
Spring 2016
ECE598YW: Information-theoretic methods in high-dimensional statistics

Final reading project

1 Rule

As the final project, please choose one of the following topics and write an essay summarizing
the given paper(s) and give a 20-minute presentation in class (May 9th, Monday, time and
location TBA). In preparing the essay, please note the following:

• Clearly summarize the statistical/mathematical model, the technical assumptions and
the main results (e.g., upper bounds, lower bounds, etc).

• Read the proof, sketch the main argument and present the key ideas.

• Discus in your opinion the most innovative/challenging part of the paper and why it
is cool (if you think it is obvious, it is perfectly fine too as long as you can make a
convincing case).

• It is also valuable to discuss the part of the paper which you find difficult to understand,
or are suspicious about, or can be improved.

2 Reading list

1. Confidence interval in high-dimensional regression: [ZZ14] (see also the follow-up work
[JM14, CG15])

2. Gaussian graphical models: [RSZZ15] – Ravi Kiran

3. MLE with convex parameter set in high dimensions: [Cha14]

4. Estimating sparse covariance matrices [CZ12]

5. Estimating bandable covariance matrices [CZZ10] – Subhadeep

6. Risk bounds for binary graphical models [SW12] – Yanjun

7. Detecting sparse mixtures via f -divergences [JW07]

8. Minimax risk bounds for high-dimensional linear regression [Ver12b]

9. Model selection and adaptivity [BBM99]

10. Metric entropy of `p-balls in Rd with respect to `q-norm [Sch84] – Ashok

11. Duality of metric entropy [AMS04] – Matt

12. Concentration of sample covariance matrix [Ver12a] – Yingxiang
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13. Oracle inequalities for high-dimensional matrices [GL10] – Siddhartha

14. Density estimation and mutual information [HO97] – Aolin

15. Predictive density estimation [LB04]

16. Sharp risk bounds for learning Gaussian mixtures [HP15] (read the full version http:

//arxiv.org/abs/1404.4997)

17. Functional estimation in high-dimensional Gaussian location model [CL11]

18. Nonparametric functional estimation [LNS99] – Jaeho

19. Sparse PCA [JL09a] (see also the earlier paper [JL09b]) – Pengkun

20. Analysis of LASSO and Dantzig selector [BRT09] – Pan

21. Estimating spare inverse covariance matrix via convex optimization [CLL11] – Harsh
Gupta

22. Community detection and submatrix localization [CX14] – Joseph

23. Information theory and aggregation [LB06] – Daewon

24. Adaptive and sharp minimax procedure for linear regression with random design [CS15]

25. General analysis of penalized M -estimator: [NRWY12] (proofs are in supplement
https://projecteuclid.org/euclid.ss/1356098555#supplemental) – Jiaqi

26. Entropy estimation with sublinear sample complexity [Pan04] – Yuheng
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