
Spring 2016
ECE 598

Information-theoretic methods in high-dimensional statistics
Due: Mar 3, 2016
Prof. Yihong Wu

Rules:

• It is mandatory to type your solutions in LATEX. Email your solution in pdf by midnight of
the due date to yihongwu@illinois.edu with subject line Homework XX: your name.

• Justify your work rigorously. As long as you are able to prove the result or a stronger version,
there is no need to follow the hints.

1. (Coin flips) Consider the experiment where we observe X1, . . . , Xn
i.i.d.∼ Bern(θ) with θ ∈ Θ = [0, 1]

and estimate the bias θ. Consider the quadratic loss function `(θ, θ̂) = (θ − θ̂)2 and denote the
minimax risk by R∗.

(a) Use the empirical frequency θ̂emp = X̄ to estimate θ. Compute and plot the risk Rθ(θ̂) and
show that

R∗ ≤ 1

4n
.

(b) Compute the Fisher information of Pθ = Bern(θ)⊗n and Qθ = Binom(n, θ). Explain why
they are equal.

(c) Invoke the Bayesian Cramér-Rao lower bound to show that

R∗ =
1 + o(1)

4n
.

(d) Notice that the risk of θ̂emp is maximized at 1/2 (fair coin), which suggests that it might be
possible to hedge against this situation by the following randomized estimator

θ̂rand =

{
θ̂emp, with probability δ
1
2 with probability 1− δ

Find the worst-case risk of θ̂rand as a function of δ. Choose the best δ and show that this
leads to a better upper bound:

R∗ ≤ 1

4(n+ 1)
.

(e) Randomization is always improvable when the loss is convex; so we should always average
out the randomness by considering the estimator

θ̂∗ = E[θ̂rand|X] = X̄δ +
1

2
(1− δ).

Optimizing over δ to minimize the worst-case risk, find the resulting estimator θ̂∗ and its
risk, show that it is constant (independent of θ), and conclude

R∗ ≤ 1

4(1 +
√
n)2

.
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(f) (Equalizer) Prove the following general fact: Given an experiment {Pθ : θ ∈ Θ} and a loss
function `(θ, θ̂), if for some prior π the corresponding Bayes estimator θ̂ has constant risk,
namely, Rθ(θ̂) is the same for all θ ∈ Θ, then θ̂ is minimax.

(g) Next we show θ̂∗ found in part (e) is exactly minimax and hence

R∗ =
1

4(1 +
√
n)2

.

Consider the following prior Beta(a, b) with density:

π(θ) =
Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1, θ ∈ [0, 1],

where Γ(a) ,
∫∞
0 xa−1e−xdx. Show that if a = b =

√
n
2 , θ̂∗ coincides with the Bayes

estimator for this prior, which is therefore least favorable. (Hint: work with the sufficient
statistic S = X1 + . . .+Xn.)

(h) Show that the least favorable prior is not unique; in fact, there is a continuum of them.
(Hint: consider the Bayes estimator E[θ|X] and show that it only depends on the first n+ 1
moments of π.)

(i) (Nonparametric extension) Consider the following nonparametric model P =M([0, 1]), the

set of all probability distributions on [0, 1]. The data are X1, . . . , Xn
i.i.d.∼ P ∈ P and the goal

is to estimate the mean of P under the quadratic loss. Show that the minimax risk is

R∗ =
1

4(1 +
√
n)2

.

(Hint: for any [0, 1]-valued random variable Z, show that var(Z) ≤ E[Z](1− E[Z]).)

2. Let X1, . . . , Xn
i.i.d.∼ Pθ and θ ∈ [−a, a].

(a) State appropriate regularity conditions and prove the Chernoff-Rubin-Stein lower bound
on the minimax risk:

inf
θ̂

sup
θ∈[−a,a]

Eθ[(θ − θ̂)2] ≥ min
0<ε<1

max

{
ε2a2,

(1− ε)2

nĪ

}
,

where Ī = 1
2a

∫ a
−a I(θ)dθ is the average Fisher information. (Hint: You can proceed as in

the classical proof of Bayesian Cramér-Rao by expanding
∫ a
−a(θ − θ̂(x))∂pθ∂θ dθ.)

(b) Simplify the above bound and show that

inf
θ̂

sup
θ∈[−a,a]

Eθ[(θ − θ̂)2] ≥
(

1

a−1 +
√
nĪ

)2

(c) Assuming the continuity of θ 7→ I(θ), show that the above result also leads to the optimal
local minimax lower bound which was obtained in class from Bayesian Cramér-Rao:

inf
θ̂

sup
θ∈[θ0±n−1/4]

Eθ[(θ − θ̂)2] ≥
1 + o(1)

nI(θ0)
.
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3. (More properties of f -divergences)

(a) (Invariance) For any one-to-one transformation g : X → Y, show that

Df (Pg(X)‖Qg(X)) = Df (PX‖QX).

Hence f -divergences are invariant under translation, dilation or rotation.

(b) (Sufficiency) Let Y be a sufficient statistic of X for testing PX and QX . Show that

Df (PY ‖QY ) = Df (PX‖QX).

(c) Show that
Df (P0 ⊗Q‖P1 ⊗Q) = Df (P0‖P1).

(d) Show that

dTV

(
k∏
i=1

Pi,

k∏
i=1

Qi

)
≤

k∑
i=1

dTV(Pi, Qi).

(Hint: use the coupling characterization of dTV).

4. (f -divergences for Gaussian distributions) Let Σ be a positive semidefinite matrix.

(a) Show that dTV(N (θ,Σ),N (0,Σ)) = 1 − 2Q(‖Σ−1/2θ‖2/2), where Q(a) ,
∫∞
a

1√
2π
e−x

2/2dx

denotes standard normal tail probability. (Hint: first prove for p = 1 then; for general p,
apply whitening and use 3(a) and 3(c).)

(b) Compute χ2(N (θ,Σ),N (0,Σ)).

(c) Compute H2(N (θ,Σ),N (0,Σ)).

5. (Joint range) Consider L(P‖Q) =
∫ (P−Q)2

P+Q and squared Hellinger distance H2(P,Q) =
∫

(
√
P −√

Q)2.

(a) (10%) Show that L is an f -divergence.

(b) (20%) Find and plot the joint range of H2 versus L.

(c) (70%) Find the close-form (not parametric form) expressions of the lower and upper bound-
ary (if they exist) and rigorously prove your results are in fact the boundaries.
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