $p = P(\text{extinction})$.
- Call the ancestor Adam. By LOTP:

$$p = P(\text{extinction} | \text{Adam has 0 child}) \times \frac{1}{3}$$

$$+ P(\text{extinction} | \text{Adam has 1 child}) \times \frac{1}{6}$$

$$+ P(\text{extinction} | \text{Adam has 2 children}) \times \frac{1}{2}$$

- Solving

$$p = \frac{1}{3} + \frac{p}{6} + \frac{p^2}{2} \implies p = 1 \text{ or } p = \frac{2}{3}$$

Which solution should I pick?
Systematic solution
Probability generating function (B-H Sec 6.7)

Let X be a random non-negative integer (e.g. Bin, Pois, Geom)

- Probability Generating function (PGF) of a random variable

\[G_X(z) = E(z^X), \quad |z| \leq 1 \]
Probability generating function (B-H Sec 6.7)

Let X be a random non-negative integer (e.g. Bin, Pois, Geom)

- **Probability Generating function (PGF) of a random variable**

 \[G_X(z) = E(z^X), \quad |z| \leq 1 \]

- **PGF vs MGF: just a change of variable**

 \[
 \begin{cases}
 G_X(z) = M_X(\log z) \\
 M_X(t) = G_X(e^t)
 \end{cases}
 \]

Let X denote the number of children of a given individual, with
PMF $P(X = i) = p_i$, $i = 0, 1, 2, \ldots$. It turns out the PGF of X
determines the chance of extinction:

\[G(z) = E(z^X) = p_0 + p_1 z + p_2 z^2 + \cdots = (1 - p_0)(1 + z)^{-1} \]

$\Rightarrow G(z) = \left(1 + \frac{z}{2}\right)$.

\[G(z) = \left(1 + \frac{z}{2}\right)

Probability generating function (B-H Sec 6.7)

Let X be a random non-negative integer (e.g. Bin, Pois, Geom)

- Probability Generating function (PGF) of a random variable

$$G_X(z) = E(z^X), \quad |z| \leq 1$$

- PGF vs MGF: just a change of variable

$$\begin{cases} G_X(z) = M_X(\log z) \\ M_X(t) = G_X(e^t) \end{cases}$$

- Let X denote the number of children of a given individual, with PMF $P(X = i) = p_i, \ i = 0, 1, 2, \ldots$. It turns out the PGF of X determines the chance of extinction:

$$G(z) = E(z^X) \overset{\text{LOTUS}}{=} p_0 + p_1z + p_2z^2 + \cdots$$

e.g. $p_0 = p_1 = p_2 = \frac{1}{3} \implies G(z) = \left(1 + z + z^2\right)/3$.
Probability of extinction

Let $e_k = P(\text{extinction by the } k\text{th generation})$.

- Then $e_0 = 0, e_1 = p_0, \ldots$.
- Find $P(\text{eventual extinction}): e_\infty = \lim_{k \to \infty} e_k$.
Probability of extinction

Let $e_k = P($extinction by the kth generation$)$.

- Then $e_0 = 0, e_1 = p_0, \ldots$.
- Find $P($eventual extinction$): e_\infty = \lim_{k \to \infty} e_k$
- Recursion: by LOTP, conditioned on the first generation,

\[e_{k+1} = p_0 + p_1 e_k + p_2 e_k^2 + \cdots \]
Probability of extinction

Let $e_k = P($extinction by the kth generation$)$.

- Then $e_0 = 0, e_1 = p_0, \ldots$
- Find $P($eventual extinction$)$: $e_\infty = \lim_{k \to \infty} e_k$
- Recursion: by LOTP, conditioned on the first generation,

$$e_{k+1} = p_0 + p_1 e_k + p_2 e_k^2 + \cdots$$

that is

$$\begin{cases} e_{k+1} = G(e_k) \\ e_0 = 0 \end{cases}$$
Probability of extinction

Let $e_k = P(\text{extinction by the } k\text{th generation})$.

- Then $e_0 = 0, e_1 = p_0, \ldots$
- Find $P(\text{eventual extinction})$: $e_\infty = \lim_{k \to \infty} e_k$
- Recursion: by LOTP, conditioned on the first generation,

\[e_{k+1} = p_0 + p_1 e_k + p_2 e_k^2 + \cdots \]

that is

\[
\begin{cases}
 e_{k+1} = G(e_k) \\
 e_0 = 0
\end{cases}
\]

- Trivial case: $p_0 = 0$ (always at least one child), then $e_k = 0$ for all k
- Next assume non-trivial case

\[p_0 > 0 \]
Iterative maps

\[(p_0, p_1, p_2) = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) \implies G(z) = (1 + z + z^2)/3\]

In this case there is a unique fixed point (solution to \(G(z) = z\)) at 1. So \(e_k\) converges to the \(e_\infty = 1\), i.e., \(P(\text{extinction}) = 1\).
Iterative maps

