Spring 2016
ECE 598
Information-theoretic methods in high-dimensional statistics
Due: Mar 3, 2016
Prof. Yihong Wu

Rules:

e [t is mandatory to type your solutions in IATEX. Email your solution in pdf by midnight of
the due date to yihongwu@illinois.edu with subject line Homework XX: your name.

e Justify your work rigorously. As long as you are able to prove the result or a stronger version,
there is no need to follow the hints.
"ivd'Bern(G) with# € © = [0, 1]

1. (Coin flips) Consider the experiment where we observe X1, ..., X, <
) = (0 — )2 and denote the

1
and estimate the bias 6. Consider the quadratic loss function £(6,
minimax risk by R*.

(a) Use the empirical frequency éemp = X to estimate 6. Compute and plot the risk R@(é) and
show that

R* <

5=

—~

(b) Compute the Fisher information of Py = Bern(0)®" and Qg = Binom(n, ). Explain why

they are equal.

(c¢) Invoke the Bayesian Cramér-Rao lower bound to show that

- l—i-o(l).

R 4n

d) Notice that the risk of femp is maximized at 1/2 (fair coin , which suggests that it might be
P
possible to hedge against this situation by the following randomized estimator

i éemp, with probability &
d = . .
ren % with probability 1 — &
Find the worst-case risk of érand as a function of §. Choose the best § and show that this
leads to a better upper bound:
1
RF< ——.
“4(n+1)
(e) Randomization is always improvable when the loss is convex; so we should always average
out the randomness by considering the estimator

- - - 1
0" = E[frana| X] = X0 + 5(1 —9).
Optimizing over § to minimize the worst-case risk, find the resulting estimator 0* and its
risk, show that it is constant (independent of 6), and conclude
R* < #

4(1+/n)?



(f) (Equalizer) Prove the following general fact: Given an experiment {Fy : 6 € ©} and a loss
function K(Q,ﬁ), if for some prior 7 the corresponding Bayes estimator 6 has constant risk,
namely, Ry(0) is the same for all § € O, then 6 is minimax.

(g) Next we show 6* found in part (e) is exactly minimax and hence

. 1
R 41+ /n)?

Consider the following prior Beta(a,b) with density:

(0) = Waalu —ot, g eol,

where I'(a) £ [ 2% 'e ®dx. Show that if a = b = 4, 0* coincides with the Bayes
estimator for this prior, which is therefore least favorable. (Hint: work with the sufficient
statistic S = X1 + ... + X,,.)

(h) Show that the least favorable prior is not unique; in fact, there is a continuum of them.
(Hint: consider the Bayes estimator E[f|X] and show that it only depends on the first n + 1
moments of 7.)

(i) (Nonparametric extension) Consider the following nonparametric model P = M([0, 1]), the
set of all probability distributions on [0, 1]. The data are X7, ... ,an'lifi'P € P and the goal

is to estimate the mean of P under the quadratic loss. Show that the minimax risk is

. 1
B =qax e

(Hint: for any [0, 1]-valued random variable Z, show that var(Z) < E[Z](1 — E[Z]).)
2. Let Xq,... ,Xni'i&ii'Pg and 6 € [—a,al.

(a) State appropriate regularity conditions and prove the Chernoff-Rubin-Stein lower bound
on the minimax risk:

. 1—¢€)?
inf sup Eg[(§ —0)?] > min max {eQaz, (6)} ,
0 0€[—a,al 0<e<1 nl

where I = % J¢,1(0)d6 is the average Fisher information. (Hint: You can proceed as in
the classical proof of Bayesian Cramér-Rao by expanding [“ (6 — 9(x))%ié"d9.)
(b) Simplify the above bound and show that

. 1 2
inf sup E 0 —0)% > (_>
0 0c[—a,al ol /] a~t+vnl

(c) Assuming the continuity of 6 — I(6), show that the above result also leads to the optimal
local minimax lower bound which was obtained in class from Bayesian Cramér-Rao:
14+ 0(1)

inf sup Eo[(6 — 0)%] > ——2.
0 9c[Ootn—1/4] . /] nl(o)



. (More properties of f-divergences)

(a) (Invariance) For any one-to-one transformation g : X — ), show that

Dy (Pyx)llQq(x)) = Dy (Px||Qx)-

Hence f-divergences are invariant under translation, dilation or rotation.

(b) (Sufficiency) Let Y be a sufficient statistic of X for testing Px and @ x. Show that
Dy(Py|Qy) = Df(Px||@x).

(c) Show that
D¢(Py® Q[P1 ® Q) = Dy(Po P1).

(d) Show that
k k k
drv <H B, HQZ> < drv(P, Q).
=1 =1 i=1

(Hint: use the coupling characterization of drv).
. (f-divergences for Gaussian distributions) Let ¥ be a positive semidefinite matrix.

(a) Show that dpy(N(6,%),N(0,%)) = 1 —2Q(||£~/20||2/2), where Q(a) £ [ \/%—We
denotes standard normal tail probability. (Hint: first prove for p = 1 then; for general p,
apply whitening and use 3(a) and 3(c).)

(b) Compute x2(N(0,%),N(0,%)).
(c) Compute H*(N(6,3),N(0,%)).

. (Joint range) Consider L(P||Q) = [ (1;1%)2 and squared Hellinger distance H2(P, Q) = [ (VP —

VQ)2.

(a) (10%) Show that L is an f-divergence.

(b) (20%) Find and plot the joint range of H? versus L.
)

(¢) (70%) Find the close-form (not parametric form) expressions of the lower and upper bound-
ary (if they exist) and rigorously prove your results are in fact the boundaries.



