S&DS 241 Lecture 25

Basics of Branching processes (not in final exam)

B-H: Example 2.7.2, Sec 6.7
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Extinction of a species

[Francis Galton '1873] For simplicity, suppose:

® Start with a single individual as the ancestor

® The number of children of each individual is independent and
identically distributed with PMF pg, p1, po, . ..

» For example: zero child with probability pg = % one child with
probability p; = %, two children with probability p, = %
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Extinction of a species

[Francis Galton '1873] For simplicity, suppose:

® Start with a single individual as the ancestor

® The number of children of each individual is independent and
identically distributed with PMF pg, p1, po, . ..

» For example: zero child with probability pg = % one child with
probability p; = %, two children with probability p, = %

Question
® What is the probability of eventual extinction?

® What is the average number of k-generation descendents?
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History

There was concern amongst the Victorians that aristocratic surnames
were becoming extinct. Galton originally posed a mathematical question
regarding the distribution of surnames in an idealized population in an
1873 issue of The Educational Times, and the Reverend Henry William
Watson replied with a solution.

https://en.wikipedia.org/wiki/Galton),E2%80%93Watson_process#History
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History

There was concern amongst the Victorians that aristocratic surnames
were becoming extinct. Galton originally posed a mathematical question
regarding the distribution of surnames in an idealized population in an
1873 issue of The Educational Times, and the Reverend Henry William
Watson replied with a solution.

138 ‘WATSON and GALTON.—Extinction of Famalies.

Mr. Galton then read the following paper by the Rev. H. W.
‘Watson and himself:

On the PROBABILITY of the EXTINCTION of FAMILIES. By the Rev.
H. W. Warson. With PrErATORY REMARKS, by FRANCIS
GavrtoN, F.R.S.

https://en.wikipedia.org/wiki/Galton),E2%80%93Watson_process#History
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Branching process (Galton-Watson tree)

Nuclear fission chain reaction
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Other applications

Spread of disease/rumor

Evolution/Genetic mutation

Population growth /Extinction of species

® etc
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Simple example

e Consider pg = p1 = p2 = % Find p = P(extinction).

6/24



Simple example
e Consider pg = p1 = p2 = % Find p = P(extinction).
e Call the ancestor Adam. By LOTP (Lec 4):

1
p = P(extinction|Adam has 0 child) X3
1

1
+ P(extinction|Adam has 1 child) X3

p

1
+ P(extinction|Adam has 2 children) X3

~~

p2

® We arrive at an equation p = (1 + p + p?)/3, which has a unique
solution p = 1. Thus

P(extinction) = 1
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Simple example

e Consider pg = %,pl = %,pg = % Find p = P(extinction).
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Simple example

e Consider pg = %,pl = %,pg = % Find p = P(extinction).
® Call the ancestor Adam. By LOTP:

1
p = P(extinction|Adam has 0 child) X3
1

1
+ P(extinction|Adam has 1 child) X5

p

1
+ P(extinction|Adam has 2 children) x5

p2

® Solving
p=1/3+p/64+p?/2 = p=1lorp=2/3

Which solution should | pick?
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Probability generating function (B-H Sec 6.7)
Let X be a random non-negative integer (e.g. Bin, Pois, Geom)

® Probability Generating function (PGF) of a random variable

Gx(z) = E(zY), |2] <1

9/24



Probability generating function (B-H Sec 6.7)
Let X be a random non-negative integer (e.g. Bin, Pois, Geom)
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Probability generating function (B-H Sec 6.7)
Let X be a random non-negative integer (e.g. Bin, Pois, Geom)

® Probability Generating function (PGF) of a random variable
Gx(2) = E(zY), |z <1

® PGF vs MGF: just a change of variable

{GX(Z) = Mx (log 2)
Mx(t) = Gx(e')

® |et X denote the number of children of a given individual, with
PMF P(X =) =p;, 1 =0,1,2,.... It turns out the PGF of X

determines the chance of extinction:
G(z) = BE(zX) "L po + prz + paz? + - -

eg. po=pi=pr=3 = G(z)=(1+2+2%)/3.
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Probability of extinction

Let e = P(extinction by the kth generation).
® Then eg =0,e1 = pg, - - ..
® Find P(eventual extinction): es = limg_,00 €k
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Probability of extinction

Let e = P(extinction by the kth generation).
® Then eg =0,e1 = pg, - - ..
® Find P(eventual extinction): es = limg_,00 €k
® Recursion: by LOTP, conditioned on the first generation,

ki1 = Po + preg + paeh 4 -

that is

{€k+1 = G(ex)

ep =0

e Trivial case: pp = 0 (always at least one child), then e; = 0 for all k
® Next assume non-trivial case

po >0
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lterative maps
(po,p1sp2) = (3,5, 5) = G(z) = (1 +2+2%)/3

)

In this case there is a unique fixed point (solution to G(z) = z) at 1. So
ej converges to the e, = 1, i.e., P(extinction) = 1.
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lterative maps
(p07plap2) = (%) %7 %) - G(Z) - (2 +Z + 322)/6

Y

In this case G(z) = z has two solutions 2/3 and 1. Starting from e¢p = 0,
ej converges to es, = 2/3, i.e,
P(extinction) = 2/3 and P(survival) =1/3
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lterative maps

(Po,p1,12) = (3,3,5) = G(2) = (2+32+2%)/6

3

<

G(z

In this case G(z) = z has two solutions 1 and 2. Starting from ey = 0,

e converges to eq, = 1.
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Criterion for extinction

