
S&DS 241 Lecture 25
Basics of Branching processes (not in final exam)

B-H: Example 2.7.2, Sec 6.7
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Extinction of a species

[Francis Galton ’1873] For simplicity, suppose:

• Start with a single individual as the ancestor

• The number of children of each individual is independent and
identically distributed with PMF p0, p1, p2, . . .

I For example: zero child with probability p0 = 1
3 , one child with

probability p1 = 1
3 , two children with probability p2 = 1

3

Question
• What is the probability of eventual extinction?

• What is the average number of k-generation descendents?
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History

There was concern amongst the Victorians that aristocratic surnames

were becoming extinct. Galton originally posed a mathematical question

regarding the distribution of surnames in an idealized population in an

1873 issue of The Educational Times, and the Reverend Henry William

Watson replied with a solution.

 138 WATSON and GALTON.-ELxtinction of Families.

 Mr. Galton then read the following paper by the Rev. H. W.
 Watson and himself:

 On the PROBABILITY of the EXTINCTION of FAMILIES. By the Rev.
 H. W. WATSON. With PREFATORY REMARKS, by FRANcIs
 GALTON, F.R.S.

 THE decay of the families of men who occupied conspicuous po-
 sitions in past times has been a subject of frequent remark, and
 has given rise to various conjectures. It is not only the families
 of men of genius or those of the aristocracy who tend to perish,
 but it is those of all with whom history deals, in any way, even
 of such men as the burgesses of towns, concerning whom Mr.
 Doubleday has inquired and written. The instances are very
 ntimerous in which surnames that were once common have since
 become scarce or have wholly disappeared. The tendency is
 universal, and, in explanation of it, the conclusion has been
 hastily drawn that a rise in physical comfort and intellectual
 capacity is necessarily accompanied by diminution in " fertility"
 -using that phrase in its widest sense and reckoning absti-
 nence from marriage as sterility. Tf that conclusion be true, our
 population is chiefly maintained though the "proletariat," and
 thus a large element of degradation is inseparably connected with
 those other elements which tend to ameliorate the race. On the
 other hand, M. Alphonse De Candolle has directed attention to
 the fact that, by the ordinary law of chances, a large proportion
 of families are continually dying out, and it evidently follows that,
 until we knowwhat that proportion is,we cannot estimatewhether
 any observed diminution of surLnames among the families whose
 history we can trace, is or is not a sign of their diminished "fer-
 tility." I give extracts from M. De Candolle's work in a foot-note,*
 and may add that, although I have not hitherto published any-
 thing on the matter, I took considerable pains some years ago to
 obtain numerical results in respect to this very problem. I made
 certain very simple, but not very inaccurate, suppositions, con-
 cerning average fertility, and I worked to the nearest integer,
 starting with 10,000 persons, but the computation became in-
 tolerably tedious after a few steps, and I had to abandon it.
 More recently, having first privately applied in vain to some

 * "Au milieu des renseignements precis et des opinions tr's-sensees de
 MM. Benoiston de ChAteauneuf, Galton, et autres statisticiens, je n'ai pas
 rencontre la reflexion bien importante qu'ils aura ient d-h faire de 1'extinction
 ine'vitable des noms defamille. Evidemment tous les noms doivent s'eteindre
 ......U.. n math6maticien pourrait calculer comment la reduction des noms
 ou titres aurait lieu, d'aprbs la probabilite des naissances toutes f6minines
 ou toutes masculines ou melangees et la probabilite d'absence de naissances
 dans un couple quelconque," etc.-Alphonse de Candolle, "Histoire des
 Sciences et des Savants," 1873.
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Branching process (Galton-Watson tree)
Nuclear fission chain reaction

1
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Other applications

• Spread of disease/rumor

• Evolution/Genetic mutation

• Population growth/Extinction of species

• etc
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Simple example

• Consider p0 = p1 = p2 =
1
3 . Find p = P (extinction).

• Call the ancestor Adam. By LOTP (Lec 4):

p = P (extinction|Adam has 0 child)︸ ︷︷ ︸
1

×1

3

+ P (extinction|Adam has 1 child)︸ ︷︷ ︸
p

×1

3

+ P (extinction|Adam has 2 children)︸ ︷︷ ︸
p2

×1

3

• We arrive at an equation p = (1 + p+ p2)/3, which has a unique

solution p = 1. Thus

P (extinction) = 1
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Simple example

• Consider p0 =
1
3 , p1 =

1
6 , p2 =

1
2 . Find p = P (extinction).

