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1 Exercises

1. Consider the hypothesis testing problem:

H0 : X1, . . . , Xn
i.i.d.∼ P = N (0, 1) ,

H1 : X1, . . . , Xn
i.i.d.∼ Q = N (µ, 1) .

Questions:

(a) Compute the Stein exponent.

(b) Compute the tradeoff region E of achievable error-exponent pairs (E0, E1). Express the
optimal boundary in explicit form (eliminate the parameter).

(c) Compute the Chernoff exponent.1

2. A binary signal detector is being built. When the signal A is being sent a sequence of i.i.d.
Xj ∼ N (−1, 1) is received. When the signal B is being sent a sequence of Xj ∼ N (+1, 1) is
being received. Given a very large number n of observations (X1, . . . , Xn) propose a detector
for deciding between A and B. Consider two separate design cases:

(a) Misdetecting A for B or B for A are equally bad.

(b) Misdetecting A for B in 10−3 cases is ok, but the opposite should be avoided as much
as possible.

Estimate the performance of your detector for n = 20 in either case.

3. Baby version of Sanov’s theorem. Let X be a finite set. Let E be a convex subset of the
simplex of probability distributions on X . Assume that E has non-empty interior. Let
Xn = (X1, . . . , Xn) be iid drawn from some distribution P and let πn denote the empir-
ical distribution, i.e., πn = 1

n

∑n
i=1 δXi , which is a function of Xn. Our goal is to show

that

E , lim
n→∞

1

n
log

1

P (πn ∈ E)
= inf

Q∈E
D(Q‖P ). (1)

a) Define the following set of joint distributions En , {QXn : QXi ∈ E}. Show that

inf
QXn∈En

D(QXn‖PXn) = n inf
Q∈E

D(Q‖P ),

where PXn = Pn.

b) Consider the conditional distribution P̃Xn = PXn|πn∈E . Show that P̃Xn ∈ En.

1Recall the Chernoff exponent is the exponent with which the optimal average probability of error of type I and
II vanishes as n → ∞.
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c) Show that

P (πn ∈ E) ≤ exp
(
− n inf

Q∈E
D(Q‖P )

)
, ∀n.

d) For any Q in the interior of E , show that

P (πn ∈ E) ≥ exp(−nD(Q‖P ) + o(n)), n→∞.

(Hint: Use data processing as in the proof of the large deviation theorem.)

e) Conclude (1).

4. Error exponents of data compression. Let Xn be iid according to P on a finite alphabet X .
Let ε∗n(R) denote the minimal probability of error achieved by fixed-length compressors and
decompressors for Xn of compression rate R. We have learned that the if R < H(P ), then
ε∗n(R) tends to zero. The goal of this exercise is to show it converges exponentially fast and
find the best exponent.

(a) For any sequence xn, denote by π(xn) its empirical distribution and by Ĥ(xn) its em-
pirical entropy, i.e., the entropy of the empirical distribution.2 For each R > 0, define
the set T = {xn : Ĥ(xn) < R}. Show that

|T | ≤ exp(nR)(n+ 1)|X |.

(b) Show that for any R > H(P ),

ε∗n(R) ≤ exp
(
− n inf

Q:H(Q)>R
D(Q‖P )

)
.

Specify the achievable scheme. (Hint: Use Sanov’s theorem in Exercise 3.)

(c) Prove that the above exponent is asymptotically optimal:

lim sup
n→∞

1

n
log

1

ε∗n(R)
≤ inf

Q:H(Q)>R
D(Q‖P ).

(Hint: Recall that any compression scheme for memoryless source with rate below the
entropy fails with probability tending to one. Use data processing inequality. )

2For example, for the binary sequence xn = (010110), the empirical distribution is Bern(1/2) and the empirical
entropy is 1 bit.
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