Spring 2017 STAT 364 - Information Theory Homework 2 Due: Feb 9, 2017 Prof. Yihong Wu

1 Exercises

- 1. Suppose Z_1, \ldots, Z_n are independent Poisson random variables with mean λ . Show that $\sum_{i=1}^n Z_i$ is a sufficient statistic of (Z_1, \ldots, Z_n) for λ .
- 2. (Divergence of order statistics) Given $x^n = (x_1, \ldots, x_n) \in \mathbb{R}^n$, let $x_{(1)} \leq \ldots \leq x_{(n)}$ denote the ordered entries. Let P, Q be distributions on \mathbb{R} and $P_{X^n} = P^n, Q_{X^n} = Q^n$.
 - (a) Prove that

$$D(P_{X_{(1)},\dots,X_{(n)}} \| Q_{X_{(1)},\dots,X_{(n)}}) = nD(P \| Q).$$
(1)

(b) Show that

$$D(\operatorname{Binom}(n, p) \| \operatorname{Binom}(n, q)) = nd(p \| q).$$

Hint: think about sufficient statistics.

- 3. Let (X, Y) be uniformly distributed in the unit ℓ_p -ball $B_p \triangleq \{(x, y) : |x|^p + |y|^p \le 1\}$, where $p \in (0, \infty)$. Also define the ℓ_{∞} -ball $B_{\infty} \triangleq \{(x, y) : |x| \le 1, |y| \le 1\}$.
 - (a) Compute I(X;Y) for p = 1/2, p = 1 and $p = \infty$.
 - (b) (Bonus) What do you think I(X;Y) converges to as $p \to 0$. Can you prove it?
- 4. (Maximum entropy.) Prove that for any X taking values on $\mathbb{N} = \{1, 2, ...\}$ such that $\mathbb{E}[X] < \infty$,

$$H(X) \leq \mathbb{E}[X]h\left(\frac{1}{\mathbb{E}[X]}\right),$$

maximized uniquely by the geometric distribution. Here as usual $h(\cdot)$ denotes the binary entropy function. *Hint*: Find an appropriate Q such that RHS - LHS = $D(P_X || Q)$.

- 5. (Finiteness of entropy) We have shown that any \mathbb{N} -valued random variable X, with $\mathbb{E}[X] < \infty$ has $H(X) \leq \mathbb{E}[X]h(1/\mathbb{E}[X]) < \infty$. Next let us improve this result.
 - (a) Show that E[log X] < ∞ ⇒ H(X) < ∞.
 Moreover, show that the condition of X being integer-valued is not superfluous by giving a counterexample.
 - (b) Show that if $k \mapsto P_X(k)$ is a decreasing sequence, then $H(X) < \infty \Rightarrow \mathbb{E}[\log X] < \infty$. Moreover, show that the monotonicity of pmf is not superfluous by giving a counterexample.
- 6. For any Gaussian random variable X_{G} and any random variable Y with finite variance, show that

$$I(X_{\mathsf{G}};Y_{\mathsf{G}}) \le I(X_{\mathsf{G}};Y)$$

where Y_{G} is jointly Gaussian with X_{G} with the same mean and variance as Y and $E[X_{\mathsf{G}}Y_{\mathsf{G}}] = E[X_{\mathsf{G}}Y]$. Does the claim also hold if Y_{G} is Gaussian but not jointly Gaussian with X_{G} ?

2 Optional reading

1. Read [1, Chapter 2]

References

[1] T. Cover and J. Thomas, *Elements of Information Theory*, Second Edition, Wiley, 2006