• Call the ancestor Adam. By LOTP:

p = P (extinction|Adam has 0 child)︸ ︷︷ ︸
1

×1

3

+ P (extinction|Adam has 1 child)︸ ︷︷ ︸
p

×1

6

+ P (extinction|Adam has 2 children)︸ ︷︷ ︸
p2

×1

2

• Solving

p = 1/3 + p/6 + p2/2 =⇒ p = 1 or p = 2/3

Which solution should I pick?
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Systematic solution



Probability generating function (B-H Sec 6.7)

Let X be a random non-negative integer (e.g. Bin,Pois,Geom)

• Probability Generating function (PGF) of a random variable

GX(z) = E(zX), |z| ≤ 1

• PGF vs MGF: just a change of variable{
GX(z) = MX(log z)

MX(t) = GX(et)

• Let X denote the number of children of a given individual, with

PMF P (X = i) = pi, i = 0, 1, 2, . . .. It turns out the PGF of X

determines the chance of extinction:

G(z) = E(zX)
LOTUS
= p0 + p1z + p2z

2 + · · ·

e.g. p0 = p1 = p2 =
1
3 =⇒ G(z) = (1 + z + z2)/3.
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Probability of extinction
Let ek = P (extinction by the kth generation).

• Then e0 = 0, e1 = p0, . . ..
• Find P (eventual extinction): e∞ = limk→∞ ek

• Recursion: by LOTP, conditioned on the first generation,

ek+1 = p0 + p1ek + p2e
2
k + · · ·

that is {
ek+1 = G(ek)

e0 = 0

• Trivial case: p0 = 0 (always at least one child), then ek = 0 for all k
• Next assume non-trivial case

p0 > 0
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Iterative maps

(p0, p1, p2) = (13 ,
1
3 ,

1
3) =⇒ G(z) = (1 + z + z2)/3

G(z)

y

x
1e0 e1 e2 e3

In this case there is a unique fixed point (solution to G(z) = z) at 1. So

ek converges to the e∞ = 1, i.e., P (extinction) = 1.
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Iterative maps
(p0, p1, p2) = (13 ,

1
6 ,

1
2) =⇒ G(z) = (2 + z + 3z2)/6

G(z)

y

x
1e0 e1 e2e3 2

3

In this case G(z) = z has two solutions 2/3 and 1. Starting from e0 = 0,

ek converges to e∞ = 2/3, i.e,

P (extinction) = 2/3 and P (survival) = 1/3
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Iterative maps
(p0, p1, p2) = (13 ,

1
2 ,

1
6) =⇒ G(z) = (2 + 3z + z2)/6

G(z)

y

x
1e0 e1 e2e3

In this case G(z) = z has two solutions 1 and 2. Starting from e0 = 0,

ek converges to e∞ = 1.
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Criterion for extinction

{
ek+1 = G(ek)

e0 = 0

Note that PGF G(z) = E(zX) satisfies:

• G(1) = 1 so 1 is always a fixed point

• G(z) = p0 + p1z + p2z
2 + · · · is an increasing function of z ≥ 0,

G(0) = p0

• G′(z) = p1 + 2p2z + 3p3z
2 + · · · is an increasing function, i.e., G(z)

is convex

• Key quantity:

G′(1) = E(X) = average number of children per individual

This also follows from MGF: G′(1) = M ′X(0) = E(X).

14/24
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Criterion for extinction

G(z)

y

z
1

Supercritical:

E(X) > 1⇒ e∞ < 1

G(z)

y

z
1

Critical:

E(X) = 1⇒ e∞ = 1

G(z)

y

z
1

Subcritical:

E(X) < 1⇒ e∞ = 1

In terms of expected number of children:

• E(X) ≤ 1⇔ P (extinction) = 1

• E(X) > 1⇔ P (extinction) < 1, given by the smaller solution to

G(z) = z
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Number of descendents



Number of descendents

• Let Nk be the number of descendents at kth generation, with

N0 = 1.

• Find the PMF is very involved:378 CHAPTER 10. GENERATING FUNCTIONS

2

1

0

1/4

1/4

1/4

1/4

1/4

1/4

1/2

1/16

1/8

5/16

1/2

4

3

2

1

0

0

1

2

1/64

1/32

5/64

1/8

1/16

1/16

1/16

1/16

1/2

Figure 10.1: Tree diagram for Example 10.8.

