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Outline:

• Introduction of the framework

Parametric model vs. non-parametric model

• Best estimator

1.1 Basis of Statistical Decision Theory

• Statistical Experiment: A collection of probability distributions (over a common measurable
space (X ,F)).

P = {Pθ : θ ∈ Θ}

• Data:
X ∼ Pθ for some θ ∈ Θ

X could be a random variable, vector, process, etc, depending on X .

• Objective:

T : Θ→ Y
θ 7→ T (θ)

The value T (θ) is what we want to estimate, which can be θ itself, or a relevant aspect of θ,
e.g., a function of θ such as ‖θ‖2.

• Estimator (Decision Rule):
T̂ : X → Ŷ

Note the that Ŷ need not be the same as Y.

Remark 1.1. T̂ can be a deterministic or randomized estimator:

– deterministic estimator: T̂ = T̂ (X).

– randomized estimator: T̂ = T̂ (X, external randomness). In this case T̂ should be viewed
as a conditional probability distribution PT̂ |X (Markov transition kernel).

The problem in statistical experiment is as follows: By choosing the parameter θ, nature picks
a distribution that generates the data X. The statistician observes the data and computes an
estimation T̂ of T (θ). The goal is for T̂ to be close to T . To that end, we need to introduce a
metric to quantify how good T̂ is:
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• Loss Function:

l :Y × Ŷ → R

T × T̂ 7→ l(T, T̂ )

Since we are dealing with loss, all the negative (converse) results are lower bound and all the
positive (achievable) results are upper bound.

Note: Since X is a random variable, the estimator is also a random variable. Hence, l(T, T̂ ) is
a random variable. Therefore, to make sense of “minimizing the loss”, we define the following:

• Risk:

Rθ(T̂ ) = Eθ[l(T, T̂ )] =

∫
Pθ(dx)PT̂ |X(dt̂|x)l(t(θ), t̂),

which we refer to as the risk of T̂ at θ. Note that the expected risk depends on the strategy
as well as where the truth is. The subscript indicates the distribution with respect to which
the expectation is taken.

The following diagram summarizes the process:

Example 1.1.
Gaussian Location Model (GLM): or Normal Mean Model, Additive Gaussian-Noise Channel

− Model:
P = {N (θ, Ip) : θ ∈ Θ}

where Ip is the p-dimensional identity matrix and Θ ⊂ Rp. Equivalently,

X = θ + Z Z ∼ N (0, Ip), θ ∈ Θ ⊂ Rp.

• p = 1: scalar case

• p > 1: vector case
We also encompass matrix case: By arranging a p2-dimensional vector into a p×p matrix.
In this case Θ ⊂ Rp×p.

− Objective: Examples of the objective include T (θ) = θ, ‖θ‖2, θmax = max
i∈[p]

θi, where [p] =

{1, · · · , p}.

− Loss function: Examples of the loss function include the following:

l(θ, θ̂) = ‖θ − θ̂‖22, ‖θ − θ̂‖1, · · ·
In the matrix case : l(θ, θ̂) = ‖θ − θ̂‖2F , ‖θ − θ̂‖op, · · ·
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− Estimator: Examples of the estimator include the following:

Maximum Likelihood Estimator: θ̂ = X

James-Stein estimator: θ̂JS =

(
1− p− 2

‖X‖22

)
X

The choice of the estimator mainly depends on the objective.

− Parameter space: Examples of the parameter space include the following:

a) Θ = Rp: unstructured.

b) Θ = {all k-sparse vectors} = {θ ∈ Rp : ‖θ‖0 ≤ k}, where ‖θ‖0 , |{i : θi 6= 0}| denotes the
size of the support.

Θ = lq-norm balls, 0 ≤ q ≤ ∞, where ‖θ‖q = (
∑
|θi|q)

1
q .

c) Matrix case: low-rank matrices: Θ = {θ : rank(θ) ≤ r}.
Note that by definition, more structure (smaller paramater space) always leads to smaller risk;
but it need not simplify the computation issue.

− Testing: We have two scenarios and based on the observed data X, we want to determine which
one is the true scenario.

∗ Simple Hypothesis:

H0 : θ = θ0

H1 : θ = θ1

For instance θ0 could be the all zero vector and θ1 could be all one vector. Then this
corresponds to sending a single bit repeatedly in Gaussian noise.

parameter space = Θ = {θ0, θ1} = Θ̂ = decision space

l(θ, θ̂) = 1{θ 6=θ̂}: This is Hamming loss (zero-one loss).

∗ Composite Hypothesis:
Example 1: One of the hypothesis is composite.

H0 : θ = 0

H1 : ‖θ‖2 ≥ ε

Here, H0 and H1 could be interpreted as pure noise case and the case where signal is
present, respectively.

Θ = {0} ∪ {θ : ‖θ‖2 ≥ ε}
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Example 2: Both hypothesis are composite.

H0 : ‖θ‖2 ≤ δ
H1 : ‖θ‖2 ≥ ε

Here, H0 and H1 could be interpreted as the case with weak signal and strong signal,
respectively.

Remark 1.2 (Parametric model versus non-parametric model). According to statistical conventions,
parametric model refers to the case that the parameter of interest is finite-dimensional while non-
parametric model refers to the case that the parameter is infinite-dimensional.

