
Homework 3 Due: May 12, 2016
Spring 2016
ECE 598

Information-theoretic methods in high-dimensional statistics
Prof. Yihong Wu

Rules:

• It is mandatory to type your solutions in LATEX. Email your solution in pdf (file name:
HW3-your name.pdf) by midnight of the due date to yihongwu@illinois.edu with subject
line Homework XX: your name.

• Justify your work rigorously. As long as you are able to prove the result or a stronger version,
there is no need to follow the hints.

1. (Suboptimality of MLE in high dimensions) Consider the p-dimensional GLM: X ∼ N (θ, Ip),
where θ belongs to the parameter space

Θ =
{
θ ∈ Rp : |θ1| ≤ p1/4, ‖θ\1‖2 ≤ 2(1− p−1/4|θ1|)

}
.

where θ\1 = (θ2, . . . , θp). For the mean-square error loss, show that for sufficiently large p,

(a) the minimax risk is bounded:
inf
θ̂

sup
θ∈Θ

Eθ[‖θ̂ − θ‖22] . 1

(b) the worst-case risk of maximal likelihood estimator

θMLE , arg min
θ̃∈Θ

‖X − θ̃‖2

is unbounded, namely,
sup
θ∈Θ

Eθ[‖θ̂MLE − θ‖22] &
√
p.

(c) (Bonus) Can you construct a cleaner example?

2. (Distribution estimation) Given n independent samples X1, . . . , Xn drawn from a distribution
P over [k], the goal is to show that the minimax rate for estimating P with respect to the total
variation loss is given by:

inf
P̂

sup
P∈Mk

EP [dTV(P̂ , P )] �
√
k − 1

n
∧ 1, k, n ∈ N, (1)

where Mk denotes all distributions on [k].

(a) Show that the maximal likelihood estimator PMLE coincides with the empirical distribution.

(b) Show that MLE is rate-optimal, namely, achieving the RHS of (1) within constant factor.

(c) Establish the minimax lower bound via Assouad’s lemma.

(d) Establish the minimax lower bound via Fano’s inequality + volume method or explicit
packing.

(e) (Bonus) Establish the minimax lower bound via mutual information method.
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3. (Hard thresholding)

(a) Show that the solution to the `0-penalized least squares

θ̂ = arg min
θ∈Rp

‖y − θ‖22 + λ‖θ‖0

coincides with the hard-thresholding estimator θ̂HT, where

θ̂HT
i =

{
yi |yi| > τ

0 |yi| ≤ τ.

Find the relation between τ and λ.

(b) Show that θ̂HT is a minimizer for

θ̂ = arg min
θ:‖y−θ‖∞≤τ

‖θ‖0.

4. (Soft thresholding)

(a) Show that the solution to the `1-penalized least squares

θ̂ = arg min
θ∈Rp

‖y − θ‖22 + λ‖θ‖1

coincides with the soft-thresholding estimator θ̂ST, where

θ̂ST
i =


yi − τ yi > τ

0 |yi| ≤ τ
yi + τ yi < −τ

Find the relation between τ and λ.

(b) Show that
θ̂ = arg min

θ:‖y−θ‖∞≤τ
‖θ‖1

also coincides with θ̂ST.

5. (Sharp minimax rate in sparse denoising) For p-dimensional GLM model X ∼ N (θ, Ip), we show
that minimax risk for denoising 1-sparse vector in high dimension is

inf
θ̂

sup
‖θ‖0≤1

Eθ[‖θ̂ − θ‖22] = (2 + o(1)) log p, p→∞. (2)

(a) (Bayesian lower bound) Consider the prior π under which θ is uniformly distributed over
{τe1, . . . , τep}, where ei’s denote the standard basis. Let τ =

√
(2− ε) log p. Show that for

any ε > 0, the Bayes risk (MMSE) is given by

inf
θ̂
Eθ∼π[‖θ̂ − θ‖22] = (2 + o(1)) log p, p→∞.

(Hint: use any method you prefer, e.g., mutual information, compute the exact conditional
mean and conditional variance, etc.)

(b) Demonstrate an estimator θ̂ that achieves the RHS of (2) asymptotically. (Hint: one idea
is to use soft thresholding with an appropriately chosen threshold).
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