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1 Exercises

1. Bob is to eat all the cookies from a jar containing three peanut butter, two chocolate, and one
oatmeal cookies. He decides to proceed completely randomly. Denote by X and Y the flavor of
the first and the second cookie he eats.

(a) Find H(X), H(Y ), H(X,Y ), H(Y |X), H(X|Y ), I(X;Y ), D(PY |X=chocolate‖PY |X=oatmeal)
and D(PY |X=oatmeal‖PY |X=chocolate).

(b) Now, what if Y denotes the flavor of the last cookie Bob eats?

(c) How much information is contained in the sequence in which the cookies are eaten?

2. Let X be distributed according to the exponential distribution with mean µ > 0, i.e., with
density p(x) = 1

µe−x/µ1{x≥0}. Let a ∈ R. Compute the divergence D(PX+a‖PX).

3. Let N (m,Σ) be the Gaussian distribution on Rn with mean m ∈ Rn (column vector) and
covariance matrix Σ.

(a) Let In be the n× n identity matrix. Show that

D( N (m, In) ‖ N (0, In)) =
1

2
‖m‖22

(b) Show that

D( N (m1, In) ‖ N (m0, In)) =
1

2
‖m0 −m1‖22

(Hint: think how Gaussian distribution changes under shifts x 7→ x + a. Apply data-
processing to reduce to previous case.)

(c) Assume that Σ is non-singular. Show that

D(N (m1,Σ)‖N (m0,Σ) =
1

2
(m0 −m1)

>Σ−1(m0 −m1).

(Hint: think how Gaussian distribution changes under non-singular linear transformations
x 7→ Ax. Apply data-processing to reduce to previous case.)

4. Recall that d(p‖q) , D(Bern(p)‖Bern(q)) denotes the binary divergence function:

d(p‖q) = p log
p

q
+ (1− p) log

1− p
1− q

.

(a) Prove for all p, q ∈ [0, 1]
d(p‖q) ≥ 2(p− q)2 log e .

Note: Proof by drawing is NOT accepted.
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(b) Apply data processing inequality to prove the Pinsker-Csiszár inequality :

TV(P,Q) ≤
√

1

2 log e
D(P‖Q) ,

where TV(P,Q) is the total variation distance between probability distribution P and Q:

TV(P,Q) , sup
E

(P [E]−Q[E]) ,

with the supremum taken over all events E.

5. (a) Prove
2H(X,Y, Z) ≤ H(X,Y ) +H(Y,Z) +H(Z,X)

(b) Use the above inequality to prove Shearer’s lemma: Place n points in R3 arbitrarily. Let
n1, n2, n3 denote the number of distinct points projected onto the xy, xz and yz-plane,
respectively. Then:

n1n2n3 ≥ n2 . (1)

(c) What necessary conditions for equality in (1) can you state? Find explicit examples of
equality (a single point does not count, please).

(d) Find examples where the left-hand side in (1) far exceeds the right-hand side.

Comments: This is an example of an information-theoretic proof of a combinatorial result.

2 Optional reading

1. Read [1, Chapter 1]

2. Read [2]

3. Watch http://www.youtube.com/watch?v=z2Whj_nL-x8
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