In this class, we are mostly interested in high-dimensional parametric model.

Parametric Model

Examples of parametric model:

• GLM or more generally exponential family. We start with distribution P on Rp, and for
θ ∈ Rp, consider the tilted distribution

dPθ =
e〈θ,X〉

EX∼P e〈θ,X〉
dP

• Covariance matrix estimation:

X = (X1, · · · , Xn)
iid∼ N (0,Σ). In this case, Σ is our parameter and Pθ = N (0,Σ)⊗n.

If we want to estimate Σ, we can use the loss function l(Σ, Σ̂) = ‖Σ− Σ̂‖.
If we want to estimate a function of Σ, T : Σ → v (principle component) we can use loss
function l(v, v̂) = ‖span(v)− span(v̂)‖ = {vv′ − v̂v̂′}.

• Stochastic block model: We observe the graph G of size n and the goal is to estimate a subset
of nodes C:

X = G

Θ = {C : C ⊂ [n], |C| = n/2}

For each two nodes i and j, we denote i ∼ j as the event that they belong to the same
partition, that is either they both belong to C or Cc.

P (i ∼ j) =

{
p if i, j ∈ C or Cc

q o.w.

l(C, Ĉ) = 1{C 6=Ĉ} or |C∆Ĉ|
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• Large alphabet: Estimating a discrete distribution.

P = {all distributions on [k]}
X = (X1, · · · , Xn) ∼ P ∈ P
l(P, P̂ ) = ‖P − P̂‖ or D(P‖P̂ )

Non-parametric Model

Examples of non-parametric model:

• Density estimation: Here the parameter is a pdf, for example:

f ∈ F = {smooth, log concave, monotone}

X = (X1, · · · , Xn)
iid∼ f on Rp

l(f, f̂) = ‖f − f̂‖22

• Regression: We observe noisy samples at discrete points. The parameter is the unknown
function f .

X = (Xi) = f(i/n) + Zi

• White Gaussian noise model: we observe a wave form:

dXt = f(t)dt+ dBt

Xt =

∫ t

0
f(τ)dτ +Bt

where Bt is a Brownian motion. Equivalently, if f ∈ L2 where {φi} is an orthonormal basis,
then

Xi = 〈X,φi〉 = θi + Zi i = 0, 1, · · ·

This is called Gaussian Sequence Model (which is GLM with p =∞).

Remark 1.3. Testing:

simple vs. simple
H0 : θ = θ0 vs. H1 : θ = θ1 Θ = {θ0, θ1}
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simple vs. composite
H0 : θ = θ0 vs. H1 : θ ∈ Θ1 Θ = {θ0} ∪Θ1

composite vs. composite

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1 Θ = Θ0 ∪Θ1

T̂ (X) ∈ {0, 1} l(θ, T̂ ) = 1{θ/∈ΘT̂ }.

Remark 1.4. Confidence interval/region/bond: For example to estimate a function we output a
region in which the function lies w.h.p.

T̂ = some subset

l(θ, T̂ ) = 1{θ/∈T̂} + size of T̂

Remark 1.5. We frequently deal with independent sampling model. In this case:

X = (X1 · · · , Xn)︸ ︷︷ ︸
i.i.d. samples

P = {P⊗nθ : θ ∈ Θ}

1.2 How to define the “best Estimator”

One of the main objectives of this course is to investigate the fundamental limit, that is, to find the
performance of the best estimator. We use the risk of an estimator to quantify its performance. As
mentioned in the framework, for an estimator θ̂, we define the risk as follows:

Rθ(θ̂) = Eθ[l(θ, θ̂)]

Note that, Rθ(θ̂) could be viewed as a function of θ. As an example, the following figure depicts the
risk curves for two different estimators.

To find the best estimator, we first need to define the figure of merit.

Naive Method: Find the estimator which is better that all other estimators at all points, i.e., find
θ̂, such that

Rθ(θ̂) ≤ Rθ(θ̂′), ∀θ,∀θ̂′.

It is easy to see that this method is typically too greedy to be realistic and an estimator that
satisfies the requirement above does not exist. For example, consider θ1 6= θ2 in Θ and l(θ, θ̂) is
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some norm. Consider the estimator θ̂1 = θ1 which throws away data and always spits out θ1. Then
Rθ1(θ̂) ≤ Rθ1(θ̂1) = 0 means θ̂ = θ1, which means it cannot beat θ̂2 = θ2 now. Therefore, we need
other methods to compare estimators.

Method 1 Limit the class of competitors (of θ̂):

In some cases, by restricting the class of estimators, we can find a strategy which is uniformly
the best. For example,

• Restricting to unbiased estimators: Frequently it is good to have be biased.

• Restricting to invariant estimators

Method 1 is difficult to generalize to high dimensional problems.

Method 2 Bayes approach: average-case analysis.

Method 3 Minimax approach: worst-case analysis

As mentioned before, finding a curve that dominates all other curves at all points is not always
feasible. Hence, in Methods 2 and 3, we summarize a curve to a number so that we can
compare them. In Method 2, we give weights to each point and take the average. The weights
are called the prior. But the problem is which prior to choose. In Method 3, we consider the
worst prior. For example, according to Method 3, in the figure above, θ̂2 is a better strategy.
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