{€k+1 = G(ex)

eg =0

Note that PGF G(z) = E(2%) satisfies:
® (1) =1so 1is always a fixed point
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Criterion for extinction

{

ert1 = Gler)

eg =0
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Criterion for extinction

eg =0

{€k+1 = G(ex)

Note that PGF G(z) = E(2%) satisfies:

® (1) =1so 1is always a fixed point

® G(z) =po+ p1z + p2z® +--- is an increasing function of z > 0,
G(0) = po

® G'(2) = p1 +2paz + 3p3z% + - is an increasing function, i.e., G(z)
is convex

[ ]

Key quantity:
G'(1) = E(X) = average number of children per individual

This also follows from MGF: G'(1) = M%(0) = E(X).
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Criterion for extinction

Supercritical:
EX)>1=ex<1

z
1

Critical:
EX)=1=ex=1

z
1

Subcritical:
EX)<l=ex=1
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Criterion for extinction

z z z
1 1 1

Supercritical: Critical: Subcritical:
EX)>1=ex<l EX)=l=ex=1 EX)<l=ex=1
In terms of expected number of children:

® F(X) <1<« P(extinction) =1
® F(X) > 1<% P(extinction) < 1, given by the smaller solution to
G(z)==z
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Number of descendents



Number of descendents

® |et Ni be the number of descendents at kth generation, with
Ny =1.
® Find the PMF is very involved:

1/64
1/32
5/64
116
116
116
116
1/8

. 110109 101
So N takes values 0,1,2,3,4 with probabilities {5, 5, ¢1> 335 61-

® Let's find the expected number of kth-gen descendents E(Ny)
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Strategy: Generation functions

Denote the PGF of Ny by:
Gi(2) = E(z"F)
Let's compute G (z) and then differentiate:

Gi(1) = E(Ny)
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Recursions between PGFs

e No=1: G(](Z) = Z.
® N; has PMF (po,pl,.. ) Gl(z) = G(Z)
e \What about N5?
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Recursions between PGFs
Relation between N; and Na:
® Suppose N1 = n, then
Ny=X1+Xo+ -+ X,

where the numbers of 2nd-generation childern X;'s are iid with
common PMF (pg,p1,...).

® Therefore Ny is an iid sum with Ny (random) number of terms:

Ny
Ny =) X;
=1
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Recursions between PGFs

Find the PGF of Ns:

E(zM2|Ny = n) = E(zX1H ) lid ﬁE(in) =G(z)"
i=1

By Law of Total Expectation (Lec 22):

Ga(2) = B(:"?) = B(E(z"*|N1)) = E(G()™) = G(G(2))
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Recursions between PGFs
® Relation between Ny and Ngy1:

where the number of kth-gen children X} ;'s are iid with common

PMF (p07p17 .- )
® Find PGF of Ny11: Entirely analogous to the previous slide,

Gry1(z) = E(zM1) = E(E(z"1|Ny)),
where
E(ZNk+1 N, =n) = E(ZZL kai) iid HE(zX’“) =G(2)"

i=1
Thus

Gri1(2) = B(G(2)™) = Gr(G(2))
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Expression of PGF
® Generating function of N:

Gp(2) =GoG---0G(z2)

k times

® Taking derivative yields G).(1) = E(Ng): let m = E(X) = G'(1) be
the average number of offsprings per individual.
> 0th gen: E(Ng) =G(1) =1
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Gp(2) =GoG---0G(z2)
[ —
k times
® Taking derivative yields G).(1) = E(Ng): let m = E(X) = G'(1) be
the average number of offsprings per individual.
> 0th gen: E(Ng) =G(1) =1
> 1st gen: E(N1) =Gi(1)=m

23/24



Expression of PGF

® Generating function of N:

Gp(2) =GoG---0G(z2)

k times

® Taking derivative yields G).(1) = E(Ng): let m = E(X) = G'(1) be
the average number of offsprings per individual.
> 0th gen: E(Ng) =G(1) =1
> 1st gen: E(N1) =Gi(1)=m
> 2nd gen:
d

E(No) = £GER)| _ = G(GW)E 1) =1 =m?

23/24



Expression of PGF

® Generating function of N:

Gp(2) =GoG---0G(z2)

k times

® Taking derivative yields G).(1) = E(Ng): let m = E(X) = G'(1) be
the average number of offsprings per individual.
> 0th gen: E(Ng) =G(1) =1
> 1st gen: E(N1) =Gi(1)=m
> 2nd gen:
d

E(No) = £GER)| _ = G(GW)E 1) =1 =m?

» kth gen: by induction,

E(Ni) = G'(Gr-1(1)) Gj_, (1) = m*

=G'()=m  =mk-1
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Average number of descendents

Let m = E(X) = average number of offsprings per individual. Then
E(Ny) =mF

Then
® m > 1: P(survival) > 0 and average population grows exponentially
® m = 1: P(survival) = 0 and average population stays one

® m < 1: P(survival) = 0 and average population dies exponentially
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Average number of descendents

Let m = E(X) = average number of offsprings per individual. Then
E(Ny) =mF

Then
® m > 1: P(survival) > 0 and average population grows exponentially
® m = 1: P(survival) = 0 and average population stays one

® m < 1: P(survival) = 0 and average population dies exponentially

For more, see
® Grinstead-Snell §10.2

® Athreya, Krishna B.; Ney, Peter E. (1972). Branching Processes.
Berlin: Springer-Verlag.
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