\((p_0, p_1, p_2) = (\frac{1}{3}, \frac{1}{6}, \frac{1}{2}) \implies G(z) = \frac{2 + z + 3z^2}{6}\)

In this case \(G(z) = z\) has two solutions \(2/3\) and 1. Starting from \(e_0 = 0\), \(e_k\) converges to \(e_\infty = 2/3\), i.e,
\[P(\text{extinction}) = \frac{2}{3} \quad \text{and} \quad P(\text{survival}) = \frac{1}{3}\]
Iterative maps

\[(p_0, p_1, p_2) = \left(\frac{1}{3}, \frac{1}{2}, \frac{1}{6} \right) \implies G(z) = \frac{2 + 3z + z^2}{6}\]

In this case \(G(z) = z\) has two solutions 1 and 2. Starting from \(e_0 = 0\), \(e_k\) converges to \(e_\infty = 1\).
Criterion for extinction

\[\begin{cases}
 e_{k+1} = G(e_k) \\
 e_0 = 0
\end{cases}\]

Note that PGF \(G(z) = E(z^X) \) satisfies:

- \(G(1) = 1 \) so 1 is always a fixed point
Criterion for extinction

\[
\begin{align*}
\begin{cases}
e_{k+1} = G(e_k) \\
e_0 = 0
\end{cases}
\end{align*}
\]

Note that PGF \(G(z) = E(z^X) \) satisfies:

- \(G(1) = 1 \) so 1 is always a fixed point
- \(G(z) = p_0 + p_1z + p_2z^2 + \cdots \) is an increasing function of \(z \geq 0 \),
 \(G(0) = p_0 \)
Criterion for extinction

\[
\begin{align*}
 e_{k+1} &= G(e_k) \\
 e_0 &= 0
\end{align*}
\]

Note that PGF $G(z) = E(z^X)$ satisfies:

- $G(1) = 1$ so 1 is always a fixed point
- $G(z) = p_0 + p_1 z + p_2 z^2 + \cdots$ is an increasing function of $z \geq 0$, $G(0) = p_0$
- $G'(z) = p_1 + 2p_2 z + 3p_3 z^2 + \cdots$ is an increasing function, i.e., $G(z)$ is convex
Criterion for extinction

\[
\begin{aligned}
e_{k+1} &= G(e_k) \\
e_0 &= 0
\end{aligned}
\]

Note that PGF \(G(z) = E(z^X) \) satisfies:

- \(G(1) = 1 \) so 1 is always a fixed point
- \(G(z) = p_0 + p_1z + p_2z^2 + \cdots \) is an increasing function of \(z \geq 0 \), \(G(0) = p_0 \)
- \(G'(z) = p_1 + 2p_2z + 3p_3z^2 + \cdots \) is an increasing function, i.e., \(G(z) \) is convex
- Key quantity:

\[G'(1) = E(X) = \text{average number of children per individual} \]

This also follows from MGF: \(G'(1) = M'_X(0) = E(X) \).
Criterion for extinction

In terms of expected number of children:

- **Supercritical:**
 \[E(X) > 1 \Rightarrow e_\infty < 1 \]

- **Critical:**
 \[E(X) = 1 \Rightarrow e_\infty = 1 \]

- **Subcritical:**
 \[E(X) < 1 \Rightarrow e_\infty = 1 \]
Criterion for extinction

In terms of expected number of children:

- $E(X) \leq 1 \Leftrightarrow P(\text{extinction}) = 1$
- $E(X) > 1 \Leftrightarrow P(\text{extinction}) < 1$, given by the smaller solution to $G(z) = z$
Number of descendents
Number of descendents

- Let N_k be the number of descendents at kth generation, with $N_0 = 1$.
- Find the PMF is very involved:

\[\begin{array}{c|c|c|c|c|c}
N_k & 0 & 1 & 2 & 3 & 4 \\
\hline
p & \frac{1}{16} & \frac{1}{8} & \frac{9}{64} & \frac{1}{32} & \frac{1}{64} \\
\end{array}\]

So N_2 takes values 0, 1, 2, 3, 4 with probabilities $\frac{11}{16}, \frac{1}{8}, \frac{9}{64}, \frac{1}{32}, \frac{1}{64}$.
- Let’s find the expected number of kth-gen descendents $E(N_k)$
Strategy: Generation functions

Denote the PGF of N_k by:

$$G_k(z) \equiv E(z^{N_k})$$

Let’s compute $G_k(z)$ and then differentiate:

$$G'_k(1) = E(N_k)$$
Recursions between PGFs

- $N_0 = 1$: $G_0(z) = z$.
- N_1 has PMF (p_0, p_1, \ldots): $G_1(z) = G(z)$
- What about N_2?
Recursions between PGFs

Relation between N_1 and N_2:

- Suppose $N_1 = n$, then

 $$N_2 = X_1 + X_2 + \cdots + X_n$$

 where the numbers of 2nd-generation children X_i's are iid with common PMF (p_0, p_1, \ldots).