Branching processes have served not only as crude models for population growth

but also as models for certain physical processes such as chemical and nuclear chain

reactions.

Problem of Extinction

We turn now to the first problem posed by Galton (i.e., the problem of finding the

probability of extinction for a branching process). We start in the 0th generation

with 1 male parent. In the first generation we shall have 0, 1, 2, 3, . . . male

offspring with probabilities p0, p1, p2, p3, . . . . If in the first generation there are k

offspring, then in the second generation there will be X1 +X2 + · · ·+Xk offspring,

where X1, X2, . . . , Xk are independent random variables, each with the common

distribution p0, p1, p2, . . . . This description enables us to construct a tree, and a

tree measure, for any number of generations.

Examples

Example 10.8 Assume that p0 = 1/2, p1 = 1/4, and p2 = 1/4. Then the tree

measure for the first two generations is shown in Figure 10.1.

Note that we use the theory of sums of independent random variables to assign

branch probabilities. For example, if there are two offspring in the first generation,

the probability that there will be two in the second generation is

P (X1 +X2 = 2) = p0p2 + p1p1 + p2p0

=
1

2
· 1
4
+

1

4
· 1
4
+

1

4
· 1
2
=

5

16
.

We now study the probability that our process dies out (i.e., that at some

generation there are no offspring).

So N2 takes values 0, 1, 2, 3, 4 with probabilities 11
16 ,

1
8 ,

9
64 ,

1
32 ,

1
64 .

• Let’s find the expected number of kth-gen descendents E(Nk)
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Strategy: Generation functions

Denote the PGF of Nk by:

Gk(z) ≡ E(zNk)

Let’s compute Gk(z) and then differentiate:

G′k(1) = E(Nk)
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Recursions between PGFs

• N0 = 1: G0(z) = z.

• N1 has PMF (p0, p1, . . .): G1(z) = G(z)

• What about N2?
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Recursions between PGFs

Relation between N1 and N2:

• Suppose N1 = n, then

N2 = X1 +X2 + · · ·+Xn

where the numbers of 2nd-generation childern Xi’s are iid with

common PMF (p0, p1, . . .).

• Therefore N2 is an iid sum with N1 (random) number of terms:

N2 =

N1∑
i=1

Xi

20/24



Recursions between PGFs

Find the PGF of N2:

E(zN2 |N1 = n) = E(zX1+···+Xn)
iid
=

n∏
i=1

E(zXi) = G(z)n

By Law of Total Expectation (Lec 22):

G2(z) = E(zN2) = E(E(zN2 |N1)) = E(G(z)N1) = G(G(z))

21/24



Recursions between PGFs
• Relation between Nk and Nk+1:

Nk+1 =

Nk∑
i=1

Xk,i

where the number of kth-gen children Xk,i’s are iid with common

PMF (p0, p1, . . .).
• Find PGF of Nk+1: Entirely analogous to the previous slide,

Gk+1(z) = E(zNk+1) = E(E(zNk+1 |Nk)),

where

E(zNk+1 |Nk = n) = E(z
∑n

i=1 Xk,i)
iid
=

n∏
i=1

E(zXk,i) = G(z)n

Thus

Gk+1(z) = E(G(z)Nk) = Gk(G(z))
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Expression of PGF
• Generating function of Nk:

Gk(z) = G ◦G · · · ◦G︸ ︷︷ ︸
k times

(z)

• Taking derivative yields G′k(1) = E(Nk): let m = E(X) = G′(1) be
the average number of offsprings per individual.
I 0th gen: E(N0) = G′0(1) = 1

I 1st gen: E(N1) = G′1(1) = m
I 2nd gen:

E(N2) =
d

dz
G(G(z))

∣∣∣
z=1

= G′(G(1)︸︷︷︸
1

)G′(1) = G′(1)2 = m2

I kth gen: by induction,

E(Nk) = G′(Gk−1(1))︸ ︷︷ ︸
=G′(1)=m

G′k−1(1)︸ ︷︷ ︸
=mk−1

= mk
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=mk−1

= mk
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Average number of descendents

Let m = E(X) = average number of offsprings per individual. Then

E(Nk) = mk

Then

• m > 1: P (survival) > 0 and average population grows exponentially

• m = 1: P (survival) = 0 and average population stays one

• m < 1: P (survival) = 0 and average population dies exponentially

For more, see

• Grinstead-Snell §10.2

• Athreya, Krishna B.; Ney, Peter E. (1972). Branching Processes.

Berlin: Springer-Verlag.
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