- Therefore N_2 is an iid sum with N_1 (random) number of terms:

 $$N_2 = \sum_{i=1}^{N_1} X_i$$
Recursions between PGFs

Find the PGF of \(N_2 \):

\[
E(z^{N_2} | N_1 = n) = E(z^{X_1 + \cdots + X_n}) \overset{\text{iid}}{=} \prod_{i=1}^{n} E(z^{X_i}) = G(z)^n
\]

By Law of Total Expectation (Lec 22):

\[
G_2(z) = E(z^{N_2}) = E(E(z^{N_2} | N_1)) = E(G(z)^{N_1}) = G(G(z))
\]
Recursions between PGFs

• Relation between N_k and N_{k+1}:

$$N_{k+1} = \sum_{i=1}^{N_k} X_{k,i}$$

where the number of kth-gen children $X_{k,i}$'s are iid with common PMF (p_0, p_1, \ldots).

• Find PGF of N_{k+1}: Entirely analogous to the previous slide,

$$G_{k+1}(z) = E(z^{N_{k+1}}) = E(E(z^{N_{k+1}}|N_k)),$$

where

$$E(z^{N_{k+1}}|N_k = n) = E(z^{\sum_{i=1}^{n} X_{k,i}})^{\text{iid}} \prod_{i=1}^{n} E(z^{X_{k,i}}) = G(z)^n$$

Thus

$$G_{k+1}(z) = E(G(z)^{N_k}) = G_k(G(z))$$
Expression of PGF

• Generating function of N_k:

$$G_k(z) = G \circ G \cdots \circ G(z)$$

k times

• Taking derivative yields $G'_k(1) = E(N_k)$: let $m = E(X) = G'(1)$ be the average number of offsprings per individual.

 ▶ 0th gen: $E(N_0) = G'_0(1) = 1$
Expression of PGF

- Generating function of \(N_k \):

\[
G_k(z) = G \circ G \cdots \circ G(z) \quad \text{\(k \) times}
\]

- Taking derivative yields \(G'_k(1) = E(N_k) \): let \(m = E(X) = G'(1) \) be the average number of offsprings per individual.
 - 0th gen: \(E(N_0) = G'_0(1) = 1 \)
 - 1st gen: \(E(N_1) = G'_1(1) = m \)
Expression of PGF

- Generating function of N_k:

\[
G_k(z) = G \circ G \cdots \circ G(z)
\]

\[k \text{ times}\]

- Taking derivative yields $G'_k(1) = E(N_k)$: let $m = E(X) = G'(1)$ be the average number of offsprings per individual.

 - 0th gen: $E(N_0) = G'_0(1) = 1$
 - 1st gen: $E(N_1) = G'_1(1) = m$
 - 2nd gen:

\[
E(N_2) = \left. \frac{d}{dz} G(G(z)) \right|_{z=1} = G'(G(1))G'(1) = G'(1)^2 = m^2
\]
Expression of PGF

• Generating function of N_k:

$$G_k(z) = G \circ G \cdots \circ G(z)$$

k times

• Taking derivative yields $G'_k(1) = E(N_k)$: let $m = E(X) = G'(1)$ be the average number of offsprings per individual.

▶ 0th gen: $E(N_0) = G'_0(1) = 1$

▶ 1st gen: $E(N_1) = G'_1(1) = m$

▶ 2nd gen:

$$E(N_2) = \left. \frac{d}{dz} G(G(z)) \right|_{z=1} = G'(G(1))G'(1) = G'(1)^2 = m^2$$

▶ kth gen: by induction,

$$E(N_k) = \underbrace{G'(G_{k-1}(1)) \cdot G'_{k-1}(1)}_{=m^{k-1}} = m^k$$
Average number of descendents

Let $m = E(X) =$ average number of offsprings per individual. Then

$$E(N_k) = m^k$$

Then

- $m > 1$: $P(\text{survival}) > 0$ and average population grows exponentially
- $m = 1$: $P(\text{survival}) = 0$ and average population stays one
- $m < 1$: $P(\text{survival}) = 0$ and average population dies exponentially

For more, see
- Grinstead-Snell §10.2
Average number of descendents

Let \(m = E(X) = \) average number of offsprings per individual. Then

\[
E(N_k) = m^k
\]

Then

- \(m > 1 \): \(P(\text{survival}) > 0 \) and average population grows exponentially
- \(m = 1 \): \(P(\text{survival}) = 0 \) and average population stays one
- \(m < 1 \): \(P(\text{survival}) = 0 \) and average population dies exponentially

For more, see

- Grinstead-Snell §10.2